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For most traits studies so far, GWAS iIs
accounting for very little variance

Nat Genet. 2008 May;40(5):575-83

Genome-wide association analysis identifies 20 loci that influence adult height

Weedon MN, Lango H, Lindgren CM, Wallace C, EvanS D M ........

Adult height is a model polygenic trait, but there has been limited success in identifying the
genes underlying its normal variation. To identify genetic variants influencing adult human
height, we used genome-wide association data from 13,665 individuals and genotyped 39
variants in an additional 16,482 samples. We identified 20 variants associated with adult

height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs

explain approximately 3% of height variation, with a approximately 5 cm
difference between the 6.2% of people with 17 or fewer 'tall' alleles compared to the 5.5%
with 27 or more 'tall' alleles. The loci we identified implicate genes in Hedgehog signaling
(IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer
(CDK6, HMGA2, DLEUY7) pathways, and provide new insights into human growth and
developmental processes. Finally, our results provide insights into the genetic architecture of
a classic quantitative trait.
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NEWS FEATURE PERSONAL GENOMES

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away.




Possible explanations for missing heritability
(not mutually exclusive, but in order of increasing plausibility ?)

e Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GXE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVSs)
* Poor tagging (2)

— common variants in problematic genomic regions



Why do we care ?

#1 biological question of the moment !
— The death of genetic triumphalism?

— But environmentalists should not crow — we are
all ignorant

Defines research agenda — what to do next ?

Disease prediction — current best predictors
are much worse than family history

Intellectual curiosity
— Fisher was right, but why ?



Possible explanations for missing heritability
(in order of increasing plausibility ?)

e Heritability estimates are wrong
 Nonadditivity of gene effects — epistasis, GxE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

e Disease heterogeneity - lots of different diseases
with the same phenotype

 Poor tagging (1)
— rare mutations of large effect (including CNVSs)
 Poor tagging (2)

— common variants in problematic genomic regions



Eaves LJ, Heath AC, Martin NG, Neale MC, Meyer JM, Silberg JL, Corey LA,
Truett K, Walters E: Biological and cultural inheritance of stature and attitudes.
In CR Cloninger Ed. Personality and Psychopathology, pp.269-308. American
Psychiatric Press Inc., Washington, 1999

TaBLE 11-3.
Correlations between relatives for stature and c

ginia 30,000

Stature
Relationship N (pairs) r
Nuclear family
Spouses 4,751 0.223
Male siblings 1,493 0.432
Female siblings 3,524 0.429
Opposite-sex siblings 4,255 0.411
Father-son 2,160 0.439
Father-daughter 2,971 0.411
Mother-son 3,035 0.446 = . = =
Heritability for height ~0.8
Twins
Dizygotic male 573 0.483
Dizygotic female 1,164 0.502
Opposite-sex dizvgotic 1,307 0432
Monozygotic male 775 0.850

Monozygatic female 1,847 0855 L | ttl e eV| d ence fo I d e p artu e

Avuncular with sibling of parent

Paternal uncle-nephew 92 0.427 =,
Paternal uncle-niece 155 0.228 f d d t d I
Maternal aunt-nephew 402 0.185 ro m a I Ive m O e
Maternal aunt-niece 536 0.314
Paternal aunt-nephew 131 0.275
Paternal aunt-niece 196 0.231
Maternal uncle-nephew 236 0.253
Maternal uncle-niece 284 0.230
Avuncular with dizygotic twin of parent
- Paternal uncle-nephew 105 0.369
Paternal uncle-niece 137 0.077
Maternal aunt-nephew 345 0.260
Maternal aunt-niece 525 0.239
Paternal aunt-nephew 118 0.242
Paternal aunt-niece 188 0.244
Maternal uncle-nephew 150 0.288

Maternal uncle-niece 202 0.271


http://genepi.qimr.edu.au/staff/?staffusername=nickM�

h? egg production and growth ~ 0.3
Common ancestor ~100 generations ago “Roslin Institute



Broiler chickens 1957 Genetic control

Day 43 Day Day Day
[Slide courtesv of Bill Hilll 57 71 8"_)



(Outbred) dairy cattle
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Observations on selection
programmes In agriculture

Additive genetic variation for most traits of
Interest, including diseases

Continuing response in all species =
exploitation of additive genetic variation

No hard evidence of limits being reached
Heritabllities falling little or not at all

Selection response agrees with estimates
of heritability

Similar conclusion for long-term selection
experiments in model organisms



Human populations

Estimating additive genetic
variance within families:

Are fullsibs that share >50% of their
genome IBD phenotypically more
similar than those that share <50%°"?

[Visscher et al. 2006, PLoS Genetics; 2008 AJHG]



Realised relationships

Mean 0.499
Range 0.31-0.64
SD 0.036

=
o

=
o
a

|
el

Height (N = 11,214 pairs) _
h2 = 0.86 (0.49-0.95) | -

]
DDDDDDDDDDDDDDDDDDDDDDDD




Conclusions

* Estimates of additive genetic variation and
narrow sense heritability unlikely to be out
by order(s) of magnitude

« GWAS data present new opportunities to
estimate additive and non-additive genetic
variance



Possible explanations for missing heritability
(in order of increasing plausibility ?)

e Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GXE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

e Disease heterogeneity - lots of different diseases
with the same phenotype

 Poor tagging (1)
— rare mutations of large effect (including CNVSs)
 Poor tagging (2)

— common variants in problematic genomic regions



Non-additive variance?

DPEN@MZCESS Freely available online PLOS

Data and Theory Point to Mainly Additive Genetic
Variance for Complex Traits

William G. Hill'*, Michael E. Goddard?®?, Peter M. Visscher®
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Figure 1. Distribution of ,z— 2rpz for all traits on human twins.



From combined chromosome analysis

Estimates of chromosomal heritabilities
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G x E — possibly important, but not many examples

PTSD risk (OR) for interaction terms involving either 1 or 2 copies of
at risk GABRA?2 alleles with Childhood Trauma Factor Score (CTFS)

20 /’
15

OR PTSD

ol /
/

CTFS x 1 CTFS x 2
copy copies

Association of childhood trauma exposure and GABRA2

polymorphisms with risk of nosttraumatic stress disorder
in adults Molecular Psychiatry (2009) 14, 234-238

SNP and risk
associlated allele
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rs279826 A
-8—15279858 A
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Possible explanations for missing heritability
(in order of increasing plausibility ?)

e Heritability estimates are wrong

* Nonadditivity of gene effects — epistasis, GXE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

e Disease heterogeneity - lots of different diseases
with the same phenotype

 Poor tagging (1)
— rare mutations of large effect (including CNVSs)
 Poor tagging (2)

— common variants in problematic genomic regions



Chromatin modifications are complex

Ac - acetylated
Me- methylated

Greatly simplified schematic



When are the marks laid down?

concept of totipotency

.@ Fertilization
Mature /
oocytes

Spermatozoan

Blastocyst
EM

EX

Methylation

Developmental time

Reik et al., Science 293,1089



Intangible variation

Genetically identical mice (same environment) can display
different phenotypes

Agoulti viable
yellow

Different phenotypes correlate with differences in epigenetic state -
detectable, laid down in early development



Epigenetic factors

e ‘Stable heritable epimutations’

— If iInherited then like any DNA sequence
change

e ‘Unstable heritable epimutations’

— Decay In family resemblance larger than
predicted by additive genetic model

* Non-heritable epigenetic factors
— Individual environmental effects
— May increase MZ twin similarity (but why?)



Possible explanations for missing heritabllity
(in order of increasing plausibility ?)

* Heritability estimates are wrong
 Nonadditivity of gene effects — epistasis, GxE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

e Disease heterogeneity - lots of different diseases
with the same phenotype

 Poor tagging (1)
— rare mutations of large effect (including CNVSs)
* Poor tagging (2)

— common variants in problematic genomic regions



Effects sizes of validated variants from 1st 16 GWAS studies
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...and will need huge sample sizes to detect

Mendelian

_ Not possible
Disorders

Large
Linkage studies

andidate association studies: Effect size RR ~2
Effect sample size- hundreds

size Genome-wide association studies Effect size RR ~1.2
Sample size - thousands

Next Generation GWAS Effect size RR ~1.05
Sample size —tens of thousands

very Not detectable/

very Not useful
Small

Common
very Allele Frequency
very

Rare



 Under a neutral model we expect a U-
shaped distribution of allele frequencies
(I.e. most SNPs will have very small MAF
and will therefore be poorly tagged by
current chips

o Under a stabilising selection & mutation
balance large effects will have lower MAF
(Zhang & Hill 2005)

e Shaun to expand on this !



Possible explanations for missing heritabllity
(in order of increasing plausibility ?)

* Heritability estimates are wrong
 Nonadditivity of gene effects — epistasis, GxE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

* Disease heterogeneity - lots of different diseases
with the same phenotype

 Poor tagging (1)
— rare mutations of large effect (including CNVSs)
* Poor tagging (2)

— common variants in problematic genomic regions



What if our “disease” Is actually
dozens (hundreds, thousands)
of different diseases that all look
the same?



Loci for Inherited Peripheral Neuropathies
Multiple causal loci for Charcot Marie Tooth disease (CMT)
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Possible explanations for missing heritabllity
(in order of increasing plausibility ?)

* Heritability estimates are wrong
 Nonadditivity of gene effects — epistasis, GxE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

e Disease heterogeneity - lots of different diseases
with the same phenotype

* Poor tagging (1)
— rare mutations of large effect (including CNVSs)
* Poor tagging (2)

— common variants in problematic genomic regions



Even for “simple” diseases
the number of alleles Is large

e Ischaemic heart disease (LDR) >190
* Breast cancer (BRAC1) >300
e Colorectal cancer (MLN1) >140



Multiple Rare Alleles Contribute

to Low Plasma Levels of
HDL Cholesterol Complex disease: common or rare alleles?

Jonathan C. Cohen,23*} Robert 5. Kiss,**

Alexander Pertsemlidis,? Yves L. Marcel,* Ruth McPherson,’

Helen H. Hobbs'34

Heritable variation in complex traits is generally considered to be conferred by
common DMA sequence polymorphisms. We tested whether rare DNA se-
quence variants collectively contribute to variation in plasma levels of high-

- -
density lipoprotein cholesterol (HDL-C). We sequenced three candidate genes
(ABCAT, APOAT, and LCAT) that cause Mendelian forms of low HDL-C levels in n C re aS I n g eVI e n C e O r
individuals from a population-based study. Nonsynonymous sequence variants

were significantly more commen (16% versus 2%) in individuals with low

HDL-C (=fifth percentile) than in those with high HDL-C (=95th percentile). -
Similar findings were obtained in an independent population, and biochemical O I I l I I l O n I S e aS e — a r e
studies indicated that most sequence variants in the low HDL-C group were

functionally important. Thus, rare alleles with major phenotypic effects con-

tribute significantly to low plasma HDL-C levels in the general population. Va r I a n t h y p Ot h e S I S (C D RV)

Table 1. Sequence variations in the coding regions of ABCAT, APOAT, and LCAT. Values represent the numbers
of sequence variants identified in 256 individuals from the Dallas Heart Study (DHS) (128 with low HDL-C and
128 with high HDL-C) and 263 Canadians (155 with low HDL-C and 108 with high HDL-C) (77). NS,
nonsynonymous (nucleotide substitutions resulting in an amino acid change); S, synonymous (coding
sequence substitutions that do not result in an amino acid change). GenBank accession numbers for DHS
ABCA1, APOAT1, and LCAT sequences are NM_005502, NM_000039, and NM_000229, respectively.

Sequence variants Sequence variants
unique to one group common to both groups
Low HDL-C High HDL-C
NS S NS S NS S
DHS
ABCAT 14 B 2 5 10 19
APOAT 1 0 0 1 0 1
LCAT 0 1 1 1 1
Canadians

ABCAT 14 2 2 3 7 5
APOAT 0 1 0 0 2 0
LCAT 6 1 0 0 0

[Science 2004]



COVERAGE OF HAPMAP RELEASE 21

Human 1M HapMap Coverage
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illumina’
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solexa sequencing applications

Illumina's Solexa Sequencing technology offers a powerful new
approach to some of today's most important applications for
genetic analysis and functional genomics, including:

sequencing and resequencing

Whether you need to sequence an entire genome or a large
candidate region, the Illumina Genome Analyzer System is today's
most productive and economical sequencing tool. Solexa
seguencing technology and reversable terminator chemistry deliver
unprecedented volumes of high quality data, rapidly and J_
economically.

expression profiling important information
Sequencing millions of short cODMA tags per sample, the Genome - product literature
Analyzer allows you to generate digital expression profiles at costs - publications
comparable to current analog methods. Because our protocol does s

not require any transcript-specific probes, yvou can apply the
technology to discover and guantitate transcripts in any organisms,
irrespective of the annotation available on the organism.

- have a rep contact me

small rna identification and quantification

Solexa sequencing technology also offers a unigue and powerful
solution for the comprehensive discovery and characterization of
small RNAs in a wide range of species. The massively parallel
sequencing protocol allows researchers to discover and analyze
genome-wide profiles of small RNA in any species. With the
potential to generate several million sequence tags economically,
the Illumina Genome Analyzer offers investigators the opportunity
to uncover global profiles of small RMNA at an unprecedented scale.
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Possible explanations for missing heritabllity
(in order of increasing plausibility ?)

* Heritability estimates are wrong
 Nonadditivity of gene effects — epistasis, GxE
e Epigenetics — including parent-of-origin effects

* Low power for common small effects

e Disease heterogeneity - lots of different diseases
with the same phenotype

 Poor tagging (1)
— rare mutations of large effect (including CNVSs)
* Poor tagging (2)

— common variants in problematic genomic regions



50% of
human
genome Is
repetitive
DNA.
Only 1.2%
IS coding




Types of repetitive elements and their
chromosomal locations

Centromers

l ' ' Intercalary tandem r&p-eats' Dispersed tandem repeats

Centromere-associated Dispersed Ty1-copia-like
tandem repeals retroelements and microsatellites

| Telomeric and sub- l LINEs (non-LTR retroelements)
| telomeric repeats
| Single and low-copy sequences
including genes



Triplet repeat diseases

CAG repeat

[T T T TR T T

¥ Transcription
CAG repeat

Bl BEAGEACEACEACEACEACEACEACEACEACEAGEREARRARE

+ Translation
Polyglutamine




D DATE g Transcription start site

HGF promoter S
768 / \?54

TTTGTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCTGCC

Simple repeat
polymorphism has

gene expression bt ol 1 L b.
and breast cancer -
risk. Poorly F

tagged by SNPs ? ™l M

TTTGTGAARAARAAAARAAAAAAAAAARAARAAGCT GCC
150 200 21 22(

HTB128
(25As)

TTTGTGAAAAAAAAAAAAAAGCTGCC

C33A

(14As)
Somatic mutation and functional

polymorphism of a novel regulatory element

in the HGF gene promoter causes its aberrant TTTGTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGC TGCC
expression in human breast cancer

Jihong Ma,' Marie C. DeFrances,' Chunbin Zou,' Carla Johnson,!
Robert Ferrell,? and Reza Zarnegar' HelLa

(30As)

"Division of Experimental Pathalogy, Department of Pathology, School of Medicing, and
“Department of Human Genelics, Gradwate School of Public Health, University of Pittsburgh. Pittshurgh, Pennsyhvania, USA.

:J. Clin. Invest. doi:10.1172/]CI36640.



Alu elements

The structure of each Alu
element is bi-partite, with the 3'
half containing an additional 31-
bp insertion (not shown) relative
to the 5' half. The total length of
each Alu sequence is 300 bp,

depending on the length of the 3'

oligo(dA)-rich tail. The elements
also contain a central A-rich
region and are flanked by short
intact direct repeats that are
derived from the site of insertion
(black arrows). The 5' half of
each sequence contains an
RNA-polymerase-Ill promoter (A
and B boxes). The 3' terminus of
the Alu element almost always
consists of a run of As that is
only occasionally interspersed
with other bases (a).

Alu emement -
}Mﬂ* TToT

RMNA-Pol-ill-mediated
transcription

& AluRNA
|Al [B] [ASTACAs |

&
AAAAAAA S uuy

Insertion and
reverse transcription

Second-site nick
and ligation

T AT BT T ASTACAS - TRARAARA

Mature Reviews | Genetics



The abundant Alu transposable element, a member of the middle
repetitive DNA sequences, is present in all human chromosomes (the
Alu element is stained green, while the remainder of the DNA in the
chromosomes is stained red).

e > 1 million In genome — unigue to humans
* Involved in RNA editing — functional ?



Example — 5SHTLPR

o Serotonin transporter length polymorphism
(5HTLPR - one (short) or two (long) 44bp
repeat units

 Has been widely associated with
psychiatric outcomes +/- interaction with
environment (Caspi)

« How well is it tagged by available SNPs?
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5HTLPR Is badly tagged by adjacent SNPs

b)

a) Marker #
MAF
Marker # Marker 1
1)rs28914832 | 0.002 | \
2|rs140700 0.100| 0.00
3] rs6355 0.021| 0.00
4 [rs6354 0.198| 0.01
51rs2020939 0.412] 0.00
6 | rs2020936 0.196 | 0.01
7| rs2066713 0.388| 0.00| 0.07| 0.03] 0.15
8|rs4251417 | 0.091| 0.00] 0.01]| 0.00] 0.03
9] rs2020935 0.064] 0.03] 0.05) 0.00f 0.18
10 | rs2020934 0.489] 0.00] 0.07) 0.02 0.02
11 |5HTTLPR | 0.429(0.00] 0.03]0.01]0.01
13 | rs2020930 0.036| 0.00] 0.00f 0.00] 0.08
14 | rs7214991 0.374| 0.00| 0.08| 0.02] 0.05
15 | rs1050565 0.325] 0.00] 0.09] 0.03f 0.02 0.00] 0.39| 0.30

Haplotype frequencies

0.38

0.381
0.045
0.024
0.459
0.081




Summary

Huge amount of repetitive sequence
Highly polymorphic
Some evidence that it has functional significance

Earlier studies too small (100s) to detect effect
sizes now known to be realistic

Much (most?) such variation poorly tagged with
current chips

Current CNV arrays only detect large variants;
no systematic coverage of the vast number of
small CNVs (including microsatellites)
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