## Calculation of IBD probabilities

## David Evans

## 䓶 1 University of <br> 2 ${ }^{2}$ BRISTOL



## This Session ...

- Identity by Descent (IBD) vs Identity by state (IBS)
- Why is IBD important?
- Calculating IBD probabilities
- Lander-Green Algorithm (MERLIN)
- Single locus probabilities
- Hidden Markov Model => Multipoint IBD
- Other ways of calculating IBD status
- Elston-Stewart Algorithm
- MCMC approaches
- MERLIN
- Practical Example
- IBD determination
- Information content mapping
- SNPs vs micro-satellite markers?


## Identity By Descent (IBD)



Two alleles are IBD if they are descended from the same ancestral allele

## Example: IBD in Siblings

Consider a mating between mother $\mathrm{AB} \mathbf{x}$ father CD :

|  | Sib1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{A C}$ | $\mathbf{A D}$ | $\mathbf{B C}$ | $\mathbf{B D}$ |
|  | $\mathbf{A C}$ | 2 | 1 | 1 | 0 |
|  | $\mathbf{A D}$ | 1 | 2 | 0 | 1 |
|  | $\mathbf{B C}$ | 1 | 0 | 2 | 1 |
|  | $\mathbf{B D}$ | 0 | 1 | 1 | 2 |

IBD 0:1:2 = 25\%:50\%:25\%

## Why is IBD Sharing Important?

- Affected relatives not only share disease alleles IBD, but also tend to share marker alleles close to the disease locus IBD more often than chance
- IBD sharing forms the basis of nonparametric linkage statistics


## Crossing over between

 homologous chromosomes
(a)

(b)

(c)

(d)


Alleles close together on the same chromosome tend to stay together in meiosis; therefore they tend be co-transmitted.

## Segregating Chromosomes

MARKER



## Marker Shared Among Affecteds



Genotypes for a marker with alleles $\{1,2,3,4\}$

## Linkage between QTL and marker



QTL
IBD 0


IBD 1


IBD 2

IBD 2

## NO Linkage between QTL and marker





Marker
IBD 0
IBD 1
IBD 2

## IBD can be trivial...



## Two Other Simple Cases...



## A little more complicated...

IBD=1
(50\% chance)

$$
1 / 2
$$

IBD=2
(50\% chance)

## And even more complicated...



## Bayes Theorem for IBD Probabilities

$$
\begin{aligned}
P(I B D=i \mid G) & =\frac{\mathrm{P}(\mathrm{IBD}=i, G)}{P(G)} \\
& =\frac{P(I B D=i) P(G \mid I B D=i)}{P(G)} \\
& =\frac{P(I B D=i) P(G \mid I B D=i)}{\sum_{j=0,1,2} P(I B D=j) P(G \mid I B D=j)}
\end{aligned}
$$

## P(Genotype | IBD State)

| Sib 1 | Sib 2 | P(observing genotypes \| $k$ alleles IBD) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $k=0$ | $k=1$ | $k=2$ |
| $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $p_{1}{ }^{4}$ | $p_{1}{ }^{3}$ | $p_{1}{ }^{2}$ |
| $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $\mathrm{A}_{1} \mathrm{~A}_{2}$ | $2 p_{1}{ }^{3} p_{2}$ | $p_{1}{ }^{2} p_{2}$ | 0 |
| $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $\mathrm{A}_{2} \mathrm{~A}_{2}$ | $p_{1}{ }^{2} p_{2}{ }^{2}$ | 0 | 0 |
| $\mathrm{A}_{1} \mathrm{~A}_{2}$ | $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $2 p_{1}{ }^{3} p_{2}$ | $p_{1}{ }^{2} p_{2}$ | 0 |
| $\mathrm{A}_{1} \mathrm{~A}_{2}$ | $\mathrm{A}_{1} \mathrm{~A}_{2}$ | $4 p_{1}{ }^{2} p_{2}{ }^{2}$ | $p_{1} p_{2}$ | $2 p_{1} p_{2}$ |
| $\mathrm{A}_{1} \mathrm{~A}_{2}$ | $\mathrm{A}_{2} \mathrm{~A}_{2}$ | $2 p_{1} p_{2}{ }^{3}$ | $p_{1} p_{2}{ }^{2}$ | 0 |
| $\mathrm{A}_{2} \mathrm{~A}_{2}$ | $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $p_{1}{ }^{2} p_{2}{ }^{2}$ | 0 | 0 |
| $\mathrm{A}_{2} \mathrm{~A}_{2}$ | $\mathrm{A}_{1} \mathrm{~A}_{2}$ | $2 p_{1} p_{2}{ }^{3}$ | $p_{1} p_{2}{ }^{2}$ | 0 |
| $\mathrm{A}_{2} \mathrm{~A}_{2}$ | $\mathrm{A}_{2} \mathrm{~A}_{2}$ | $\mathrm{p}_{2}{ }^{4}$ | $\mathrm{p}^{3}{ }^{\text {²}}$ | $\mathrm{p}_{2}{ }^{2}$ |

## Worked Example



## Worked Example



$$
\begin{aligned}
& p_{1}=0.5 \\
& P(G \mid I B D=0)=p_{1}^{4}=1 / 16 \\
& P(G \mid I B D=1)=p_{1}^{3}=1 / 8 \\
& P(G \mid I B D=2)=p_{1}^{2}=1 / 4 \\
& P(G)=1 / 4 p_{1}^{4}+1 / 2 p_{1}^{3}+1 / 4 p_{1}^{2}=9 / 64 \\
& P(I B D=0 \mid G)=\frac{1 / 4 p_{1}^{4}}{P(G)}=1 / 9 \\
& P(I B D=1 \mid G)=\frac{1 / 2 p_{1}^{3}}{P(G)}=4 / 9 \\
& P(I B D=2 \mid G)=\frac{1 / 4 p_{1}^{2}}{P(G)}=4 / 9
\end{aligned}
$$

For ANY PEDIGREE the inheritance pattern at any point in the genome can be completely described by a binary inheritance vector of length $2 n$ :

$$
\mathrm{v}(\mathrm{x})=\left(p_{1}, m_{1}, p_{2}, m_{2}, \ldots, p_{n}, m_{n}\right)
$$

whose coordinates describe the outcome of the paternal and maternal meioses giving rise to the $n$ non-founders in the pedigree
$p_{i}\left(m_{i}\right)$ is 0 if the grandpaternal allele transmitted
$p_{i}\left(m_{i}\right)$ is 1 if the grandmaternal allele is transmitted


$$
\mathrm{v}(\mathrm{x})=[0,0,1,1]
$$

## Inheritance Vector

In practice, it is not possible to determine the true inheritance vector at every point in the genome, rather we represent partial information as a probability distribution of the possible inheritance vectors


| Inheritance vector | Prior | Posterior |
| :--- | :--- | :--- |
| $-------------------------------------------------------1 / 8$ |  |  |
| 0000 | $1 / 16$ | $1 / 8$ |
| 0001 | $1 / 16$ | 0 |
| 0010 | $1 / 16$ | 0 |
| 0011 | $1 / 16$ | $1 / 8$ |
| 0100 | $1 / 16$ | $1 / 8$ |
| 0101 | $1 / 16$ | 0 |
| 0110 | $1 / 16$ | 0 |
| 0111 | $1 / 16$ | $1 / 8$ |
| 1000 | $1 / 16$ | $1 / 8$ |
| 1001 | $1 / 16$ | 0 |
| 1010 | $1 / 16$ | 0 |
| 1011 | $1 / 16$ | $1 / 8$ |
| 1100 | $1 / 16$ | $1 / 8$ |
| 1101 | $1 / 16$ | 0 |
| 1110 | $1 / 16$ | 0 |
| 1111 | $1 / 16$ |  |

## Computer Representation

- At each marker location $\ell$
- Define inheritance vector $\mathbf{v}_{\ell}$
- Meiotic outcomes specified in index bit
- Likelihood for each gene flow pattern
- Conditional on observed genotypes at location $\ell$
- $2^{2 n}$ elements !!!

| L | $\square$ | $\square$ | $\square$ | ■ | - | L | ■ | $\square$ | ■ | ■ | L | ■ | ■ | $\square$ | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

a) bit-indexed array

| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}_{1}$ | $\mathrm{L}_{2}$ | $\mathrm{L}_{1}$ | $\mathrm{L}_{2}$ | $\bigcirc$ | - | - | - | $\mathrm{L}_{1}$ | $\mathrm{L}_{2}$ | $\mathrm{L}_{1}$ | $\mathrm{L}_{2}$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |

b) packed tree

c) sparse tree


| Legend |  |  |
| :--- | :--- | :--- |
|  |  | Node with zero likelihood |
| $L_{1}$ | $L_{2}$ | Likelihood for this branch |

Abecasis et al (2002) Nat Genet 30:97-101

## Multipoint IBD

- IBD status may not be able to be ascertained with certainty because e.g. the mating is not informative, parental information is not available
- IBD information at uninformative loci can be made more precise by examining nearby linked loci


## Multipoint IBD


c/d
$1 / 2$
$\operatorname{IBD}=0$

b/d
$1 / 2 \mathrm{IBD}=0$ or $\mathrm{IBD}=1$ ?

# Complexity of the Problem in Larger Pedigrees 

- For each person
- $2 n$ meioses in pedigree with $n$ non-founders
- Each meiosis has 2 possible outcomes
- Therefore $2^{2 n}$ possibilities for each locus
- For each genetic locus
- One location for each of $m$ genetic markers
- Distinct, non-independent meiotic outcomes
- Up to $4^{n m}$ distinct outcomes!!!


## Example: Sib-pair Genotyped at 10 Markers



## $P(I B D)=2$ at Marker Three



## $P(I B D)=2$ at arbitrary position on the chromosome

Inheritance vector


## Lander-Green Algorithm

- The inheritance vector at a locus is conditionally independent of the inheritance vectors at all preceding loci given the inheritance vector at the immediately preceding locus ("Hidden Markov chain")


## Lander-Green Algorithm

Inheritance vector

$M\left(2^{2 n}\right)^{2}=10 \times 16^{2}=2560$ calculations

## Lander-Green Algorithm Summary

- Factorize likelihood by marker
- Complexity $\propto m \cdot \mathrm{e}^{\mathrm{n}}$
- Strengths
- Large number of markers
- Relatively small pedigrees


## Elston-Stewart Algorithm

- Factorize likelihood by individual
- Complexity $\propto n \cdot \mathrm{e}^{\mathrm{m}}$
- Small number of markers
- Large pedigrees
- With little inbreeding
- VITESSE, FASTLINK etc


## Other methods

- Number of MCMC methods proposed
- ~Linear on \# markers
- ~Linear on \# people
- Hard to guarantee convergence on very large datasets
- Many widely separated local minima
- E.g. SIMWALK


## MERLI N-- Multipoint Engine for Rapid Likelihood Inference




## Capabilities

- Linkage Analysis
- NPL and K\&C LOD
- Variance Components
- Haplotypes
- Most likely
- Sampling
- All
- Error Detection
- Most SNP typing errors are Mendelian consistent
- Recombination
- No. of recombinants per family per interval can be controlled
- Simulation


## MERLIN Website

www.sph.umich.edu/csg/abecasis/Merlin

- Reference
- FAQ
- Source
- Tutorial
- Linkage
- Haplotyping
- Simulation
- Error detection
- IBD calculation
- Binaries


## I nput Files

- Pedigree File
- Relationships
- Genotype data
- Phenotype data
- Data File
- Describes contents of pedigree file
- Map File
- Records location of genetic markers


## Example Pedigree File

<contents of example.ped>

| 1 | 0 | 0 | 1 | 1 | x | 3 | 3 |  | x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 0 | 2 | 1 | x | 4 | 4 | x | x |
| 3 | 0 | 0 | 1 | 1 | X | 1 | 2 | X | x |
| 4 | 1 | 2 | 2 | 1 | x | 4 | 3 | $\times$ | $x$ |
| 15 | 3 | 4 | 2 | 2 | 1.234 | 1 | 3 |  | 2 |
| 16 | 3 | 4 | 1 | 2 | 4.321 | 2 | 4 | 2 |  |
| <end of |  | amp |  |  |  |  |  |  |  |

Encodes family relationships, marker and phenotype information

## Data File Field Codes

| Code | Description |
| :--- | :--- |
| M | Marker Genotype |
| A | Affection Status. |
| T | Quantitative Trait. |
| C | Covariate. |
| Z | Zygosity. |
| S[n] | Skip n columns. |

## Example Data File

<contents of example.dat>
T some_trait_of_interest
M some_marker
M another_marker
<end of example.dat>

Provides information necessary to decode pedigree file

## Example Map File

<contents of example.map>
CHROMOSOME MARKER POSITION
2
2
D2S160 160.0
D2S308 165.0
<end of example.map>

Indicates location of individual markers, necessary to derive recombination fractions between them

## Worked Example



$$
\begin{aligned}
& p_{1}=0.5 \\
& P(I B D=0 \mid G)=1 / 9 \\
& P(I B D=1 \mid G)=4 / 9 \\
& P(I B D=2 \mid G)=4 / 9
\end{aligned}
$$

merlin -d example.dat -p example.ped -m example.map --ibd

## Application: Information Content Mapping

- Information content: Provides a measure of how well a marker set approaches the goal of completely determining the inheritance outcome
- Based on concept of entropy
- $E=-\Sigma P_{i} \log _{2} P_{i} \quad$ where $P_{i}$ is probability of the th outcome
- $I_{E}(x)=1-E(x) / E_{0}$
- Always lies between 0 and 1
- Does not depend on test for linkage
- Scales linearly with power


## Application: Information Content Mapping

- Simulations
- ABI (1 micro-satellite per 10cM)
- deCODE (1 microsatellite per 3cM)
- Illumina (1 SNP per 0.5cM)
- Affymetrix (1 SNP per 0.2 cM)
- Which panel performs best in terms of extracting marker information?
merlin -d file.dat -p file.ped -m file.map --information


## SNPs vs Microsatellites



