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Genetic Testing and
Personalized Medicine

> The idea that diagnosis, preventative and therapeutic
Interventions are tailored to individuals based upon their
genotypes

Diagnosis -> Modification of risk

Tailoring treatment options

> Predictive testing in the case of monogenic diseases has been
used for years (1300+ tests available)

Preventative strategies radical (PKU, Breast cancer)

> |Is this possible also in complex diseases?

Predictive utility of many different variants -> genomic profiling

Environmental risk factors



Reality

Test
Outcome

Diseased Normal
False Positive Positive
Positive True Positive | (Type | error) Predictive
Value
False Negative
Negative Negative True Negative | Predictive
(Type Il error) Value

Sensitivity = P(T+ | D+)

Sensitivity

Specificity

A sensitivity of 100% means that the test recognises all sick people

“SNOUT”

Property of test itself




Reality
Diseased Normal
False Positive Positive
Positive True Positive | (Type | error) Predictive
Test Value
Outcome False Negative
Negative Negative True Negative Predictive
(Type Il error) Value
Sensitivity Specificity
Specificity = P(T- | D-)

A specificity of 100% means that the test identifies all healthy people as healthy

Positive results in a highly specific test is used to confirm disease

“SPIN”
Property of test itself



Reality

Test
Outcome

Diseased Normal
False Positive Positive
Positive True Positive | (Type | error) Predictive
Value
False Negative
Negative Negative True Negative | Predictive
(Type Il error) Value

PPV = P(D+ | T+)

Sensitivity

Specificity

Depends on prevalence of disease




Reality

Test
Outcome

Diseased Normal
False Positive Positive
Positive True Positive | (Type | error) Predictive
Value
False Negative
Negative Negative True Negative | Predictive
(Type Il error) Value

NPV = P(D- | T-)

Sensitivity

Specificity

Depends on prevalence of disease




A J. Hum. Genet. 72:636-649, 2003

Improving the Prediction of Complex Diseases by Testing for Multiple
Disease-Susceptibility Genes
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Studies have argued that genetic testing will provide limited information for predicting the probability of common
discases, because of the incomplete penetrance of genotypes and the low magnitude of associated risks for the
general population. Such studies, however, have usually examined the effect of one gene at time. We argue that
discase prediction for common multifactorial discases is greatly improved by considering multiple predisposing
genetic and environmental factors concurrently, provided that the model correctly reflects the underlying discase
ctiology. We show how likelihood ratios can be used to combine information from several genetic tests to compute
the probability of developing a multifactorial discase. To show how concurrent use of multiple genctic tests improves
the prediction of a multifactorial discase, we compute likelihood ratios by logistic regression with simulated case-
control data for a hypothetical discase influenced by multiple genetic and environmental risk factors. As a practical
example, we also apply this approach to venous thrombosis, a multifactorial discase influenced by multiple genetic
and nongenctic risk factors. Under reasonable conditions, the concurrent use of multiple genetic tests markedly
improves prediction of discase. For example, the concurrent use of a panel of three genetic tests (factor V Leiden,
prothrombin variant G20210A, and protein C deficiency) increases the positive predictive value of testing for venous
thrombosis at least cightfold. Multiplex genetic testing has the potential to improve the clinical validity of predictive
testing for common multifactorial discases.

> Likelihood Ratio
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Applving Baves’s theorem, we have
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where a,,, is the intercept term in the population logistic model {(background disease risk), Ny is the number of
people in the population who develop the disease, N5 is the number of people in the population who do not develop
the disease, P(D) = Ng|(Np + Ng), and o, = a,, +In(N5|Ng) (Albert 1982).

To prove the validity of estimating likelihood ratio from a case-control study, we introduce the dummy variable
§ to indicate whether an individual is selected for the case-control sample and denote the sampling fraction as
fi = P(S = 1|D)and f, = P(§ = 1|D). It is essential thar the risk odds ratio in the case-control study estimates the
risk ratio and the probability of being selected for a sample is independent of genotype in both those with and
withour the disease—rthar is, P(§ = 1|D,G) = P(S = 1|D) and P(S = 1|D,G) = P(S = 1|D). We can compute the

probability of disease, given a particular set of genetic test results, using a logistic model for the sample as
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after cancellation of the denominator. Substitution of equation (B1) into equation (B2) gives
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where age = a,,, +In{f,/f;). Thus, the logistic model continues to apply in the sample with the same § coefficient
but with an adjusted & = e, + In(f,/f,) (Breslow et al. 1980).

Similar to the derivation of likelihood ratio estimated using logistic regression in the population, the likelihood
ratio in the case-control study population is found to be
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where o = «__ + In(f,/f;) is the intercept term estimated from a case-contral study, as shown in equation (B3).
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substitution of equation (B3) into equation (B4) gives In LR,



Genomic Profiling
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Figure 1

(from Yang et al. 2003 AJHG)

Power of a panel of genetic tests and exposure on predictability of the common disease (simulated data)
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ROC Curves
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> Area under Curve (AUC)0.5-1




Genomic Profiling

Disease

Variant selection®

AUC

Age-related macular
degeneration
Coronary heart discase
Coronary heart discase
Hypertriglyceridemia

MI after surgery
Systemic lupus
erythematosus
Type 2 diabetes
Type 2 diabetes
Type 2 diabetes

Type 2 diabetes

5 (out of 1536 tag SNPs in

established genes)
4 (out of 12)
6 established variants
7 established variants

3 (out of 48)
From GWAS

3 established variants
3 (out of 19)

18 established variants

18 established variants

0.80°

0.62
0.55°
(.80

(.70
0.67

(.55
(.56
(.60

0.60

Janssens & van Duijn (2008) HMG



Disease Clinical risk factors Variant Cienetic variants AUC AUC  Reference
selection® before  after
Cardiovascular Age, sex, family history of myocardial G (out of 11) APCR rst93, APOE cluster 14420638,  0.80 0.80 (26)
disease infarction, low density lipoprotein, high established HMGOR rs12654264, LDLR
density lipoprotein cholesterol, SMPsin9 rsl 329729, PCSK Y rs11591147,
triglveerides, systolic blood pressure, genes ABCAL 133890182, CETP rs 1800773,
diastolic blood pressure, diabetes LIPC rs1B00588, and LPL rs328
mellitus, body mass index, smoking,
C-reactive protein, lipid-lowering
therapy, antihypertensive treatment
Coronary heart Age, triglveerides, cholesterol, systolic 4 (out of 12) UCP2 G{—B66)A, APOE e2/34, LPL 0.66 0.70 ()
disease blood pressure, smoking DN, APOA4 T3475
Coronary heart Age, systolic blood pressure, total 11 (out of 116) VAMPS, PALLD KIF6, MKIG7, 0.76 0.77 (25)
disease: in cholesteral, high density lipoprotein MYHIS, Loctd 6377, HPSI. SNXT 9,
whites cholesterol, diabetes, use of ADAMTSI (2x), ADRRZ
antihvpertensive medication, smoking
Coronary heart Age, systolic blood pressure, total 11 {out of 116) DMXL2, ZNF132, KIFG, F2, OR2425, 0.76 0.77 (23)
disease: in cholesterol, high density lipoprotein KRT5, CTNNA3, HAPI, GIPR.
blacks cholesterol, digbetes, use of FSTL4, THARS2
antihypertensive medication, smoking
MI after surgery AXT time, number of coronary grafts, 3 (out of 48) HLOGST2C, ICAM T K469E, SELE GYST  0.70 0,76 (12)
previous cardiac surgery
Prostate cancer Age, peographic region, family history S(outof 16)in5  rs4430796 (in 17g12), rs1859962 (in 0.61 0.63 27
established 17g24.3), ral 6901979, rs6983267 and
regions) 131447245 (all in Hg24)
Type 2 diabetes Body mass index, plasma glucose level 3 (out of &) PPARG P12A, CAPNIO SNP43 and 068" 068" (24)
SNP44
Type 2 diabetes Age, sex, body mass index 3 {out of 19) GOK G(=30G)A, [L6 G(-174)C, 0.82 082 (15)
TCF7L2 rs7903 146
Type 2 diabetes Age, sex, body mass index 18 established SNPs in TOF7L2, 2 in CDKN2A/2E, 0.78 0.80 (16)
variants KON, PPARG, ADAM 30/
NOTCHZ, IGF2RP2, FTO. CDEALILL
SLCI0AS, TSPANSCLGRS, CDCT23,
WES], TCF2, ADAMTSY,
HHEX-IDE, THADA, JAZF]
Type 2 diabetes Age, sex, body mass index 18 established SNPs in TOF7L2, 2 in COKN2A/2B, 0.66 0.68 (7

variants

KCONA, PPARG, ADAM 30/
NOTCHZ, IGF2BP2, FTO, CDEALL
SLCIO0AS, TSPANSSLGRS, CDCI23,
WES], TCF2, ADAMTSY,
HHEX-IDE, THADA, JAZF]

Janssens & van Duijn (2008) HMG

> Genetic variants appear to add little to traditional risk factors

> Some genetic variants might influence intermediate risk factors




Problems

Complex diseases

-
.'I
-
_'t-il-

L] I..
-

,....ml\ ]

io0 15 20 25 "'I:I 35 40
Number of risk genotypes

Janssens & van Duijn (2008) HMG

> Most individuals have disease risks only slightly higher or lower
than the population average

> Substantial variation in disease risk may be seen between
individuals with the same number of risk genotypes resulting
from differences in effect sizes between risk genotypes




Problems

Complex diseases

t-il-

-Ii-

....»nl\ 1]

io 15 !I:I 25 "'I:I 35 40
Number of risk genotypes

Janssens & van Duijn (2008) HMG

> Knowledge of increased risk may not be useful

> Predictive value of genetic tests are limited by their heritability

> Can we do better than just asking a first degree relative?




Ankylosing Spondylitis
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> Auto-immune arthritis resulting in fusion of vertebrae

> Prevalence of 0.4% in Caucasians. More common in men.

> Often associated with psoriasis, IBD and uveitis

> Ed Sullivan, Mike Atherton
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Ankylosing Spondylitis
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> Prevalence of B27+, ARTS1+,IL23R+ is 2.4%

> Prevalence of B27-, ARTS1-, IL23R-is 19%




Genome-wide Prediction?
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Wellcome Trust Case-Control Consortium
Genome-Wide Association Across Major Human Diseases

DESIGN
Collaboration amongst 26 UK disease CASES
investigators 1. Type 1 Diabetes
2000 cases each from 7 diseases 2. Type 2 Diabetes

3. Crohn’s Disease

4. Coronary Heart Disease
GENOTYPING 5. Hypertension
Affymetrix 500k SNPs 6. Bipolar Disorder
T — 7. Rheumatoid Arthritis
INDEPENDENT

CONTROLS

Tracey Emin %
< o o eivan 1. UK Controls A (1,500 - 1958 BC)

huna firens snd pain o ¢ et



Methods

> “Training set”

90% of cases and controls

Run test of association in training set

Select a set of nominally associated SNPs according to a threshold
(a=0.8, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001)

> “Prediction set”

Apply prediction method to prediction set (10% of cases and controls)

> Cross validation

Do ten times, record mean AUC and range of AUCs



Methods

> “Log Odds Method”

For each individual:
Score = sum(x_1i) * log(OR_1)
X_1=Number of risk alleles (=0,1,2) at SNP |

OR_i = Estimated OR at SNP | from discovery set

> “Count Method”

For each individual:

Score = sum(x_1)



Control Condition

> Differences between cases and controls might reflect
undetected batch effects, population stratification and/or
genotyping error

> These will inflate the apparent predictive ability of SNPs

> Predict a disease using SNPs derived from training sets of other
diseases

> Would expect AUC ~ 0.5 in the absence of these factors




Bipolar Disorder

Threshold Odds Method Log Odds Method
Profiling Control Profiling Control

p<.8 .653 537 .668 529
p<.5 .664 527 .668 531
p<.l .646 537 .636 547

p <.05 .625 537 .620 537
p<.01 570 .555 567 .548
p <.001 .539 534 533 527
p <.0001 .533 518 528 520
p <.00001 521 525 529 521




Type | Diabetes

Threshold Odds Method Log Odds Method
Profiling Control Profiling Control

p<.8 .620 513 721 531
p<.5 .624 515 124 518
p<.l .637 515 743 515

p <.05 673 537 47 526
p<.01 .697 531 749 525
p <.001 712 544 749 545
p <.0001 716 540 748 534
p <.00001 717 540 749 533




Conclusions

> A genome-wide score provides significant (but not very good)
discrimination between cases and controls

> Does this genome-wide score provide discriminative ability over
and above that afforded by known variants?




Bipolar Disorder

Threshold Odds Method Log Odds Method
Profiling Control Known All

Known .549
p<.8 .657 564 .678 572
p<.5 671 .566 674 .566
p<.l .651 561 .641 562
p <.05 .656 .556 .641 562
p<.01 .608 .584 597 579
p <.001 .563 561 560 563
p <.0001 574 561 569 561
p <.00001 561 562 560 562




Type | Diabetes

Threshold Odds Method Log Odds Method
Known All Known All

Known 7184
p<.8 .793 782 792 .786
p<.5 794 .785 .793 .786
p<.l 787 .785 .788 .785
p <.05 787 .785 .788 .786
p<.01 .788 .785 .788 .785
p <.001 .786 .785 .785 784
p <.0001 .785 787 784 .790
p <.00001 .785 .786 787 .785




Limitations

> Only additive relationships modelled

> Genotyping error, batch effects and/or population stratification in
the cases group




Conclusions

> Currently genetic information of little diagnostic utility for (most)
complex diseases

> A simple genome-wide score has discriminative ability and can
add information over and above that afforded by known variants
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