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Motivated by the overwhelming success of genome-wide association studies, droves of researchers are
working vigorously to exchange and to combine genetic data to expediently discover genetic risk factors
for common human traits. The primary tools that fuel these new efforts are imputation, allowing researchers
who have collected data on a diversity of genotype platforms to share data in a uniformly exchangeable
format, and meta-analysis for pooling statistical support for a genotype–phenotype association. As many
groups are forming collaborations to engage in these efforts, this review collects a series of guidelines, prac-
tical detail and learned experiences from a variety of individuals who have contributed to the subject.

INTRODUCTION

More than 100 validated susceptibility loci have now been
identified through genome-wide association (GWA) studies
of complex traits and common diseases. Often these discov-
eries have revealed new pathways involved in disease, but
it is poorly understood for most associations which specific
variants are causal, what is the biological mechanism, and
how they interact with other genetic or environmental
factors. Intensive follow-up work is required, beginning with
targeted sequencing of these loci to obtain complete coverage
of all genetic variation (common and rare) and to resolve
independent signals of statistical association. What has
become clear from these early successes of GWA studies
is that the associated common variants at these loci have indi-
vidually only modest effects, often with odds ratios of ,1.2
for dichotomous traits, or with explained variance of ,1%
for quantitative traits. Also, a role for common variants with
large effects can effectively be ruled out given adequate
power of single studies to detect such effects and the relatively
complete coverage of common variation of genome-wide

single-nucleotide polymorphism (SNP) arrays (1,2). Large
samples are required to discover the common variants with
even smaller effects.

Collaborative efforts to combine the results from multiple
studies range from informal comparisons of SNP associations
to more comprehensive genome-wide meta-analyses. By
increasing the effective sample size and power, these
approaches are proving incredibly useful for gene discovery.
For example, the Diabetes Genetics Initiative (DGI) (3),
Wellcome Trust Case Control Consortium (WTCCC) (4),
U.K. Type 2 Diabetes Genetics Consortium (UKT2DGC)
(5), Finland-United States Investigation of NIDDM Genetics
(FUSION) (6) compared their respective top hits and collec-
tively demonstrated that some of these constituted bona
fide associations with genome-wide significance (nominal
P , 5 � 1028). This work was subsequently extended to a
formal meta-analysis of all GWA results generated by these
studies (achieving a total sample size of �10 000), which
led to the discovery of six additional risk loci (7), illustrating
the value of meta-analysis across genome-wide studies led by
different groups.
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In addition to the meta-analysis in type 2 diabetes, we have
recently been involved in similar collaborative efforts in
bipolar disorder (8), rheumatoid arthritis (9), dyslipidemia
(10), electrocardiographic QT interval duration (11) and
multiple sclerosis, all resulting in the identification of novel
associations. On the basis of our collective experiences,
we review here some practical aspects of performing a
meta-analysis and provide guidelines to facilitate future
meta-analysis efforts. Ideally, one would like to combine
raw genotype and phenotype data of multiple cohorts, thus
allowing any test to be performed, including epistasis, gene-
based tests and other phenotypes not originally considered.
In practice, however, substantial restrictions (ethical, legal or
otherwise) exist for sharing such data at the individual level.
Recognizing such practical limitations, this review focuses
on the scenario where individual groups perform data
cleaning, genome-wide imputation of SNPs using HapMap
and association testing (of main effects of single variants)
independently, followed by exchange and meta-analysis of
the generated association results.

Data cleaning and quality control

For genotype data, it would be hard to overstate the import-
ance of data cleaning and quality control (12,13). Typical
filtering steps for SNPs include missingness (call rate),
differential missingness between cases and controls (for
dichotomous traits), Hardy–Weinberg outliers (not in
admixed populations) and the so-called plate-based technical
artifacts (14). Individuals can be filtered based on missingness,
heterozygosity (both may be due to poor DNA quality),
cryptic relatedness and population structure (removing
population outliers).

For phenotype data, we note that for quantitative traits,
there must be explicit agreement on how the phenotype data
should be normalized and coded in terms of scale and units
(for example, QT interval duration may be reported on an
absolute scale in milliseconds or as the number of standard
deviations away from the population mean). These decisions
are likely to vary by trait but should be made before the associ-
ation analysis (and certainly before meta-analysis) is per-
formed so that the effect estimates can be compared
between studies.

To ensure consistent and uniform comparisons between
studies, accurate annotation of the variant names and strand
orientation is essential. We recommend explicit specification
of the version of the human genome assembly (for example,
NCBI build 35 or 36) and of dbSNP, and for each assay/poly-
morphism, the rs identifier in dbSNP, its chromosomal
position (relative to the genome assembly), the alleles and
their strand orientation (forward/+ or reverse/2 strand of the
genome assembly). This information is rarely necessary for
the analysis of a single study, and is often neglected until a
meta-analysis is performed. Comparison of polymorphisms
between studies can sometimes be difficult as identifiers
may change for the same polymorphism in different dbSNP
releases, without a convenient way to convert them. Therefore,
it is key to refer to a specific version of dbSNP to facilitate
assay comparisons. Alignment of assay probe sequences
against the human genome assembly should unambiguously

determine the chromosomal position and orientation of
variants.

In terms of strand orientation, we suggest that all SNPs have
their alleles oriented on the forward/+ strand of NCBI build
36. For Affymetrix data, the publicly available NetAffx anno-
tation files provide the necessary strand information (if not
always error-free) to ‘flip’ alleles to the forward/+ strand.
For example, rs4607103 (assay SNP_A-2091752 on the Affy-
metrix SNP 6.0 array) is a biallelic A/G SNP oriented on the
reverse/2 strand at position 64 686 944 on chr3 (build 36)
near the ADAMTS9 gene (therefore, a T/C SNP on the posi-
tive/+ strand). Figuring out the strand orientation for SNPs
on Illumina platforms is a little bit less straightforward, as
the official annotation files do not refer to the absolute
strand orientation of the assays relative to the human
genome assembly. We would strongly encourage vendors to
include accurate assay strand information with their platform
annotations, or to develop convenient tools for such con-
versions. As a relatively straightforward solution (without
having to align probe sequences), genotype data can be
merged with HapMap data (where SNPs have a known orien-
tation), and SNPs can be flipped if their alleles do not match
those observed in HapMap. It is important to note that this
will not work for A/T or C/G SNPs since they are complimen-
tary bases (an A/T SNP cannot be distinguished from a T/A
SNP). One might be able to reconcile some of these proble-
matic SNPs based on a comparison with the observed allele
frequencies in HapMap (though this might not work for very
common SNPs with frequencies .0.40). Fortunately, Illumina
platforms essentially exclude A/T and C/G SNPs, greatly sim-
plifying an otherwise tedious flipping exercise (after removing
a handful of A/T and C/G SNPs, if present). Also HapMap has
various flavors (different genome builds, dbSNP releases and
strand orientations), so it is important to keep track of which
release is used (all releases up to 21a are based on NCBI
build 35, and releases 22 and higher are based on build 36).
Overall, we have found that these steps can be rate limiting
(and perhaps the most frustrating). Although we have not
extensively tested it ourselves, the IGG tool may offer some
relief as it enables integration of data from Affymetrix and
Illumina arrays with HapMap and export to various file
formats (15).

Imputation and association testing

Individual studies often use genotyping platforms with differ-
ent SNP content. One solution is to restrict the analysis to only
those SNPs present on all platforms (for example, there are
�250 000 overlapping SNPs on the Affymetrix SNP 6.0 and
Illumina Human1M arrays), but this seems overly conserva-
tive. Alternatively, a number of tools including BIMBAM
(16), IMPUTE (17), MACH (18) and PLINK (14) are now
routinely used to impute the genotypes of the more than
2 million SNPs in HapMap based on the observed haplotype
structure (19). These approaches allow studies to be analyzed
across the same set of SNPs (directly genotyped and imputed)
(7–9,11,20–24). By exploiting haplotype (multimarker) infor-
mation, power is improved for untyped SNPs that were only
poorly captured through pairwise linkage disequilibrium
(LD), though this advantage is rather modest, especially for
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European populations (2,25). It is beyond the scope of this
review to provide a comprehensive evaluation of these impu-
tation methods (but we eagerly await a ‘bake-off’ of these
approaches as part of the GAIN study (26)).

Genome-wide imputations require substantial computer
power depending on the size of the study sample and of the
reference panel (number of phased haplotypes in HapMap).
Parallelization on a multi-node cluster can be achieved by
splitting jobs up across chromosomes and into different
sample subsets but keeping cases and controls together to
avoid differential bias (27). Since NCBI build 36 (or UCSC
hg18) has become the de facto standard for the human
genome assembly, we recommend using the phased chromo-
somes of release 22, or the non-phased genotype data of the
most current release (at time of writing, 23a). The performance
with the phased haplotypes is expected to be better (if ever
so slightly) than with unphased genotypes (28), but the key
limitation of HapMap is its sample size (only 120 unique
chromosomes in the European CEPH samples), affecting the
accuracy of the imputation for less common variants. Therefore,
we expect a significant improvement in performance with larger
reference panels (such as HapMap Phase 3). Again, we stress
that the strand orientation of the alleles must be consistent
between genotype data and HapMap. Although imputation
programs may protest when they encounter inconsistent allele
names or observe large allele frequency differences, this will
not catch all A/T or C/G SNPs on the reverse/2 strand.

Not surprisingly, imputation is not perfect. Depending on
the linkage disequilibrium between genotyped SNPs (used as
input for the imputation) and untyped SNPs, some SNPs will
be better predicted than others. For each imputed SNP in a
given individual, imputation algorithms calculate posterior
probabilities for the three possible genotypes (AA, AB, BB)
as well as an effective allelic dosage (defined as the expected
number of copies of a specified allele, ranging from 0 to 2).
Even though imputation programs are able to produce ‘best-
guess’ genotypes (those with the highest posterior probability),
imputed genotypes cannot generally be treated as true
(perfect) genotypes for association analysis. In fact, perhaps,
the most important aspect of imputation is that the subsequent
association analysis must take into account the uncertainty of
the imputations, but there is no consensus on what is the best
approach to do this.

One approach to minimize the effects of imputation error on
association results is to restrict the analysis to SNPs genotyped
on at least one platform (9,20). Another solution is to remove
SNPs that are estimated to have poor imputation performance.
One measure of imputation quality is the ratio of the empirically
observed variance of the allele dosage to the expected binomial
variance p(1 2 p) at Hardy–Weinberg equilibrium, where p is
the observed allele frequency from HapMap. When imputations
have adequate information in predicting the unobserved geno-
types from the observed haplotype backgrounds, this ratio
should be distributed around unity, but collapses to zero as
the observed variance of the allele dosage shrinks, reflecting
progressively less information (more uncertainty). This
follows the intuition that when this ratio is severely deflated
(,1), genotypes of a given SNP exhibit only little variability
across a sample, and there is only little information as to
whether this SNP is associated with the phenotype. This ratio

is equivalent to the RSQR_HAT value by MACH and the infor-
mation content (INFO) measure by PLINK. In meta-analyses of
height and type 2 diabetes, imputed SNPs were included only if
the MACH RSQR_HAT . 0.3 (7,21). In a meta-analysis of
bipolar disorder, imputed SNPs were analyzed if the PLINK
information score is .0.8 (8).

Sophisticated Bayesian methods may offer better power
than classical association tests (4,16,17,28). For example, the
SNPTEST package offers a Bayesian test that can take into
account the genotype uncertainty by sampling genotypes
based on the estimated imputation probabilities and averaging
the resulting Bayes Factors (4,17), though this is more compu-
tationally intensive than conventional likelihood ratio or score
tests. Standard logistic or linear regression models can incor-
porate imputation uncertainty implicitly, where the standard
error of the beta coefficient will reflect the uncertainty of the
allele dosage. Furthermore, these models allow for the
inclusion of covariates, and are widely available in standard
statistics packages. SNPTEST also offers a logistic/linear
regression function and calculates an information measure
(PROPER_INFO), which is related to the effective sample
size (power) for the genetic effect being estimated (4,17). In
the recent type 2 diabetes meta-analysis, imputed SNPs were
filtered out if this measure was ,0.5 (7). We expect all
these imputation certainty measures to be strongly correlated
with one another.

Given the growing importance of shared control sample col-
lections, we briefly note the dangers of combining cases gen-
otyped on one platform and controls genotyped on another. To
our knowledge, there are no studies that attempted to do
imputation in order to be able to combine cases and controls
in a single association study (and we certainly would not
encourage that).

As many have advocated elsewhere, proper treatment of
population structure is critical for GWA analysis (29,30).
The PLINK package is widely used for matching cases to con-
trols based on genotype information (identity-by-state, IBS),
resulting in discrete strata of individuals that can be analyzed
using the Cochran–Mantel–Haenszel test (14). Principal com-
ponent analysis (PCA) using EIGENSTRAT is a powerful
alternative to correct for population stratification (30), also
providing functionality for removal of population sample out-
liers (in its helper routine SMARTPCA), and estimation of the
number of statistically significant eigenvectors (only valid for
homogenous, outbred populations) (31). Conveniently, the
coordinates from EIGENSTRAT or from multi-dimensional
scaling (MDS) analysis in PLINK along the first few axes of
variation can be used as covariates for individuals in a
linear/logistic regression framework, while allowing for uncer-
tainty of imputed SNPs. We recommend that only genotyped
SNPs with near-zero missingness be used for PCA-, MDS-
or IBS-based matching.

After association analysis, it is critical to test the genome-wide
distribution of the test statistic in comparison with the expected
null distribution, specifically by calculating the genomic
inflation factor l and by making quantile–quantile (Q–Q)
plots. The genomic inflation factor l is defined as the ratio of
the median of the empirically observed distribution of the test
statistic to the expected median, thus quantifying the extent
of the bulk inflation and the excess false positive rate (32).
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For example, the l for a standard allelic test for association is
based on the median (0.455) of the 1-d.f. x2 distribution. Since
l scales with sample size, some have found it informative to
report l1000, the inflation factor for an equivalent study of
1000 cases and 1000 controls (33), which can be calculated by
rescaling l:

l1000 ¼ 1þ ðlobs � 1Þ

�
1

ncases

þ
1

ncontrols

� ��
1

ncases;1000

þ
1

ncontrols;1000

� �

where ncases and ncontrols are the study sample size for cases and
controls, respectively, and ncases,1000 and ncontrols,1000 are the
target sample size (1000). The Q–Q plot is a useful visual tool
to mark deviations of the observed distribution from the expected
null distribution. As true associations reveal themselves as pro-
minent departures from the null in the extreme tail of the distri-
bution, we suggest that known associations (and their SNP
proxies) are removed from the Q–Q plot in order to see if the
null can be recovered. Inflated l values or residual deviations
in the Q–Q plot may point to undetected sample duplications,
unknown familial relationships, a poorly calibrated test statistic,
systematic technical bias or gross (uncorrected) population stra-
tification (27), and need to be dealt with before performing
meta-analysis. In addition, we encourage l and Q–Q plots to
be computed for genotyped and imputed SNPs separately to
test for differences in their distribution properties.

We recommend that, prior to meta-analysis, the test statistic
distributions be corrected for the observed inflation. Similarly,
standard errors of beta coefficients should also be adjusted
ðSEcorr ¼ SE�

ffiffiffi
l
p
Þ. Altogether, these steps help to ensure

that association results are comparable and can be interpreted
in a uniform way across studies.

Data exchange

The goal of data exchange is to follow an efficient procedure
to exchange all information necessary for meta-analysis.
Especially when collaborations involve large groups of
investigators, it is critical to reach agreement as to which
meta-analytical approaches and software tools will be used,
and then to minimize the number of versions of each individ-
ual data set that need to be exchanged (requiring excellent
version tracking and archiving). In our experience, it is
useful to have at least two analysts work on the same data,
preferably using different analysis tools, so that the results
can be checked for consistency.

For exchanging GWA summary results, we propose that, at
a minimum, the following data are exchanged for each SNP:
rs identifier, chromosomal position (genome assembly and
dbSNP versions must also be specified), coded allele, non-
coded allele, frequency of the coded allele, strand orientation
of the alleles, estimated odds ratio and 95% confidence inter-
val of the coded allele (for dichotomous traits), beta coefficient
and standard error (for linear/logistic regression modeling),
l-corrected P-value, call rate (for genotyped SNPs), ratio of
the observed variance of the allele dosage to the empirically
observed variance (for imputed SNPs) and average maximal
posterior probability (for imputed SNPs). These data are
sufficient to perform a meta-analysis, since risk alleles and

direction of effect are unambiguously defined, even when
individual studies used different genotyping platforms, impu-
tation algorithms or association testing software.

For meta-analysis, it is critical that the estimated effect
(odds ratio or beta) refers uniquely to the same allele (which
we define as the ‘coded’ allele) across studies. Therefore,
alleles may need to be flipped if the strand orientation is
reverse/2 (assuming all alleles are to be oriented on the
forward/+ strand), and subsequently, coded and non-coded
alleles may need to be swapped (and the direction of the
odds ratio or sign of the beta flipped) to make both consistent
across studies. Choice of the coded allele is, of course, arbi-
trary. One suggestion would be to use HapMap to define the
coded allele as, for example, the observed minor allele.
Using a pre-specified allele will help achieve consistency in
the direction of effect between independent studies.

Meta-analysis

For dichotomous traits, z-scores can be calculated from the
l-corrected P-values for each study or directly from the test
statistics (for example, zi ¼

ffiffiffiffiffi
x2

i

p
for 1-d.f. x2 values), with

the sign of the z-scores indicating direction of effect in that
study (z . 0 for odds ratio .1). These z-scores can then be
summed across multiple studies weighting them by the per-
study sample size, as follows:

zmeta ¼
X

i

zi � wi

wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni

Ntotal

s

where zi is the z-score from study i, wi is the relative weight
of study i based on its samples size Ni, and Ntotal is the total
sample size of all studies. The squared weights should
always sum to 1. To adjust for asymmetric case/control
sample sizes in the type 2 diabetes meta-analysis (7), we
used the Genetic Power Calculator (34) to estimate the
non-centrality parameter (NCP) for the given asymmetric
case/control sample size, and then iteratively determined the
‘effective’ (symmetric) case/control sample size that returns
the same NCP. (We found this procedure to be quite robust
for different genetic models.) To incorporate imputation
uncertainty, the sample size Ni can be scaled by the SNP infor-
mation measure (RSQR_HAT from MACH, INFO from
PLINK, or PROPER_INFO from SNPTEST) to appropriately
‘down-weight’ the contribution of a study where a particular
SNP was poorly imputed, while maintaining complete infor-
mation for accurately imputed SNPs in other studies.

For quantitative traits, we combine association evidence
across studies by computing the pooled inverse variance-
weighted beta coefficient, standard error and z-score, as
follows:

kbl ¼
P

i bi=ðSEiÞ
2

� �
P

i 1=ðSEiÞ
2

� � :
kSEl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1P

i 1=ðSEiÞ
2

� �
s
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zmeta ¼
kbl

kSEl

where bi and SEi are the beta coefficient and standard error in
study i, respectively. We emphasize that the units of the beta
coefficients and standard errors must be the same across
studies. It may be useful to compare the inverse variance-
weighted z-score to an alternative z-score based on the (effec-
tive) sample size, which is computed as follows:

zmeta ¼
X

i

bi

SEi

� wi

wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni

Ntotal

s
:

One potential advantage of using this z-score is that it
allows the units of the beta coefficients and standard errors
across studies to be different. Typically, the correlation
between this z-score and the inverse variance-weighted
z-score should be excellent (r2. 0.99).

Interpretation

Once the meta-analysis z-scores are calculated, these can be
converted into chi-square values (by squaring z-scores) and
two-sided P-values (based on the normal distribution). The
meta-analysis distribution must also be checked for inflation by
computing l and generating Q–Q plots (as we do for individual
studies). Significant inflation of l may indicate unknown sample
duplications between different cohorts. Also, known associations
can be conveniently used as a sanity check.

We have assumed that individual groups would perform
data cleaning, imputation and analysis independently. As
long as integrity of the data can be guaranteed (in terms of
all recommendations we made here), we anticipate that a
more ‘uniform’ meta-analysis standardized across all studies
may not necessarily be better (powered) than a less formal
meta-analysis of individual studies.

In the approaches outlined above, we focused primarily on
the goal of association testing by pooling statistical support
across studies using a fixed-effects model, not incorporating
between-study heterogeneity and putting less emphasis on
obtaining accurate pooled estimates of effect. In the presence
of between-study heterogeneity, fixed-effects models are
known to produce tighter confidence intervals and more sig-
nificant P-values than random-effects models (35). Owing to
limited sample size and power, however, individual GWA
studies are likely to suffer from winner’s curse (overestimation
of the true effect), causing variability in effect estimates by
chance. Therefore, a random-effects model may well be too
conservative compared with a fixed-effects model, especially
when the primary goal is hypothesis testing and not effect
estimation. Nevertheless, for meta-analyses across a large
number of studies, it may be informative to test for heterogen-
eity by computing Cochran’s Q statistic as well as the I2 stat-
istic and its 95% confidence interval (36). In some cases, study
design differences can help explain apparent heterogeneity;
see (37) for an insightful discussion about the FTO-obesity

Table 1. Meta-analysis check list

Pre-exchange
Genome scan completed and ready for analysis?
Quality control (QC) steps performed on individual genome scan?

Individual QC: remove based on missingness, heterozygosity, relatedness,
potential contamination, population outliers, and poorly genotyped
samples [and other QC]?

SNP QC: remove based on missingness, Hardy–Weinberg, differential
missingness, and plate-based association [as well as other QC]?

Population stratification estimated?

Analysis: genotyped SNPs
Analytical procedure controlling for

Population stratification? [Principal components, stratified (CMH)
analysis, etc.]

Additional risk factors or covariates?
Analysis performed on genotyped SNPs?
Genomic inflation factor estimated?
P-values corrected for inflation?
Exchange file prepared?

Rs identifier
Chromosomal position
Strand orientation of allele (+/2)
Coded and noncoded allele
Allele frequency of the coded allele
Odds ratio
Beta and SE (for regression modeling)
Test statistic and P-value
Call rate

Imputation
HapMap release selected for imputation?
QC SNPs oriented to forward/+ strand and ordered to selected HapMap

build?

Analysis: imputed SNPs
Analysis procedure on imputed SNPs

Accounts for genotype uncertainty?
Includes correction for population stratification?
Includes additional risk factors?

Analysis performed on imputed SNPs?
Removal of poorly imputed SNPs based on MACH R2 or SNPTEST criteria?
Genomic inflation factor estimated?
P-values corrected for inflation?
Exchange file prepared?

Rs identifier
Chromosomal position
Strand orientation of allele (+/2)
Coded and noncoded allele
Allele frequency of the coded allele
Odds ratio
Beta and SE (for regression modeling)
Test statistic and P-value
Ratio of the obs/exp variance of allele dosage
Average maximal posterior probability

Meta-analysis [weighted z-score based]
Individual study files collected, and version and date recorded?
Valid ranges for P-values, betas, SEs, test statistics?
Genome assembly versions specified?
dbSNP versions specified?
Strand orientation given for SNPs?
Effective sample sizes estimated from the data?
Individual study weights calculated from the data?
Study wide GC corrected z-score calculated from the data?
Results concordant with results generated by independent analyst?

For results of interest
Check that z-score directionality (i.e. risk) is consistent with observed

(raw) data?
Estimate pooled odds ratios and confidence intervals from summary data

(fixed-effects model or random-effects model)?
Calculate I2 and Q statistics to test for between-study heterogeneity?
Given observed heterogeneity, recalculate odds ratios (as necessary)?
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association discovered by WTCCC (38) and FUSION (6) but
not DGI (3) (which had used BMI as one of the criteria to
match cases to controls). We note that testing for between-
study heterogeneity may also be useful for detecting allele
flipping or strand problems.

Lastly, we need to be aware of the poor track record set
by early genetic association studies (39). Therefore, we
recommend strict adherence to a nominal P-value threshold of
,5� 1028 to maintain a 5% genome-wide type I error rate,
based on recent estimations of the genome-wide testing burden
for common sequence variation (40,41). For populations with
lower LD, stricter thresholds should be employed. Simulations
based on resequencing data in the Yoruba sample from Ibadan,
Nigeria (HapMap YRI), the total testing burden was estimated
at two million independent tests (P , 2� 1028) (40).

We have made checklist of all critical decision points
(Table 1) and developed a collection of programs called
MANTEL for meta-analysis of GWA results, following the
guidelines and methods presented here. These are available
at http://www.broad.mit.edu/~debakker/meta.html. We also
point the reader to the METAL software developed by
Goncalo Abecasis, available at http://www.sph.umich.edu/
csg/abecasis/metal/.

NOTE ADDED IN PROOF

The recent publication by Homer et al. describes a method
to infer the presence of an individual’s participation in a
study based on summary allele frequency data (42). This has
implications on data sharing policies, as it may compromise
anonymity of study participation in certain cases. We strongly
affirm that institutional guidelines must be adhered to with
respect to privacy conditions when exchanging data.
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