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Abstract Meta-analysis offers the opportunity to combine

evidence from retrospectively accumulated or prospectively

generated data. Meta-analyses may provide summary esti-

mates and can help in detecting and addressing potential

inconsistency between the combined datasets. Application

of meta-analysis in genetic associations presents consider-

able potential and several pitfalls. In this review, we present

basic principles of meta-analytic methods, adapted for

human genome epidemiology. We describe issues that arise

in the retrospective or the prospective collection of relevant

data through various sources, common traps to consider in

the appraisal of evidence and potential biases that may

interfere. We describe the relative merits and caveats for

common methods used to trace inconsistency across studies

along with possible reasons for non-replication of proposed

associations. Different statistical models may be employed

to combine data and some common misconceptions may

arise in the process. Several meta-analysis diagnostics are

often applied or misapplied in the literature, and we com-

ment on their use and limitations. An alternative to

overcome limitations arising from retrospective combina-

tion of data from published studies is to create networks of

research teams working in the same field and perform

collaborative meta-analyses of individual participant data,

ideally on a prospective basis. We discuss the advantages

and the challenges inherent in such collaborative approa-

ches. Meta-analysis can be a useful tool in dissecting the

genetics of complex diseases and traits, provided its methods

are properly applied and interpreted.

Introduction

The development of high throughput techniques has resulted

in an explosion of available genetic and genomic informa-

tion. This creates challenges in analyzing, synthesizing and

finally translating this rapidly accumulating evidence in

useful clinical and public health applications (Burke et al.

2006; Guttmacher and Collins 2003; Higgins et al. 2007;

Smith et al. 2006). Human genome epidemiology addresses

associations between genetic variation and risk for complex

common diseases. Currently, more than 6,000 original arti-

cles on human genome epidemiology findings are published

annually, and the number is constantly increasing (Lin et al.

2006). Moreover, the average amount of data per article has

increased steeply as we have moved from testing single

polymorphisms to genome-wide association (GWA) studies

(Ioannidis 2007b). We use the term meta-analysis here to

define the quantitative methods for combining results of

different studies on the same research question and for

measuring and potentially explaining the extent of incon-

sistency among different studies.

In biomedical research, meta-analyses have been well

established in the synthesis of clinical trials (Lau et al.
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1998) and have increasingly been applied to observational

studies (Stroup et al. 2000) with major impact in the lit-

erature (Patsopoulos et al. 2005). Meta-analyses of gene–

disease association studies have also become popular (Io-

annidis et al. 2001a; Lohmueller et al. 2003) (Fig. 1).

Special initiatives such as the Human Genome Epidemi-

ology Network (HuGENet) also support the conduct of

high-quality meta-analyses on genetic associations (Kho-

ury and Dorman 1998) (http://www.cdc.gov/genomics/

hugenet/default.htm). Besides retrospective meta-analy-

ses, there is mounting interest in prospective synthesis of

evidence, currently pursued by several international con-

sortia of investigators (Ioannidis et al. 2005, 2006). The

advent of GWA investigations has also given a new twist to

meta-analysis. Given that most genetic effects are small

and require the coalition of many teams to generate large-

scale evidence even at the discovery phase, meta-analyses

of data from GWA studies and their replicating collabo-

rating teams appear in the very first publication of genetic

associations (Frayling et al. 2007; Scott et al. 2007; Zeggini

et al. 2007).

As any research design, meta-analysis has strengths and

weaknesses. This review discusses some critical areas

where one can make a difference in maximizing the

strengths and minimizing the weaknesses of meta-analyses

on genetic association data. These issues should be ideally

anticipated upfront when the explicit meta-analysis proto-

col is crystallized.

Sources of evidence

Ideally, meta-analyses should be prospective enterprises: all

data that pass pre-set quality criteria are prospectively

included, and prospective meta-analyses can be

cumulatively updated, if and when new data appears. How-

ever, until now the vast majority of meta-analyses have been

retrospective exercises. This creates a major challenge for

retrieving the pertinent data in an unbiased way.

Published data

For the published literature, meta-analyses almost always

use PubMed. EMBASE typically adds few or no relevant

studies not indexed in PubMed, but this varies per topic

(Royle et al. 2005). Insufficient attention in the search

strategy or screening process may lead to missing useful

data. Databases are also available that specialize on

genetic association studies. The HuGE Published Liter-

ature database (http://www.cdc.gov/genomics/search/

aboutHPLD.htm) (Lin et al. 2006) indexes genetic

association studies published since October 1, 2000

(hosting almost 27,000 studies as of 15/4/2007). Disease-

specific databases also exist for selected fields. For

example, Alzgene (http://www.alzforum.org/res/com/gen/

alzgene/) (Bertram et al. 2007) includes more than 1,000

published genetic association studies on Alzheimer’s

disease. Additional cross-linking may also be performed

(e.g. screening of references or search in the Web of

Science of the citations to the first studies that proposed

an association).

Unpublished data

Many studies are not published in peer-reviewed journals,

whereas others are not published at all, often due to publi-

cation bias (Dickersin et al. 1992; Hirschhorn et al. 2002;

Munafo et al. 2004). Retrieving unpublished data retro-

spectively is difficult, if not impossible. Some may also

question the validity of unpublished data that have not passed

peer-review. Conversely, major deficiencies in the reporting

of published genetic association studies (Bogardus et al.

1999; A.J. Yesupriya et al., unpublished data) suggest that

the peer-review filter is imperfect. Empirical evidence from

other fields suggests that inclusion of unpublished data may

sometimes lead associations to lose their statistical signifi-

cance, suggesting that the published literature is shaped by

selective reporting biases (Kyzas et al. 2005). Moreover,

there are numerous studies published in journals that are not

indexed in any ‘‘mainstream’’ databases listed above.

Non-English literature

A particular issue is non-English language papers indexed

in language-specific national databases. Local language

Fig. 1 Trend of published meta-analyses of genetic association

studies overtime, starting from 1995 to 2006. The search was

performed in Pubmed for 1995–2006
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literature may sometimes account for a sizable quantum of

evidence. An empirical assessment has highlighted this in

the Chinese literature. Genetic effects of the Chinese lan-

guage studies were consistently higher compared with

those of, respective, PubMed-indexed studies from Europe

or the USA (Pan et al. 2005). This problem may apply also

to other national literatures; only the tip of the iceberg may

be published in PubMed-indexed journals (Ariyaratnam

et al. 2007). The ubiquitously large genetic effects in the

Chinese literature probably reflect a stronger prevalence of

publication and selective reporting biases in some research

environments. Although in other clinical research domains,

local language literature tends to accumulate non-signifi-

cant results that are not attractive for the more competitive

English language journals (Egger et al. 1997b), in genetics

investigators may highlight significant results even more

prominently in local journals. Inclusion of such data would

yield spuriously strong effects in meta-analyses.

Implications

Given these sources of uncertainty, meta-analyses should

report their exact sources of evidence, search strategies,

and the results of the screening process with exclusions

listed per type; flow diagrams may occasionally be helpful.

Many genetic meta-analyses (80% in an empirical evalu-

ation published in 2003), do not mention their search

strategy (Attia et al. 2003). This makes the process

impossible to reproduce by independent scientists.

Depending on the selection criteria, databases screened,

search algorithms, and publication periods covered, meta-

analyses on the same association may end up including

different studies and reaching even different conclusions.

An example is shown in Table 1 for meta-analyses pub-

lished in 2004–2007 on the association between three

common polymorphisms and stroke.

Appraisal of evidence

The reliability of meta-analyses is affected by the reli-

ability of the included data. The conduct of meta-analysis

offers a unique opportunity to scrutinize the pieces of the

data for errors and biases that may affect the validity of the

results. A common misuse of meta-analysis is to ignore this

step. At the other extreme, another common misuse is to

stretch quality assessment beyond its true capabilities. For

published data, reported quality is only a surrogate of the

true quality of a study. If something is not reported, it

cannot be always assumed that it was not done; if some-

thing is stated that it was done, it is not certain that it was

done correctly. Sometimes composite quality scores are

generated for the included studies that sum all the different

aspects of the design, conduct, analysis and protection from

bias or lack thereof, in each study. Such impressively

accurate scores are misleading (Juni et al. 1999; Rothman

and Greenland 1998). A single error may invalidate com-

pletely the results of a study, whereas a series of errors and

biases may eventually cancel out among themselves.

Instead of spurious quality scores, meta-analyses should

try to carefully record each potential error and bias. Biases

can be broadly divided into study-specific and field-wide.

The first category hosts selection bias, information bias,

and confounding, whereas the second includes publication

and selective outcome and analysis reporting biases

(significance-chasing biases). Retrospective meta-analyses

may suffer from both types of biases, while, in theory at

least, prospective meta-analyses can avoid field-wide

biases.

Selection bias refers to the differential selection of cases

and controls, thus creating unequally representative groups

within study populations (Hill and Kleinbaum 2000). Some

empirical data support the notion that typically genotype

differences do not influence response characteristics and

participation rates (Bhatti et al. 2005), but specific forms of

selection bias may still occur (Davey Smith and Ebrahim

2003; Little and Khoury 2003). If the genotype affects the

severity of the disease, the strength of the association is

affected when cases are selected based on severity. When

the genotype affects also survival, prevalent cases yield

different results compared with incident cases (Botto and

Yang 2000). Similarly, assessment of gene–environment

interactions should not be affected, unless genotype influ-

ences selection conditional on exposure and disease status

(Morimoto et al. 2003; Wacholder et al. 2002a).

Information bias can affect genotypes, phenotypes, and/

or other variables. Lack of quality control measures in the

genotyping process, such as internal validation (by repeat

testing and/or different genotyping techniques), quality

control, and blinding (of laboratory personnel, clinical

contributors or researchers) could cause bias (Little et al.

2002; Pompanon et al. 2005). Phenotype misclassification

is possible when diagnostic criteria for the phenotype of

interest have suboptimal sensitivity and specificity. Inclu-

sion of control samples without rigorous exclusion of

disease (e.g. blood donors) may cause spurious findings,

when common but ‘‘silent’’ diseases (e.g. coronary artery

disease) are studied (Aagaard-Tillery et al. 2006; Brockton

et al. 2000; Cotton et al. 2000). Misclassification in the

assessment of environmental exposures can be due to

inaccurate measurements or lack of straightforward defi-

nitions (e.g. smoking habit can be assessed according to

ever/never smokers or the number of cigarettes smoked per

day) (Wong et al. 2004). Non-differential misclassification

tends to shift effect sizes to the null (Garcia-Closas et al.
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2004; Rothman et al. 1993). However, with massive testing

of associations (e.g. GWA studies), differential misclassi-

fication may ensue for some pairs of polymorphisms and

phenotypes and may generate select spurious genetic

effects.

Confounding is a major threat. The classic example is

population stratification (i.e. when the total population has

been formed by admixture between subpopulations and

when admixture proportions vary between individuals in

cases and controls) (Hoggart et al. 2004). Family-based

designs may overcome stratification. Moreover, there are

several methods to deal with stratification (Devlin et al.

2001; Hoggart et al. 2004; Kohler and Bickeboller 2006;

Price et al. 2006; Pritchard et al. 2000; Satten et al. 2001).

Large biases are probably uncommon and, in theory, when

many diverse studies are available, biases in opposite

direction may tend to cancel out on average (Cardon and

Palmer 2003; Wacholder et al. 2000, 2002b). However,

small distortions cannot be excluded (Evangelou et al.

2006) without employing genomic control, principal

components analyses, or other appropriate methods. With

massive testing and large-scale evidence, small amounts of

stratification may cause some spurious associations or

dilute to the null some small effects.

Publication bias exists when there is a preference to

publish studies with ‘‘positive’’ findings (i.e. statistical sig-

nificant results or large association effects) (Calnan et al.

2006; Easterbrook et al. 1991; Hirschhorn et al. 2002).

‘‘Negative’’ (non-statistically significant) findings may

never be published or may be published with delay (time-lag

bias) (Ioannidis 1998). As discussed above, efforts to retrieve

and include all the unpublished studies may or may not solve

the problem—bias may occasionally be even aggravated by

inclusion of some unpublished data or local literatures.

Selective outcome and analysis reporting bias (Chan and

Altman 2005; Chan et al. 2004a, b; Contopoulos-Ioannidis

et al. 2006) occurs when investigators publish only a subset

of the analyses they have conducted, with preference to

most impressive results. Almost 90% of observational

studies report at least one statistically significant result in

their abstract, and presented ‘‘positive’’ results typically

outnumber non-statistically significant results (Kavvoura

et al. 2007). Exploratory analyses are common in epide-

miology (Michels and Rosner 1996) and may be even more

prominent in modern discovery-oriented research (Ioanni-

dis 2007a). The exploratory character may not be admitted

in the published results. Overall, selective reporting is dif-

ficult to overcome, except for collaborative analyses with

clearly a priori stated objectives and analyses (Ioannidis

et al. 2005).

The term significance-chasing bias has recently been

proposed (Ioannidis and Trikalinos 2007b) to collectively

describe all biases stemming from the pursuit of nominal

statistical significance. A meta-analysis that fails to take

into account the possibility of significance-chasing biases

may reach spuriously impressive summary estimates and

put unjustified weight to their credibility.

Replication and inconsistency

An important issue in genetic associations is whether

proposed effects are replicated or not by subsequent

research (Ioannidis 2007b). Halfway between replication

Table 1 Meta-analyses for risk of stroke and three common polymorphisms published between 2004 and 2007 showing differences in popu-

lations, number of studies, sample sizes and effect sizes

Author Last

search

Topic Population Polymorphism Studies (N) Total sample

size

Effect size

OR (95% CI)

Ariyaratnam et al. (2007) 1/2005 Stroke (any type) As ACE I/D 15 5,173 1.82 (1.28–2.60)

MTHFR C677T 10 5,258 1.22 (0.98–1.52)

APOE e2/e3/e4 7 2,673 1.77 (1.30–2.39)

Banerjee et al. (2007) 8/2006 Stroke (any type) As ACE I/D 6 2,429 1.19 (0.91–1.56)

MTHFR C677T 10 6,389 1.54 (1.13–2.10)

APOE e2/e3/e4 6 6,107 1.47 (1.00–2.15)

Sudlow et al. (2006) 10/2004 Stroke (per type) As-Cauc APOE e2/e3/e4 24 20,113 1.11 (1.15–1.64)

Cronin et al. (2005) 3/2004 Stroke/TIA As-Cauc MTHFR C677T 32 14,780 1.37 (1.15–1.64)

Casas et al. (2005) 6/2003 Stroke (any type) As-Cauc MTHFR C677T 30 13,928 1.26 (1.14–1.40)

Casas et al. (2004) 1/2003 Stroke (any type) Cauc ACE I/D 11 14,295 1.21 (1.08–1.35)

MTHFR C677T 22 7,984 1.24 (1.08–1.42)

APOE e2/e3/e4 10 12,726 0.96 (0.84–1.11)

ACE I/D Angiotensin converting enzyme insertion/deletion polymorphism, APOE Apolipoprotein E, As Asian, Cauc Caucasian, CI confidence

interval, MTHFR 5,10-methylenetetrahydrofolate reductase, OR odds ratio, TIA Transient Ischemic Stroke
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and non-replication, one may have inconsistency, i.e.

between-study heterogeneity in the observed effects. Pro-

posed effects in the candidate gene era were often

dissipated in following studies (Hirschhorn et al. 2002;

Ioannidis et al. 2001a; Lohmueller et al. 2003; Trikalinos

et al. 2004). Early studies may suggest stronger effects due

to the ‘‘winner’s curse’’ phenomenon. This may continue in

the GWA era, where the discovery phase entails massive

testing: the most significant polymorphisms are likely to

exhibit some regression-to-the-mean upon further testing.

In the ‘‘Proteus phenomenon’’, the first study gives the

strongest effect ever observed, soon followed by a study

showing the least strong (most opposite) effect ever

observed (Ioannidis and Trikalinos 2005); subsequent

studies have results that fall between these two extremes.

The Proteus phenomenon probably reflects the strong

attraction to publish impressive results and the equally

strong attraction to refute them. Recently, Yu et al. (2007)

proposed a method to correct for the effect of the ‘‘winner’s

curse phenomenon’’ in follow-up studies that try to repli-

cate initially claimed associations.

Results of genetic association studies included in meta-

analyses may vary due to additional reasons. The genetic

variant may not be the true culprit one, but simply linked to

the culprit with variable linkage across populations. For

polymorphisms derived from GWA studies this might be

the rule, since tag polymorphisms are usually selected for

testing based on frequency, redundancy or coverage con-

siderations—not candidate relevance (Hirschhorn and Daly

2005; Thomas et al. 2005). Similarly, the phenotype being

studied may be correlated with the truly associated phe-

notype, and correlation of phenotypes may vary across

studies. For example, an FTO polymorphism emerged in

the search for type 2 diabetes genetic variation, but had

inconsistent associations across populations for diabetes,

while it had consistent associations with body mass index

and obesity risk (Frayling et al. 2007). Common variants

may regulate the risk of macroscopic clinical syndromes

through molecular effects that are distant relatives of

clinical risks. Therefore, diversity in the magnitude of

clinical risks may be common in different populations,

provided that large enough samples are available to docu-

ment the diversity. Genuine diversity in effects across

populations may also reflect population-specific gene–gene

or gene–environment interactions (Hunter 2005) or com-

plex pathways with exchangeable genetic variants.

Besides genuine diversity in the genetic effects, all the

errors and biases discussed above may generate between-

study heterogeneity. Therefore, heterogeneity should be

carefully examined against all potential biases that may

have affected each study or sets of studies. This scrutiny is

still exploratory, but may affect interpretation of the evi-

dence (Ioannidis 2006a; Ioannidis 2007b).

Table 2 lists commonly used statistical heterogeneity

metrics. Cochran’s Q statistic (Cochran 1954) cannot

detect heterogeneity when there are few studies (a common

problem) and may over-interpret unimportant heterogene-

ity when there are many studies (an uncommon situation)

(Hardy and Thompson 1998; Higgins et al. 2002). A

common misconception in GWA studies is to apply the Q

statistic to compare the effect sizes in the GWA dataset

results and in a few replication datasets, and to conclude

that there is no heterogeneity, while the power to detect

heterogeneity with such few studies is minimal.

Another common metric is the between-study variance

s2 (Table 2). s2 depends on the respective effect size metric

(e.g. standardized mean difference, odds ratio, hazard ratio)

used; thus, it is not comparable among meta-analyses using

different effect metrics (Huedo-Medina et al. 2006). The

ratio of s over the effect size conveys the extent of vari-

ability (between-study standard deviation) as compared

with the effect size.

Finally, the I2 metric is independent of the number of

studies and can be compared across meta-analyses with

different number of studies and metrics (Higgins and

Thompson 2002) (Table 2). I2 describes the percentage of

total variation across studies due to heterogeneity rather

than chance (Higgins et al. 2003). I2 lies between 0 and

100%; values over 50% indicate large heterogeneity.

However, I2 also becomes uncertain when the meta-ana-

lysis includes few studies (Huedo-Medina et al. 2006).

Confidence intervals for I2 are easy to calculate (Higgins

and Thompson 2002) and typically they are very large,

unless many studies are available (Ioannidis et al. 2007b).

Therefore, one should be aware that there can be large

uncertainty in a meta-analysis about the presence or not

and the extent of between-study heterogeneity. Strong

inferences about heterogeneity or lack thereof are a com-

mon misconception when limited data are available.

Summary effect

Table 3 summarizes examples of commonly used effect

size estimates in meta-analyses. With fixed effects models,

it is assumed that there is a sole common effect estimate for

all studies; observed between-study variability is attributed

to chance only. Commonly used fixed effects’ models

include inverse-variance weighting, Mantel–Haenszel

(1959) and Peto’s methods (Yusuf et al. 1985). Peto’s

method may give inappropriate results when effect esti-

mates are very large and when the numbers of cases and

controls are not fairly equal (Greenland 1994). As we

discussed in the previous section, with the range of data

available in most meta-analyses, failure to reject the null

hypothesis of homogeneity does not prove homogeneity. In

Hum Genet (2008) 123:1–14 5
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genetic epidemiology, fixed-effects models often are also

counterintuitive. It is implausible that effect modifications

and biases are exactly the same across studies. In the

presence of any between-study heterogeneity, fixed effects

give tighter confidence intervals compared with random

effects. This leads to spuriously lower levels of statistical

significance for the summary effects; uncommon excep-

tions exist (Ntzani et al. 2007; Poole and Greenland 1999).

With random effects, it is assumed that there is a dif-

ferent underlying effect size for each study. The most

popular estimator of the between-study variance is the

DerSimonian–Laird estimator (1986). Random effects

accommodate diversity between studies and thus are defi-

nitely preferable in the presence or anticipation of any

between-study heterogeneity. This is the case in the

majority of meta-analyses of genetic association studies, so

that the use of random-effects models is generally prefer-

able compared to fixed effects; when no heterogeneity

exists, both models show similar effects anyhow. An

important caveat exists when small studies in retrospective

meta-analysis report very strong effects, whereas larger

studies show no or minimal effects. Random effects give

relatively more weight to smaller studies, and the summary

effect may become stronger than that with fixed effects,

while smaller studies may be less trustworthy. Extra cau-

tion is needed when effects are driven by mostly small

studies which tend to show overestimated effect sizes (see

also section on bias diagnostics). For prospective meta-

Table 3 Examples of commonly used effect size estimates in meta-analysis, corresponding variances and weights

Type of effect size Effect, d Variance, var(d) Weight, w

Dichotomous outcomes

Log odds ratio (logOR), population-based studya log p1

1�p1

� �
� log p2

1�p2

� �
1

p1ð1�p1Þn1
þ 1

p2ð1�p2Þn2

1
varðdÞþs2

Continuous outcomes

Mean difference (Begg and Mazumdar) m1 � m2
sd2

1

n1
þ sd2

2

n2

1
varðdÞþs2

Standardized mean difference (Hedges’s g)
m1�m2ð Þ 1� 3

4ðn1þn2 Þ�9

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1�1ð Þsd2
1
þ n2�1ð Þsd2

2
n1þn2�2

q n1þn2

n1n2
þ g2

2ðn1þn2�3:94Þ
1

varðdÞþs2

The indices 1 and 2 refer to the compared genotypes (for genotype-based comparisons) or the compared alleles (for allele-based comparisons)

p proportion with the genetic risk factor, n total number of people (or alleles), m mean of the quantitative trait, sd standard deviation of the

quantitative trait, w weight of the study
a The variance estimator of the log odds ratio is one of several formulas that can be used. For details see Sutton et al. (2000)

Table 2 Commonly used heterogeneity metrics

Heterogeneity metric Calculation formula Comments

Cochran’s Q statistic Q ¼
P

wF
i di � dF

þ
� �2

dF
þ: summary effect size

di : study-specific effect sizes

wF
i : weight of each study

v2 distribution with k-1 degrees of freedom,

typically considered significant

at the a = 0.10 level.

k = number of studies

1. Influenced by the number of studies included in the

meta-analysis thus

2. Underpowered when there are few studies (e.g. less than

20, the common situation), while it may overinterpret

relatively unimportant heterogeneity when there are

too many studies (e.g. over 40, an uncommon situation)

3. Non-statistically significant result is not proof of

homogeneity

Between-study variance s2 s2 ¼ Q�ðk�1ÞP
wi�
P

w2
iP

wi

Q: Cochran’s Q statistic

k: number of studies

wi: weight of each study

1. Reflects how much the true effect sizes estimated in

the constituent studies of the meta-analysis differ

2. Depends on the respective effect size metric (e.g.

standardized mean difference, odds ratio, hazard ratio) used

3. Not comparable among meta-analyses using

different effect metrics

I2 statistic I2 ¼ Q�ðk�1Þ
Q � 100%

Q : Cochran’s Q statistic

k: number of studies

1. Values between 0 and 100%

2. [50% ? large heterogeneity

3. [75% ? very large heterogeneity

4. Confidence intervals are typically very large, unless

many studies are available

6 Hum Genet (2008) 123:1–14
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analyses such bias is not an issue. Unfortunately, 70% of

genetic meta-analyses have used fixed effects even in the

presence of between-study heterogeneity (Attia et al.

2003). The practice of using fixed effects inappropriately

continues even currently in meta-analyses of genome-wide

association and their replication studies published even in

the best journals (Ioannidis et al. 2007a, b).

The commonest way to present a meta-analysis

graphically is a forest plot; each study is represented by its

effect estimate along with its 95% confidence interval; the

summary effect with its 95% confidence interval is also

shown. In cumulative meta-analysis, studies are placed in

order (e.g. chronological), and the summary effect and 95%

confidence interval are plotted, as more studies are

sequentially added to the calculations (Fig. 2). Visualiza-

tion of cumulative meta-analysis may be particularly useful

in genetic epidemiology, because many proposed genetic

effects get dissipated over time (Ioannidis 2006b). Other

graphical presentations are less popular (Sutton et al.

2000).

Cumulative meta-analysis is intuitively Bayesian (Lau

et al. 1995): previous studies form the prior belief, and

Fig. 2 a Forest plot showing

the results of a meta-analysis for

the association between the *G

allele of the A49G

polymorphism in the cytotoxic

T-lymphocyte-associated

antigen-4 (CTLA-4) gene and

susceptibility to type 1 diabetes

mellitus. Individual studies

(circles) are listed by year of

publication from top to bottom.

The diamond shows the

summary random-effects odds

ratio estimate from a meta-

analysis. Horizontal lines 95%

confidence interval. Data are

adapted from Kavvoura and

Ioannidis (2005). b Cumulative

meta-analysis showing the

change on the effect size as new

studies accumulate, and their

results are added to those

previously published

Hum Genet (2008) 123:1–14 7
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estimates are updated with each new study to generate a

posterior belief. More formal Bayesian methods (Spiegel-

halter et al. 2003) are also applicable to meta-analysis

(Brooks 1998; Spiegelhalter et al. 2004; WinBUGS 2003).

A range of priors may be applied as a sensitivity analysis

particularly for the uncertainty parameters (Lambert et al.

2005). Several prior elicitation methods have been descri-

bed (Gartwaite et al. 2005). More complex models may

also allow incorporation of the effect of deviations from

Hardy–Weinberg equilibrium in the data synthesis (Salanti

et al. 2007). Bayesian models may typically increase the

uncertainty of the summary estimates, especially if more

uncertainty is accommodated in the prior assumptions.

Sometimes, however, borrowing strength from external

prior evidence may lead to diminished uncertainty. Caution

is warranted when inferences largely depend on the model

used.

Another word of caution pertains to the interpretation of

the summary effects. As in several other fields of molecular

research, traditional levels of statistical significance

(P \ 0.05) may not suffice to reliably claim that an asso-

ciation is present (Ioannidis 2005; Sterne and Davey Smith

2001; Wacholder et al. 2004). Meta-analyses in the past

have typically compiled evidence on a single genetic

variant or a few ones. Currently it is possible to perform

meta-analyses of GWA datasets with many thousands of

polymorphisms (Evangelou et al. 2007) that are available

in all datasets or that can be imputed through linked

polymorphisms across datasets that have used different

testing platforms. One might argue that a strict genome-

wide significance level should be required (P \ 10-7) for

polymorphisms that emerge from massive testing and

undergo meta-analysis with subsequent studies (Skol et al.

2006). However, this may be an over-conservative

requirement. False discovery rate and Bayesian approaches

may be also considered (Benjamini and Hochberg 1995;

Wacholder et al. 2004; Wakefield 2007). There is still no

consensus on this issue, and we suggest that meta-analyses

should report point estimates with 95% confidence (or

credibility) intervals, avoiding strong statements about an

association when such intervals reach close to the null.

Meta-analysis diagnostics

A number of diagnostics have been proposed in meta-

analysis, that try to assess the robustness of the summary

effects and explore between-study heterogeneity. Sensiti-

vity analyses (excluding specific studies) are the simplest

way to examine if the summary results and estimated

heterogeneity depend on one or a few studies with per-

ceived errors, biases, or special features. Meta-regressions

relate the effect size to one or more characteristics of the

studies (Thompson and Higgins 2002) that may explain the

observed between-study heterogeneity. The covariates of

interest should be pre-specified and few, to avoid largely

inflated Type I errors. With few studies available in most

occasions, meta-regressions are almost routinely abused in

the literature. For group-level characteristics, meta-

regressions also suffer from the potential of ecological

fallacy (Chan et al. 2004b; Thompson and Higgins 2002).

Several meta-analysis diagnostics spuriously propose

that they can test for publication bias (Rothstein et al.

2005). The typical premise for funnel plot asymmetry

diagnostics is that small studies with non-significant or

unfavorable results remain unpublished, whereas larger

studies get published regardless. Unfortunately, this is an

over-simplification. The funnel plot is a scatter plot of the

meta-analyzed studies, with the treatment effect on the

horizontal axis and a measure of precision (e.g. standard

error, inverse variance, sample size) on the vertical axis.

Despite the massive use of funnel plots in meta-analyses,

visual inspection of funnel-plot asymmetry is entirely

unreliable and should be abandoned (Lau et al. 2006; Tang

and Liu 2000; Terrin et al. 2005). There are statistical test

equivalents for asymmetry testing, including a rank-cor-

relation test (Begg and Mazumdar 1994), a regression

method (Egger et al. 1997a) and modified versions of the

regression test with better calibration of type I and II errors

(Harbord et al. 2006; Peters et al. 2006). Unfortunately, in

most cases these tests are used either inappropriately or

meaninglessly (Ioannidis and Trikalinos 2007a). These

tests are appropriate and most meaningful when all the

following are fulfilled: many studies (ideally 30 or more),

not large between-study heterogeneity, presence of studies

with formally significant results, and considerable vari-

ability in the range of study variances. These criteria are

rarely fulfilled. Significant results in asymmetry tests do

not mean that publication bias is certain, because there are

many other reasons why small studies may yield different

results from larger ones (Lau et al. 2006). The term ‘‘small-

study effect’’ is more appropriate, when these diagnostics

show significant asymmetry. Demonstration of small-study

effects should lead to caution in the interpretation of the

summary results. The most common, serious misunder-

standing is to use these diagnostics and to conclude from

their non-statistically significant results that publication

bias is excluded. In the typical situation and for retro-

spectively collected data, it should be simply

acknowledged that meta-analysts cannot really do anything

to protect the meta-analysis from publication bias after the

fact.

Similar caveats apply to other diagnostics such as the

trim and fill (Duval and Tweedie 2000), but their detailed

presentation is beyond the scope of this review (Rothstein

et al. 2005). Some tests such as the failsafe N persist in the
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literature, while it is clear that they should have been

abandoned based on their poor mathematical and concep-

tual properties (Rothstein et al. 2005). A ‘‘significance

chasing bias’’ test is also available (Ioannidis and Trikalinos

2007b) to test directly whether there is an excess of studies

with nominally statistically significant results in a meta-

analysis or many meta-analyses in the same field (Pan et al.

2005). Obviously, none of the ‘‘publication bias’’ diagnos-

tics should be relevant for prospective meta-analyses.

Networks, consortia and prospective meta-analyses

Collaborative meta-analyses undertaken by consortia of

investigators may have both retrospective and prospective

features. HuGENet has created a Network of Investigators

Networks (Ioannidis et al. 2005, 2006; Seminara et al.

2007). The represented networks comprise between 5 and

521 teams each, and accumulated sample sizes range from

3,000 to over half a million participants. Additional con-

sortia are created continuously and play a key role in the

validation of findings from GWA studies (Saxena et al.

2007; Zeggini et al. 2007). Networks form an open forum

for communication and collaboration among separate

research teams working in the same field. They can accu-

mulate clinical, statistical, and laboratory expertise among

the participating members, and this may improve both

retrospective analyses and the planning of future studies.

Prerequisites

Elements deemed essential for the launch of a new con-

sortium are a strong scientific rationale, the agreement of

all teams to work together and contribute their data to

address the research question, and the ability to support

initial communication, coordination, identification, and

recruitment of partners (Hunter et al. 2005). Networks may

be open to inclusion of new partners. To avoid inclusion of

flawed data, consortia may introduce inclusion criteria

based on the appropriateness of study design, and pheno-

typic and genotypic accuracy (Seminara et al. 2007).

Data and quality control

Data are generated and/or gathered in coordinating centers

where various data quality assurance practices and checks

for logical errors and inconsistencies are used to guarantee

adequate quality and transparency. Data standardization

within the network aims to achieve agreement on common

definitions to which all participating teams must conform

(John et al. 2004). It is best implemented at the beginning

of a ‘‘de novo’’ study, when definitions of data are formed.

When standardization is not possible (different questions or

criteria have already been used by established teams), some

harmonization may still maximize the comparability of

data from different teams and increase the credibility of

derived findings compared with individual studies.

Standardization or harmonization of phenotypes and

other non-genetic variables may be a major challenge in

some fields; e.g. in 21 pharmacogenetic studies in asthma

483 different outcomes were analyzed (Contopoulos-Io-

annidis et al. 2006). Nevertheless, a network has the best

chance of achieving some consensus across teams

(Seminara et al. 2007). Standardization of genotypes may

be achieved through central genotyping of all samples

(Andrulis et al. 2002). When this is not feasible, quality

control of genotyping facilities of each team is usually

performed to assure that systematic errors do not occur. In

the absence of central genotyping control, one may use

post hoc analyses, such as deviation from HWE in the

controls, to identify possible genotyping (or other) errors,

but these tests are generally underpowered (Salanti et al.

2007; Zou and Donner 2006). Unmeasured errors may still

exist and are more likely in retrospective designs and less

stringent quality control.

Data availability

Regarding the availability of data, networks can develop

policies to make their resources and findings accessible to

the larger scientific community. It is important that

‘‘positive’’ and ‘‘negative’’ results are both reported

(Ioannidis 2006c). Consortia constitute one of the last lines

of defense against publication and selective reporting bias;

they should strive to include all high-quality data (Semin-

ara et al. 2007).

Group-level versus individual-level data

Networks typically allow analyses to be performed in more

detail compared to what is traditionally available in pub-

lished data. Meta-analysis of individual level data

(Ioannidis et al. 2002; Stewart and Tierney 2002) has

definitive advantages in time-to-event phenotype analyses,

multivariate modeling, examination of effect modification

(subgroup analyses) and interaction effects, besides the

possible advantages in standardization and harmonization

of information. The drawback is the need for more exten-

sive resources and the difficulties inherent in large-scale

collaborative projects where many investigators need to

agree on common plans. Timing can also be an issue, when

the rate-limiting step is dictated by the slowest team.
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Comparisons of meta-analyses of published group-level

data versus meta-analyses of individual-level data in

genetic epidemiology show examples where they largely

agree with the results (Ioannidis et al. 1998, 2001b): partial

agreement (Efstathiadou et al. 2001; Ralston et al. 2006),

or disagreement (Cooper and Umbach 1996; Uitterlinden

et al. 2006). Typically, in disagreements, individual-level

data and particularly prospective designs may find no effect

when a meta-analysis of published data had suggested

strong effects, potentially based on biased evidence. This

has been previously documented also in other fields of

clinical research (Stewart and Parmar 1993).

GWA meta-analyses and multiple consortia

Currently for some research fields and diseases, there are

already several different operating consortia. Each new

GWA investigation along with its replicating teams (Cha-

nock et al. 2007) may be seen as a consortium. Well-

established, existing consortia may be used to replicate

GWA-proposed genetic variants (Easton et al. 2007).

Alternatively, a GWA investigation may give the oppor-

tunity to recruit a number of teams for examining

replication, thus creating a new consortium. Some teams of

investigators may participate in more than one such coa-

lition, as the need arises to replicate newly proposed

associations. As many GWA investigations may be per-

formed on the same disease/phenotype, a major challenge

is to combine all data from all these networks as well as

additional independent teams that do not yet participate in

any of these coalitions. Meta-analyses combining several

GWA-related investigations have already been performed

for some diseases, such as type 2 diabetes (Zeggini et al.

2007, Ioannidis et al. 2007b) and Parkinson’s disease

(Evangelou et al. 2007) and may become the norm in the

near future. A major threat of bias in this situation is if

results become available only for the most statistically

significant of each GWA investigation. Public availability

of all data is very essential in this regard (Manolio et al.

2007). Even though each GWA investigation and its

replicating datasets form a prospective study, meta-analy-

ses of all GWA investigations, collaborating replicating

teams and other independent datasets still has the charac-

teristics of a retrospective effort and may be affected by

selective reporting biases, as described above.

Conclusion

Meta-analysis is a methodological tool that offers the

opportunity to reach stronger conclusions by combining

evidence from published studies or unpublished and

prospectively generated data. Meta-analysis requires con-

siderable expertise and careful adherence to a number of

methodological steps. Otherwise, unreliable results may lead

to misconceptions. We have highlighted some of the key

pitfalls in the application and interpretation of meta-analysis

methods in human genome epidemiology. The range of

applications of meta-analysis is continuously expanding in

this field, and the consolidation and expansion of networks of

investigators create new opportunities and challenges.
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