23rd International Workshop on Statistical Genetics and Methodology of Twin and Family Studies: Advanced course

- Pak Sham (director)
- Lindon Eaves
- Jeff Barrett
- David Evans
- Goncalo Abecasis
- Mike Neale
- Hermine Maes
- Sarah Medland
- Dorret Boomsma
- Danielle Posthuma
- Meike Bartels

Allan McRae

Hunting QTLs – an introduction

Nick Martin Queensland Institute of Medical Research

Boulder workshop: March 2, 2009

Mendel 1865 – genetics of discrete traits

Stature in adolescent twins

Women

Stature

R.A. Fisher, 1918

The explanation of quantitative inheritance in Mendelian terms

ohoto A .Barrington–Brown (c) R .A .Fisher Memorial Trust.

1 Gene	2 Genes	3 Genes	4 Genes
 → 3 Genotypes → 3 Phenotypes 	→ 9 Genotypes	→ 27 Genotypes	→ 81 Genotypes
	→ 5 Phenotypes	→ 7 Phenotypes	→ 9 Phenotypes

Multifactorial Threshold Model of Disease

Complex Trait Model

Using genetics to dissect metabolic pathways: Drosophila eye color

Beadle & Ephrussi, 1936

Linkage

Association

Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease

Jean-Pierre Hugot*†‡, Mathias Chamaillard*†, Habib Zouali*, Suzanne Lesage*, Jean-Pierre Cézard‡, Jacques Belaiche§, Sven Almerii, Curt Tysk¶, Colm A. O'Morain#, Miquel Gassull⁴, Vibeke Binder**, Yigael Finkel††, Antoine Cortot‡‡, Robert Modigliani§§, Pierre Laurent-Puig†, Corine Gower-Rousseau‡‡, Jeanne Macryiii, Jean-Frédéric Colombel‡‡, Mourad Sahbatou* & Gilles Thomas*†¶¶

NATURE | VOL 411 | 31 MAY 2001

First (unequivocal) positional cloning of a complex disease QTL !

Thomas Hunt Morgan – discoverer of linkage

Linkage = Co-segregation

4/16 = 1/4 sibs share BOTH parental alleles IBD =
2
8/16 = 1/2 sibs share ONE parental allele IBD = 1

4/16 = 1/4 sibs share NO parental alleles IBD = 0

For disease traits (affected/unaffected) Affected sib pairs selected

For continuous measures Unselected sib pairs

Linkage for mole counts in Australian twin families

Gu Zhu¹, Grant W Montgomery¹, Michael R James¹, Jeff M Trent², Nicholas K Hayward¹, Nicholas G Martin¹ and David L Duffy^{*,1}

European Journal of Human Genetics (2007) 15, 94–102

Flat mole count: chromosome 9 linkage in Australian and UK twins

Linkage for MaxCigs24 in Australia and Finland

AJHG, in press

Linkage

- Doesn't depend on "guessing gene"
- Needs family data !
- Works over broad regions and whole genome
- Only detects large effects (>10%)
- Requires large samples (10,000's?)
- Can't guarantee close to gene
- On the whole, has failed to deliver for complex traits

Association

 Looks for correlation between specific alleles and phenotype (trait value, disease risk)

Association studies

	1 1234567890	2 1234567890	3 1234567890	4 1234567890	5 1234567890	
191,044,935	GTGAGTATGG	CTTTCTTCCC	TCTCCCGCCA	CCCCCTGCCC	CACACTGCAA	Intron 1
191,044,985	GCTGCAAACG	CGGTACTTTC	GGGCTCGCCT	TTGACGTTAG	GAAACTAGCC	
191,045,035	TGAGCCTATG	CAGGGAAAAA	AAATCGAAAA	GGTCAATTTG	TTAAGTAAGG	
191,045,085	TTAAATCTGG	GTGATGCTCG	GGTACAGTTT	AAGAACCGAG	GGAGACAGTT	
191,045,135	GATATGAGGG	CGGTGGTTGA	TGCGCTAAGA	AATTGCGGGT	TGGCTTTTTG	
191,045,185	TCCTCCTGCA	TTCAAAATGA	CATCAGAATC	CT <u>G</u> CGGCTGA	AGCGCGTCCC	<u>rs34774923</u>
191,045,235	CAGCATTCAT	ACGTTGCATG	ATGAGTTCTC	ATCAGCTTAC	ACAGCTACTG	
191,045,285	GAAGGTGATG	CTCTTGCTGG	TTCTGAATAT	ACTCGTTTAA	AATCCATTTT	
191,045,335	TGTTTTTTAA	TTATAGAGCA	GATCTCACCC	AGTCCGAATG	TGGAACAAAT	
191,045,385	AATTGTTATG	CAGCGTCTGC	TTAAAAGAAG	TGTCGTAGGT	GGGGAAGGAA	
191,045,435	GAGC <u>G</u> CAGGG	GAATCAGTCA	CCCACCTCTT	TGTACAGTCT	CTGGCGTGGT	<u>rs10218513</u>
191,045,485	CCAGAACCTC	CTGCTCTAAA	GAGAGAAGCG	TGGGCCGGCT	CCAGACAGTT	
191,045,535	CCATGTCTGT	CCTTTTCATT	AAAGTGCAAA	ACGTCTCGGA	ATTGTAATTA	
191,045,585	ACCTTGCAAA	CAAACTGATG	CCCTTTGTGA	GCCAGAAATA	GTGTCTGCCT	
191,045,635	TTTGAACTAA	ATTCATTAAC	AATTCTTTAA	AATACCCTAG	TGATTATAGG	
191,045,685	TAGCCCTGCC	CTTAGTTGTA	AAACTAGTAG	ATACGGTCAG	ATTAATGGAC	
191,045,735	GAAACTGCTC	AGTACATGAG	GTTTAAATGT	TAGGTGGATA	AGACTTATTT	
191,045,785	GAAGAGTTCT	TGCTTTGCCT	TATGCGGTTT	GTCTCTAGTT	ACTGGGTGAC	
191,045,835	TTTATTTGGT	AAAAA <u>T</u> GCGT	TCAGCTGCAG	TAGCATATTC	AAGTGTTGCT	<u>rs2746073</u>
191,045,885	AGTTAGTAAT	TATCTTTTTA	ATTTTTTGTT	TTAG		

Cases

Single Nucleotide Polymorphisms

Controls

Association

- More sensitive to small effects
- Need to "guess" gene/alleles ("candidate gene") or be close enough for linkage disequilibrium with nearby loci
- May get spurious association ("stratification") – need to have genetic controls to be convinced

Variation: Single Nucleotide Polymorphisms

Complex disease marker? SNPs are single-base differences in DNA

The Flow of Genetic Information

Differences (between subjects) in DNA sequence are responsible for (structural) differences in proteins.

Human OCA2 and eye colour

Zhu et al., Twin Research 7:197-210 (2004)

OCA2
Mutations
Albinism data base www.cbc.umn.e

A single SNP within intron 86 of HERC2 determines Blue-Brown eye colour Sturm et al., AJHG 82: 424-431, 2008

Uses ATP for energy to initiate unwinding of DNA, so allowing transcription

Sulem et al, Nat Genet 39: 1443, 2007; Kayser et al, AJHG 82: 411-423, 2008; Eiberg et al, Hum Genet 123: 177-187, 2008

SWI/SNF Chromatin remodelling model for OCA2 gene activation

Locus Control Region

OCA2 open promoter

SWI/SNF Chromatin remodelling model for OCA2 gene activation

Genetic architecture

- Number of variants
- Effect size of variants
- Frequency of risk allele
- Genetic mode of action

Genetic variance

What is the genetic architecture of complex genetic disorders?

A potted history of genetic studies

A potted history of genetic studies

Association studies until 2007

- Candidate regions
- Some successes but generally:
 - Poor replication
 - Small sample sizes
- Conclusion
 - effect sizes are smaller than expected
 - Poor selection of candidate regions

Genome-Wide Association Studies

High density SNP arrays – up to 1 million SNPs

Genome-wide Association Studies

• Multiple testing !

- Declare significance at $0.05/500,000 = 10^{-8}$

- Follow-up significant SNPs by genotyping in independent replication samples
- Validated associations:
 - significant across replication samples
 - same SNP
 - same allele

Bipolar GWAS of 10,648 samples

Sample	Cases	Controls	<i>P</i> -value
STEP	7.4%	5.8%	0.0013
WTCCC	7.6%	5.9%	0.0008
EXT	7.3%	4.7%	0.0002
Total	7.5%	5.6%	9.1 × 10 ⁻⁹

Sample	Case	Controls	<i>P</i> -value
STEP	35.7%	32.4%	0.0015
WTCCC	35.7%	31.5%	0.0003
EXT	35.3%	33.7%	0.0108
Total	35.6%	32.4%	7 × 10 ⁻⁸

Ferreira et al (Nature Genetics, 2008)

GWAS for major depression

GWAS for Melanoma Association analysis of SNPs across a region of chromosome 20q11.22 for the combined sample. The x-axis is chromosomal position, the left y-axis $-\log_{10}(p)$ for genotyped SNPs. *Nature Genetics* 2008 Jul;40(7):838-40.

First quarter 2008

Manolio, Brooks, Collins, J. Clin. Invest., May 2008

ABCG8

Stephen Channock

Functional Classification of 284 SNPs Associated with Complex Traits

http://www.genome.gov/gwastudies/

Stephen Channock

A potted history of genetic studies

Conclusions about genetic architecture of complex genetic traits based on GWAS results

Effects sizes of validated variants from 1st 16 GWAS studies

Genetic variation is not tagged by GWAS SNPs

Effect sizes are smaller

Prediction of individual genetic risk of complex disease Naomi R Wray¹, Michael E Goddard² and Peter M Visscher¹

Current Opinion in Genetics & Development 2008, 18:257-263

A potted history of genetic studies

GWA of Height

▷ Collaboration is the name of the game !!!

Weedon et al. (in press) Nat Genet

Usual paradigm of association studies

- Identify significant SNPs (not many)
- Genotype in independent replication samples
- Find causal variants to inform on biology

But only a small proportion of the known genetic variance is explained

What would we expect under a polygenic model of many, many variants each of small effect?

A 5% risk increasing common variant

Relative risk	1.05
Population MAF	0.2
MAF in cases	0.2079
MAF in controls	0.1999
Power $\alpha = 1 \times 10^{-6}$ (<i>N</i> =10,000 cases, 10,000 controls)	0.2%
Proportion ranked in top half (<i>N</i> =ISC)	72%

Schizophrenia (ISC) Q-Q plot

Consistent with:

Stratification?

Genotyping bias?

Distribution of true polygenic effects?

Indexing polygenic variance with large sets of weakly associated alleles

ISC

- \rightarrow ISC
- \rightarrow Independent SCZ studies (MGS, O'Donovan)
- \rightarrow Bipolar disorder (STEP-BD, WTCCC)
- \rightarrow Non-psychiatric disease (WTCCC)

Douglas Levinson, Pablo Gejman, Jianxin Shi and colleagues

Pathway (Ingenuity) analysis of GWAS for smoking

Vink et al, 2009 AJHG in press

Even for "simple" diseases the number of alleles is large

- Ischaemic heart disease (LDR) >190
- Breast cancer (BRAC1) >300
- Colorectal cancer (MLN1) >140

Multiple Rare Alleles Contribute to Low Plasma Levels of HDL Cholesterol

Jonathan C. Cohen,^{1,2,3*}† Robert S. Kiss,^{5*} Alexander Pertsemlidis,¹ Yves L. Marcel,⁵† Ruth McPherson,⁵ Helen H. Hobbs^{1,3,4}

Heritable variation in complex traits is generally considered to be conferred by common DNA sequence polymorphisms. We tested whether rare DNA sequence variants collectively contribute to variation in plasma levels of high density lipoprotein cholesterol (HDL-C). We sequenced three candidate genes (*ABCA1, APOA1,* and *LCAT*) that cause Mendelian forms of low HDL-C levels in individuals from a population-based study. Nonsynonymous sequence variants were significantly more common (16% versus 2%) in individuals with low HDL-C (<fifth percentile) than in those with high HDL-C (>95th percentile). Similar findings were obtained in an independent population, and biochemical studies indicated that most sequence variants in the low HDL-C group were functionally important. Thus, rare alleles with major phenotypic effects contribute significantly to low plasma HDL-C levels in the general population.

Complex disease: common or rare alleles?

Increasing evidence for Common Disease – Rare Variant hypothesis (CDRV)

Table 1. Sequence variations in the coding regions of *ABCA1*, *APOA1*, and *LCAT*. Values represent the numbers of sequence variants identified in 256 individuals from the Dallas Heart Study (DHS) (128 with low HDL-C and 128 with high HDL-C) and 263 Canadians (155 with low HDL-C and 108 with high HDL-C) (*17*). NS, nonsynonymous (nucleotide substitutions resulting in an amino acid change); S, synonymous (coding sequence substitutions that do not result in an amino acid change). GenBank accession numbers for DHS *ABCA1*, *APOA1*, and *LCAT* sequences are NM_005502, NM_000039, and NM_000229, respectively.

	Sequence variants unique to one group				Sequence variants common to both groups	
	Low HDL-C		High HDL-C			
	NS	S	NS	S	NS	S
			DHS	5		
ABCA1	14	6	2	5	10	19
APOA1	1	0	0	1	0	1
LCAT	0	1	1	0	1	1
			Canadi	ans		
ABCA1	14	2	2	3	7	5
APOA1	0	1	0	0	2	0
LCAT	6	1	0	0	0	0

[Science 2004]

Human 1M HapMap Coverage by Population

GENOME COVERAGE ESTIMATED FROM 990,000 HAPMAP SNPs IN HUMAN 1M

log in to icom 💮

SUPPORT

SEARCH 📀

CORPORATE

ABOUT ILLUN

PRODUCTS & SERVICES

products & services

overview

🗄 systems & software

🗄 dna analysis solutions

∃ rna analysis solutions

solexa applications

± services

product literature

print this page

solexa sequencing applications

Illumina's Solexa Sequencing technology offers a powerful new approach to some of today's most important applications for genetic analysis and functional genomics, including:

sequencing and resequencing

Whether you need to sequence an entire genome or a large candidate region, the Illumina Genome Analyzer System is today's most productive and economical sequencing tool. Solexa sequencing technology and reversable terminator chemistry deliver unprecedented volumes of high quality data, rapidly and economically.

expression profiling

Sequencing millions of short cDNA tags per sample, the Genome Analyzer allows you to generate digital expression profiles at costs comparable to current analog methods. Because our protocol does not require any transcript-specific probes, you can apply the technology to discover and quantitate transcripts in any organisms, irrespective of the annotation available on the organism.

small rna identification and quantification

Solexa sequencing technology also offers a unique and powerful solution for the comprehensive discovery and characterization of small RNAs in a wide range of species. The massively parallel sequencing protocol allows researchers to discover and analyze genome-wide profiles of small RNA in any species. With the potential to generate several million sequence tags economically, the Illumina Genome Analyzer offers investigators the opportunity to uncover global profiles of small RNA at an unprecedented scale.

important information

product literature

COMMUNITY

- publications
- faqs
- have a rep contact me

STATISTICAL GENETICS

Gene Mapping Through Linkage and Association

http://www.genemapping.org/

We also run two journals (1)

- Editor: John Hewitt
- Editorial assistant Christina Hewitt
- Publisher: Kluwer /Plenum
- Fully online
- http://www.bga.org

We also run two journals (2)

twin research and human genetics ---0 February 2005

MOUNT PURPOSED AND A REPORT OF A DAMAGE OF

- Editor: Nick Martin
- Editorial assistant + subscriptions: Lorin Grey
- Publisher: Australian
 Academic Press
- Fully online
- http://www.ists.qimr.e du.au/journal.html