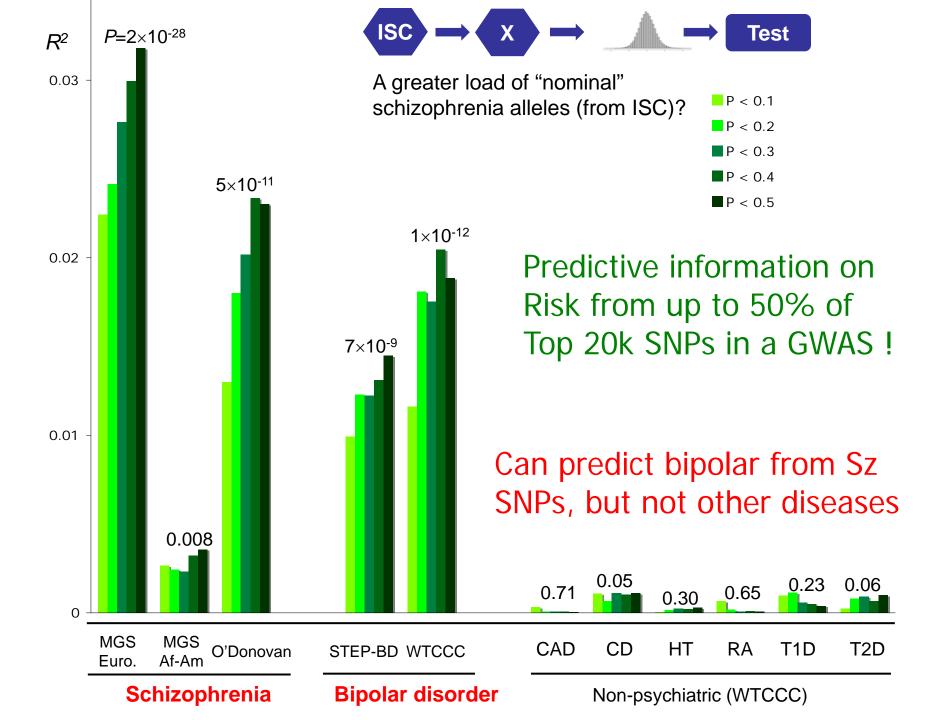
Missing Heritability & GWAS

Nick Martin Shaun Purcell Peter Visscher (in absentia) And all the faculty....


For most traits studies so far, GWAS is accounting for very little variance

Nat Genet. 2008 May;40(5):575-83

Genome-wide association analysis identifies 20 loci that influence adult height

Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM

Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs explain approximately 3% of height variation, with a approximately 5 cm difference between the 6.2% of people with 17 or fewer 'tall' alleles compared to the 5.5% with 27 or more 'tall' alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.

NATURE Vol 456 6 November 2008

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. **Brendan Maher** shines a light on six places where the missing loot could be stashed away.

Possible explanations for missing heritability (not mutually exclusive, but in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

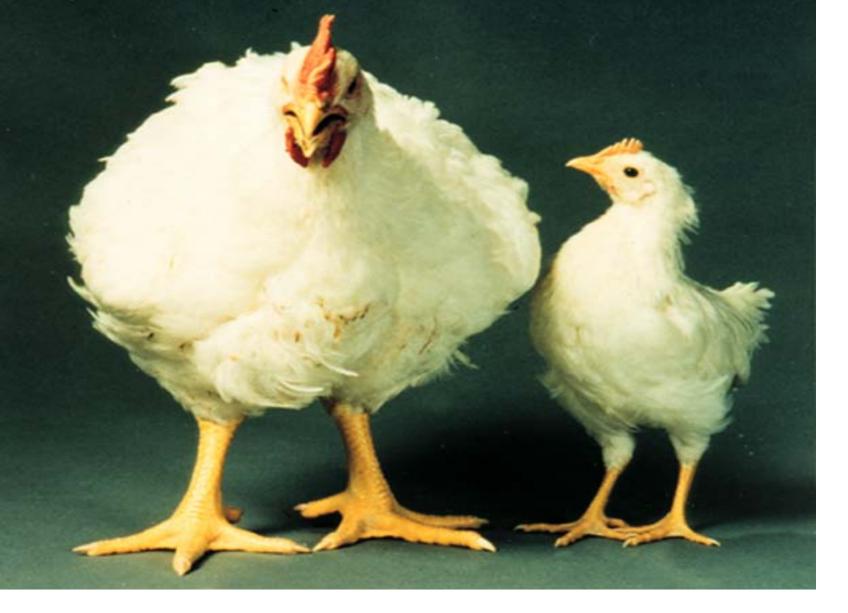
Why do we care ?

- #1 biological question of the moment !
 - The death of genetic triumphalism?
 - But environmentalists should not crow we are all ignorant
- Defines research agenda what to do next ?
- Disease prediction current best predictors are much worse than family history
- Intellectual curiosity
 - Fisher was right, but why?

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Eaves LJ, Heath AC, <u>Martin NG</u>, Neale MC, Meyer JM, Silberg JL, Corey LA, Truett K, Walters E: Biological and cultural inheritance of stature and attitudes. In CR Cloninger Ed. *Personality and Psychopathology*, pp.269-308. American Psychiatric Press Inc., Washington, 1999


TABLE 11-3.

Correlations between relatives for stature and co ginia 30,000

	Stature		
Relationship	N (pairs)	r	
Nuclear family			
Spouses	4,751	0.223	
Male siblings	1,493	0.432	
Female siblings	3,524	0.429	
Opposite-sex siblings	4,255	0.411	
Father-son	2,160	0.439	
Father-daughter	2,971	0.411	
Mother-son	3,035	0.446	
Mother-daughter	4,476	0.430	
Twins			
Dizygotic male	573	0.483	
Dizygotic female	1,164	0.502	
Opposite-sex dizygotic	1,307	0.432	
Monozygotic male	775	0.850	
Monozygotic female	1,847	0.855	
Avuncular with sibling of parent			
Paternal uncle-nephew	92	0.427	
Paternal uncle-niece	155	0.228	
Maternal aunt-nephew	402	0.185	
Maternal aunt-niece	536	0.314	
Paternal aunt-nephew	131	0.275	
Paternal aunt-niece	196	0.231	
Maternal uncle-nephew	236	0.253	
Maternal uncle-niece	284	0.230	
Avuncular with dizygotic twin of			
Paternal uncle-nephew	105	0.369	
Paternal uncle-niece	137	0.077	
Maternal aunt-nephew	345	0.260	
Maternal aunt-niece	525	0.239	
Paternal aunt-nephew	118	0.242	
Paternal aunt-niece	188	0.244	
Maternal uncle-nephew	150	0.288	
Maternal uncle-niece	202	0.271	

Heritability for height ~0.8

Little evidence for departure from additive model

h² egg production and growth ~ 0.3 Common ancestor ~100 generations ago

[©]Roslin Institute

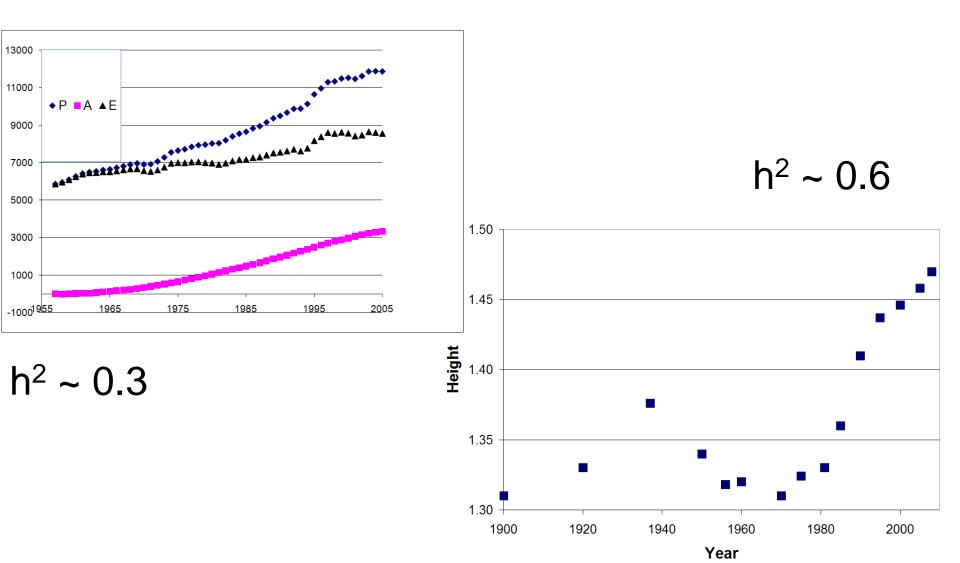
Broiler chickens


1957 Genetic control

$h^2 \sim 0.3$ 2001 Commercial line

Day

57


Day

Day

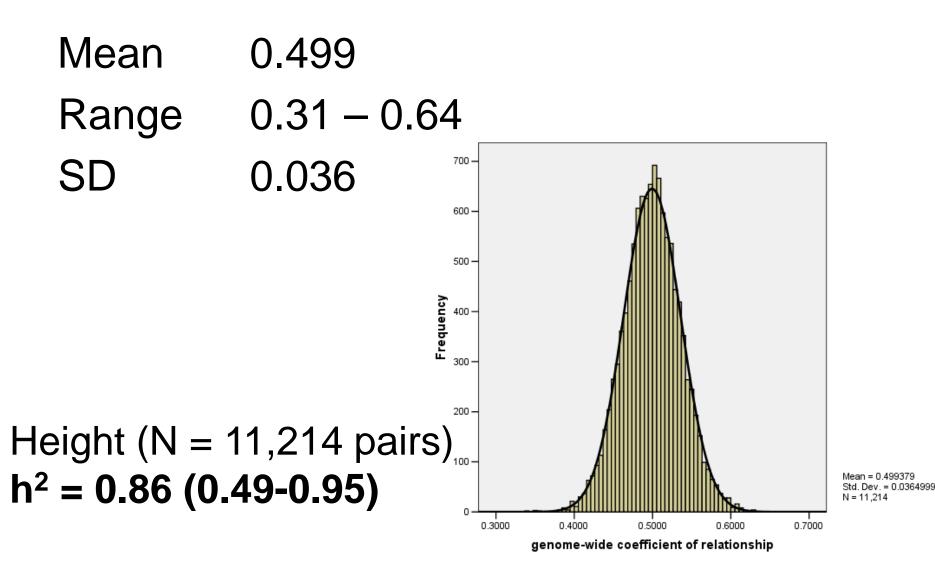
85

Day 43

(Outbred) dairy cattle

Observations on selection programmes in agriculture

- Additive genetic variation for most traits of interest, including diseases
- Continuing response in all species = exploitation of additive genetic variation
- No hard evidence of limits being reached
- Heritabilities falling little or not at all
- Selection response agrees with estimates of heritability
- Similar conclusion for long-term selection experiments in model organisms


Human populations

Estimating additive genetic variance within families:

Are fullsibs that share >50% of their genome IBD phenotypically more similar than those that share <50%?

[Visscher et al. 2006, PLoS Genetics; 2008 AJHG]

Realised relationships

Conclusions

 Estimates of additive genetic variation and narrow sense heritability unlikely to be out by order(s) of magnitude

 GWAS data present new opportunities to estimate additive and non-additive genetic variance

Possible explanations for missing heritability

(in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Non-additive variance?

OPEN O ACCESS Freely available online

PLOS GENETICS

Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits

William G. Hill¹*, Michael E. Goddard^{2,3}, Peter M. Visscher⁴

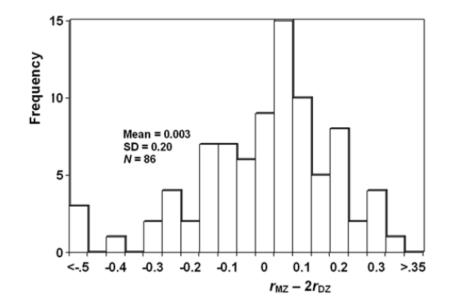
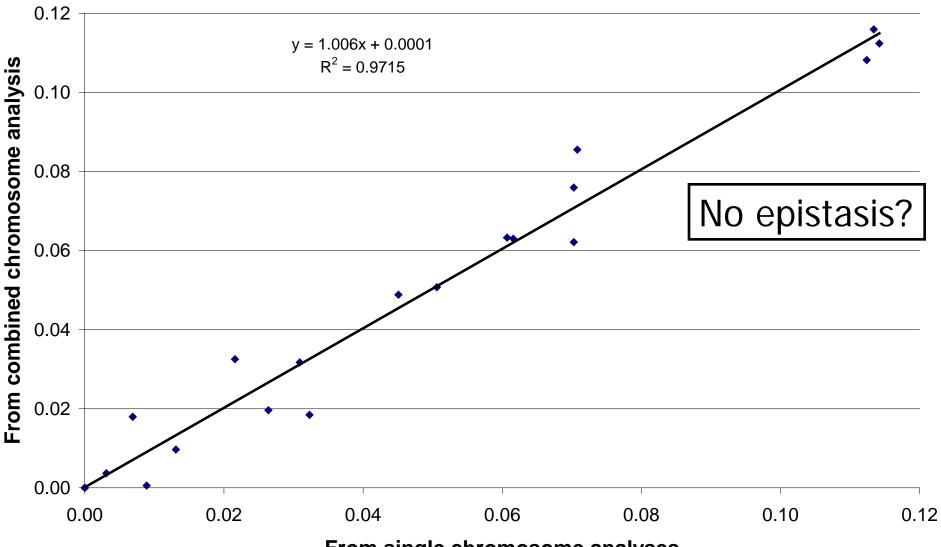
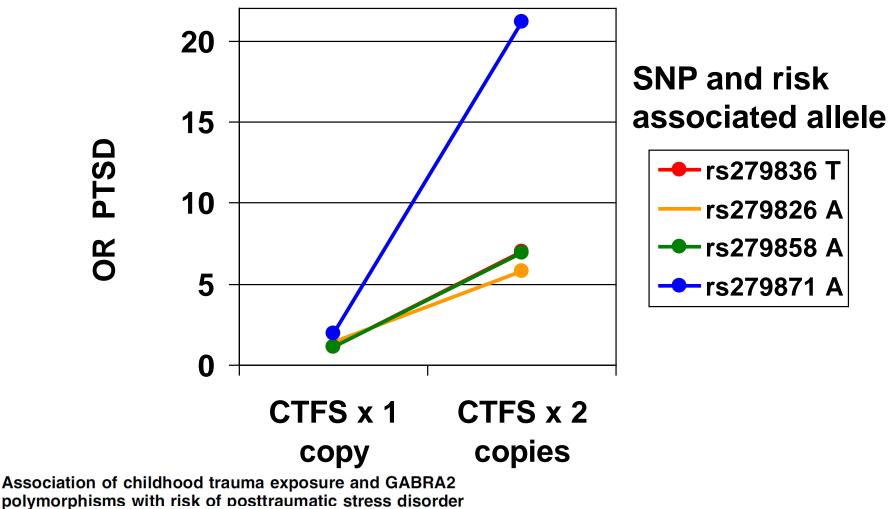



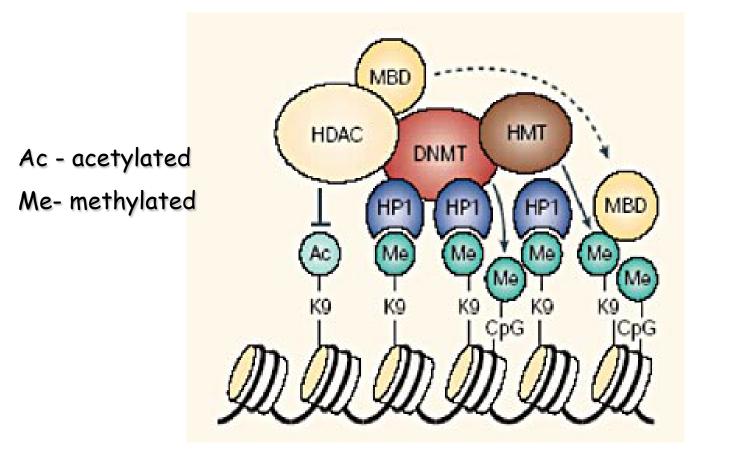
Figure 1. Distribution of $r_{MZ} - 2r_{DZ}$ for all traits on human twins.


Estimates of chromosomal heritabilities

From single chromosome analyses

G x E – possibly important, but not many examples

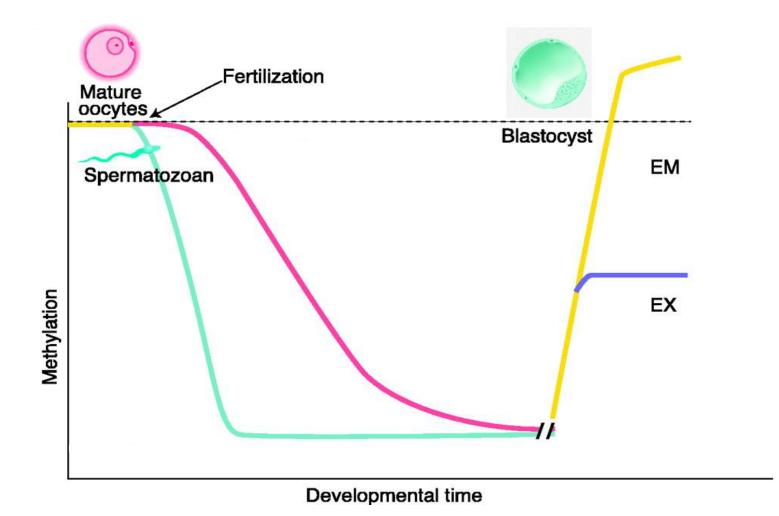
PTSD risk (OR) for interaction terms involving either 1 or 2 copies of at risk GABRA2 alleles with Childhood Trauma Factor Score (CTFS)


in adults Molecular Psychiatry (2009) 14, 234-238

Possible explanations for missing heritability

(in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions


Chromatin modifications are complex

Greatly simplified schematic

When are the marks laid down?

concept of totipotency

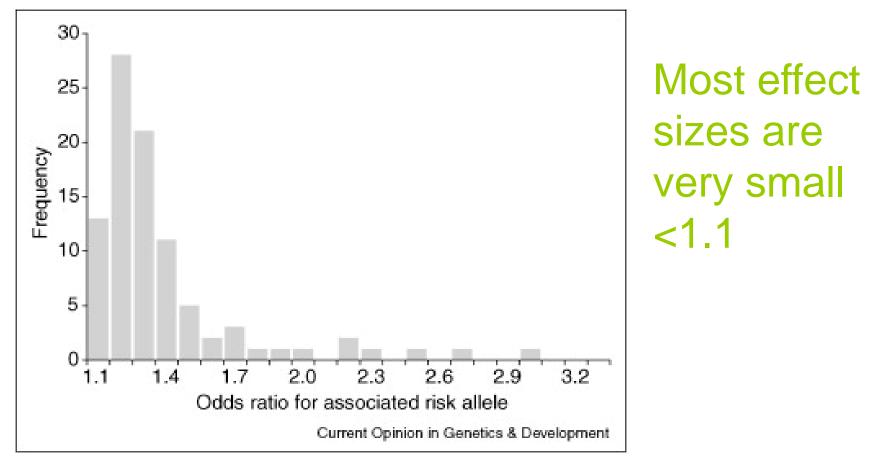
Reik et al., Science 293,1089

Intangible variation

Genetically identical mice (same environment) can display different phenotypes

Agouti viable yellow

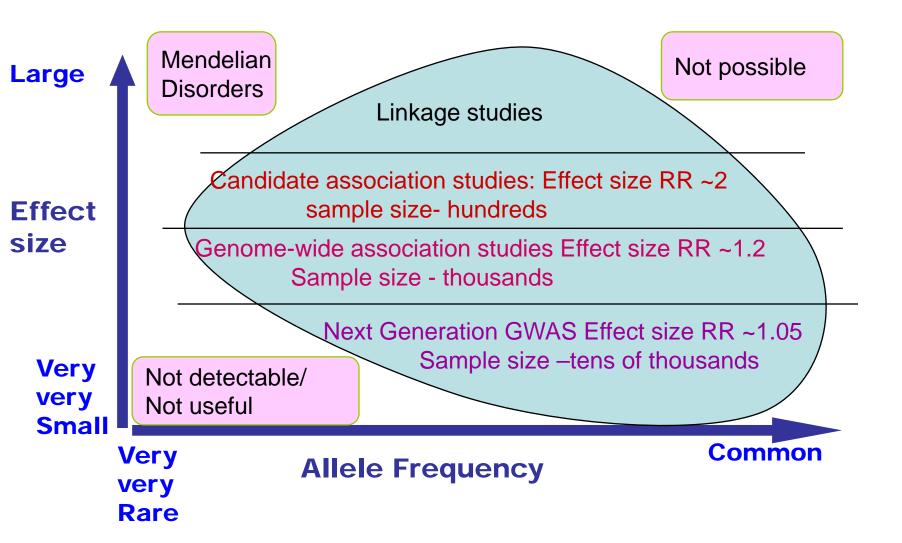
Different phenotypes correlate with differences in epigenetic state - detectable, laid down in early development


Epigenetic factors

- 'Stable heritable epimutations'
 - If inherited then like any DNA sequence change
- 'Unstable heritable epimutations'
 - Decay in family resemblance larger than predicted by additive genetic model
- Non-heritable epigenetic factors
 - Individual environmental effects
 - May increase MZ twin similarity (but why?)

Possible explanations for missing heritability (in order of increasing plausibility ?)

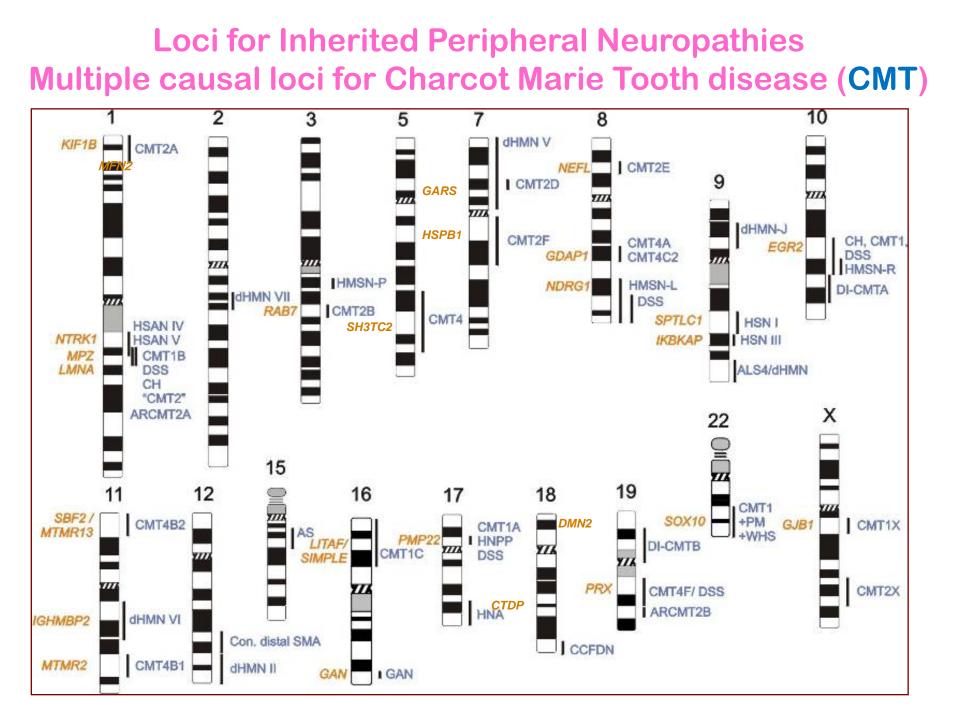
- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions


Effects sizes of validated variants from 1st 16 GWAS studies

Prediction of individual genetic risk of complex disease Naomi R Wray¹, Michael E Goddard² and Peter M Visscher¹

Current Opinion in Genetics & Development 2008, 18:257-263

...and will need huge sample sizes to detect



- Under a neutral model we expect a Ushaped distribution of allele frequencies (i.e. most SNPs will have very small MAF and will therefore be poorly tagged by current chips
- Under a stabilising selection & mutation balance large effects will have lower MAF (Zhang & Hill 2005)
- Shaun to expand on this !

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

What if our "disease" is actually dozens (hundreds, thousands) of different diseases that all look the same?

Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

Even for "simple" diseases the number of alleles is large

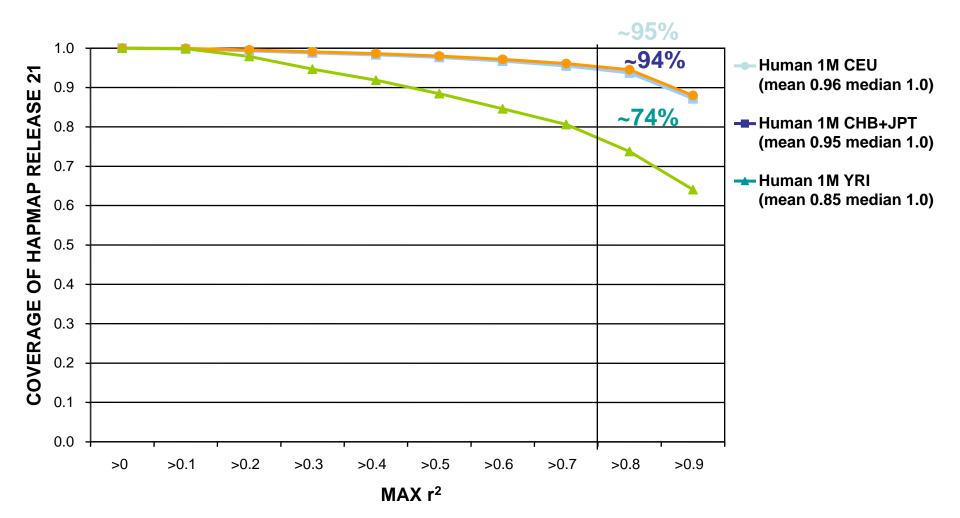
- Ischaemic heart disease (LDR) >190
- Breast cancer (BRAC1) >300
- Colorectal cancer (MLN1) >140

Multiple Rare Alleles Contribute to Low Plasma Levels of HDL Cholesterol

Jonathan C. Cohen, 1,2,3** Robert S. Kiss, 5* Alexander Pertsemlidis,¹ Yves L. Marcel,⁵[†] Ruth McPherson,⁵ Helen H. Hobbs^{1,3,4}

Heritable variation in complex traits is generally considered to be conferred by common DNA sequence polymorphisms. We tested whether rare DNA sequence variants collectively contribute to variation in plasma levels of highdensity lipoprotein cholesterol (HDL-C). We sequenced three candidate genes (ABCA1, APOA1, and LCAT) that cause Mendelian forms of low HDL-C levels in individuals from a population-based study. Nonsynonymous sequence variants were significantly more common (16% versus 2%) in individuals with low HDL-C (<fifth percentile) than in those with high HDL-C (>95th percentile). Similar findings were obtained in an independent population, and biochemical studies indicated that most sequence variants in the low HDL-C group were functionally important. Thus, rare alleles with major phenotypic effects contribute significantly to low plasma HDL-C levels in the general population.

Complex disease: common or rare alleles?


Increasing evidence for Common Disease – Rare Table 1. Sequence variations in the coding regions of ABCA1, APOA1, and LCAT. Values represent the numbers

of sequence variants identified in 256 individuals from the Dallas Heart Study (DHS) (128 with low HDL-C and 128 with high HDL-C) and 263 Canadians (155 with low HDL-C and 108 with high HDL-C) (17). NS, nonsynonymous (nucleotide substitutions resulting in an amino acid change); S, synonymous (coding sequence substitutions that do not result in an amino acid change). GenBank accession numbers for DHS ABCA1, APOA1, and LCAT sequences are NM_005502, NM_000039, and NM_000229, respectively.

	Sequence variants unique to one group				Sequence variants common to both groups	
	Low HDL-C		High HDL-C			
	NS	S	NS	S	NS	S
			DHS	5		
ABCA1	14	6	2	5	10	19
APOA1	1	0	0	1	0	1
LCAT	0	1	1	0	1	1
			Canadi	ans		
ABCA1	14	2	2	3	7	5
APOA1	0	1	0	0	2	0
LCAT	6	1	0	0	0	0

[Science 2004]

Human 1M HapMap Coverage GENOME COVERAGE ESTIMATED FROM 990,000 HAPMAP SNPS IN HUMAN 1M

log in to icom 💮

SUPPORT

CORPORATE

A

ABOUT ILLUMINA

PRODUCTS & SERVICES

products & services

overview

🗄 systems & software

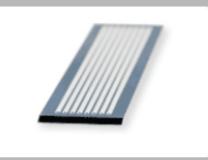
- 🗄 dna analysis solutions
- ∃ rna analysis solutions
- solexa applications
- ± services
- product literature

print this page

solexa sequencing applications

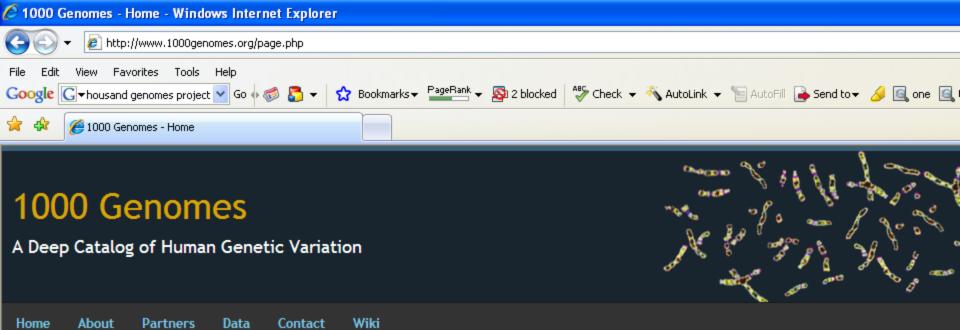
Illumina's Solexa Sequencing technology offers a powerful new approach to some of today's most important applications for genetic analysis and functional genomics, including:

sequencing and resequencing


Whether you need to sequence an entire genome or a large candidate region, the Illumina Genome Analyzer System is today's most productive and economical sequencing tool. Solexa sequencing technology and reversable terminator chemistry deliver unprecedented volumes of high quality data, rapidly and economically.

expression profiling

Sequencing millions of short cDNA tags per sample, the Genome Analyzer allows you to generate digital expression profiles at costs comparable to current analog methods. Because our protocol does not require any transcript-specific probes, you can apply the technology to discover and quantitate transcripts in any organisms, irrespective of the annotation available on the organism.


small rna identification and quantification

Solexa sequencing technology also offers a unique and powerful solution for the comprehensive discovery and characterization of small RNAs in a wide range of species. The massively parallel sequencing protocol allows researchers to discover and analyze genome-wide profiles of small RNA in any species. With the potential to generate several million sequence tags economically, the Illumina Genome Analyzer offers investigators the opportunity to uncover global profiles of small RNA at an unprecedented scale.

important information

- product literature
- publications
- faqs
- have a rep contact me

1000 GENOMES PROJECT DATA RELEASE

SNP data downloads and genome browser representing four high coverage individuals

The first set of SNP calls representing the preliminary analysis of four genome sequences are now available to download through the EBI FTP site and the NCBI FTP site. The README file dealing with the FTP structure will help you find the data you are looking for.

The data can also be viewed directly through the 1000 Genomes browser at http://browser.1000genomes.org. Launch the browser and view a sample region here.

More information about the data release can be found in the data section of this web site.

Download the 1000 Genomes Browser Quick Start Guide

Ouick start (adf)

Done

LOG IN

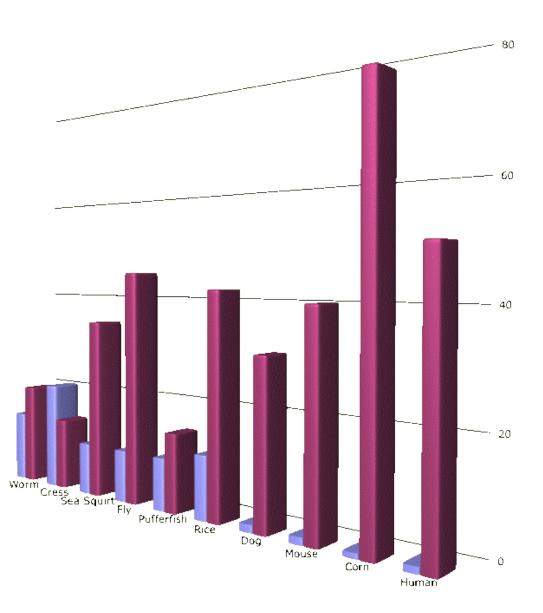
Username

Password:

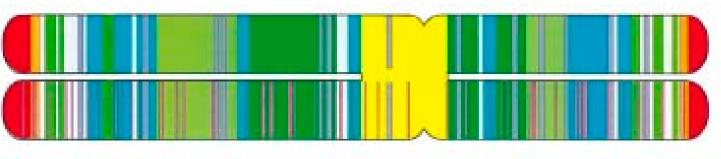
LINKS

Login (I forgot my password)

report


Download the meeting

View the narticinants


Possible explanations for missing heritability (in order of increasing plausibility ?)

- Heritability estimates are wrong
- Nonadditivity of gene effects epistasis, GxE
- Epigenetics including parent-of-origin effects
- Low power for common small effects
- **Disease heterogeneity** lots of different diseases with the same phenotype
- Poor tagging (1)
 - rare mutations of large effect (including CNVs)
- Poor tagging (2)
 - common variants in problematic genomic regions

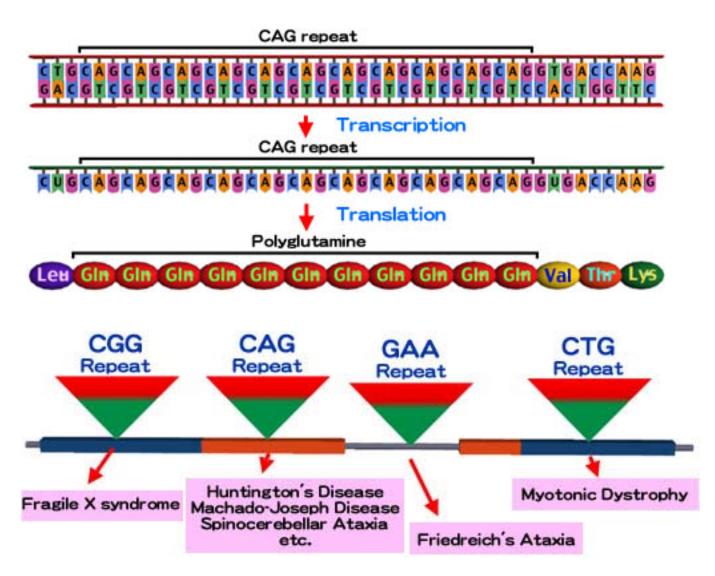
50% of human genome is repetitive DNA. **Only 1.2%** is coding

Types of repetitive elements and their chromosomal locations

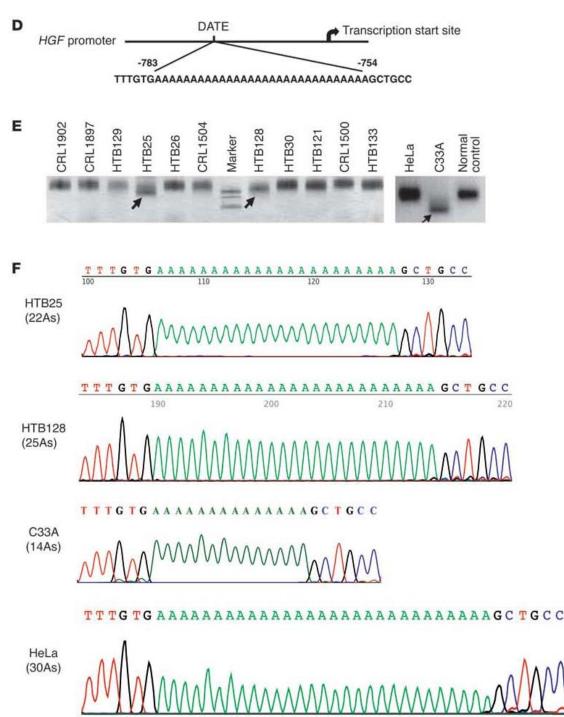
Centromere

Intercalary tandem repeats

Centromere-associated tandem repeats


Telomeric and subtelomeric repeats Dispersed tandem repeats

Dispersed Ty1-copia-like retroelements and microsatellites

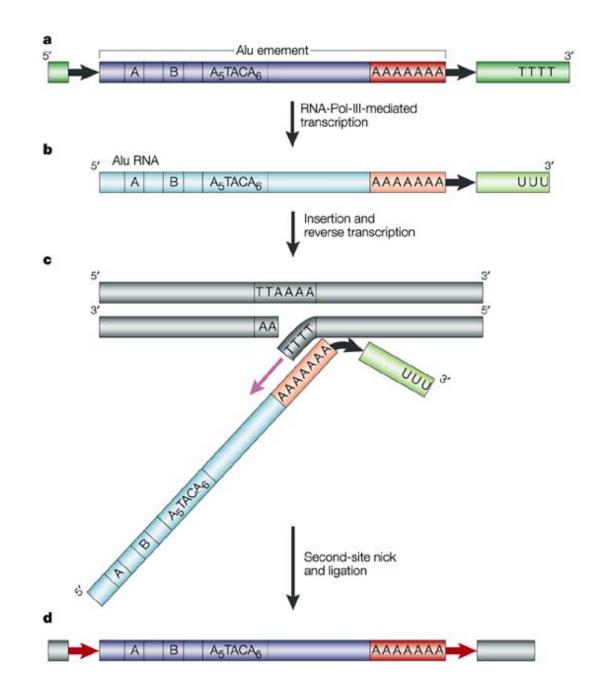

LINEs (non-LTR retroelements)

Single and low-copy sequences including genes

Triplet repeat diseases

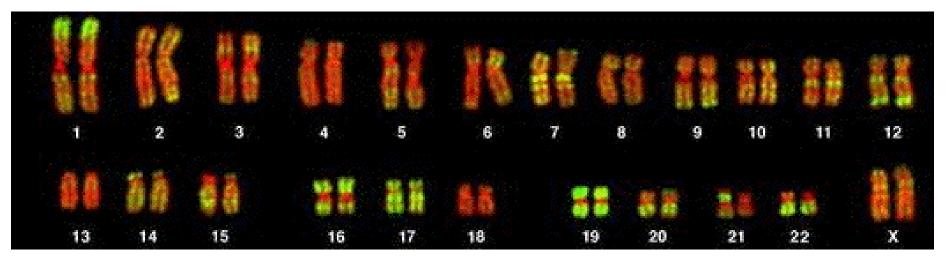
Simple repeat polymorphism has major effect on gene expression and breast cancer risk. Poorly tagged by SNPs ?

Somatic mutation and functional polymorphism of a novel regulatory element in the *HGF* gene promoter causes its aberrant expression in human breast cancer


Jihong Ma,1 Marie C. DeFrances,1 Chunbin Zou,1 Carla Johnson,1 Robert Ferrell,2 and Reza Zarnegar1

¹Division of Experimental Pathology, Department of Pathology, School of Medicine, and ²Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

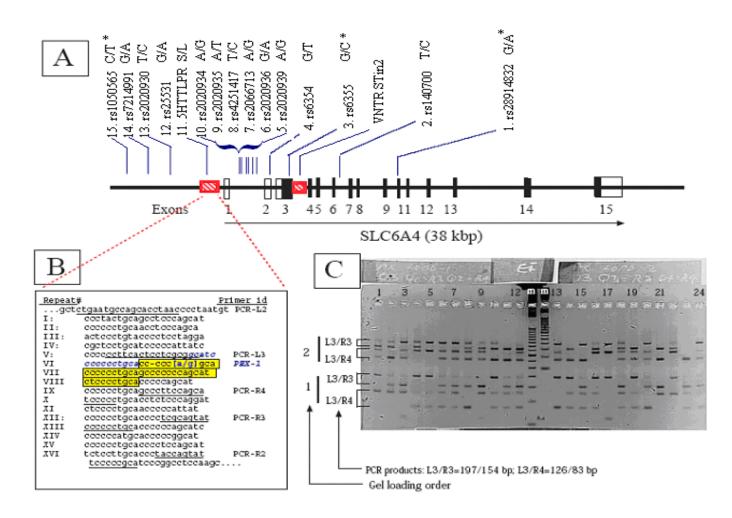
: J. Clin. Invest. doi:10.1172/JCI36640.


Alu elements

The structure of each Alu element is bi-partite, with the 3' half containing an additional 31bp insertion (not shown) relative to the 5' half. The total length of each Alu sequence is 300 bp, depending on the length of the 3' oligo(dA)-rich tail. The elements also contain a central A-rich region and are flanked by short intact direct repeats that are derived from the site of insertion (black arrows). The 5' half of each sequence contains an RNA-polymerase-III promoter (A and B boxes). The 3' terminus of the Alu element almost always consists of a run of As that is only occasionally interspersed with other bases (**a**).

Nature Reviews | Genetics

The abundant Alu transposable element, a member of the middle repetitive DNA sequences, is present in all human chromosomes (the Alu element is stained green, while the remainder of the DNA in the chromosomes is stained red).



- > 1 million in genome unique to humans
- Involved in RNA editing functional ?
- How well are they tagged ?????

Example – 5HTLPR

- Serotonin transporter length polymorphism (5HTLPR – one (short) or two (long) 44bp repeat units
- Has been widely associated with psychiatric outcomes +/- interaction with environment (Caspi)
- How well is it tagged by available SNPs?

Attempting to SNP tag 5HTLPR

5HTLPR is badly tagged by adjacent SNPs

a)		Marker #														b)		
		MAF															Haploty	pe frequencies
Marker #	Marker		1	2	3	4	5	6	7	8	9	10	11	13	14	15		
1	rs28914832	0.002	\	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.06	1.00	0.07	C-A-S	0.381
2	rs140700	0.100	0.00	١	1.00	0.95	0.90	0.95	1.00	1.00	0.30	0.81	0.54	0.53	0.64	0.61	C-G-S C-A-L	0.045 0.024
3	rs6355	0.021	0.00	0.00	\	1.00	1.00	1.00	1.00	1.00	1.00	0.86	0.77	1.00	0.82	0.83	C-G-L	0.459
4	rs6354	0.198	0.01	0.41	0.01	١	1.00	0.99	0.98	1.00	0.81	0.31	0.20	0.72	0.36	0.17	T-A-L	0.081
5	rs2020939	0.412	0.00	0.06	0.02	0.17	١	1.00	1.00	1.00	0.84	0.67	0.42		0.85			0.001
6	rs2020936	0.196	0.01	0.41	0.01	0.98	0.17	١	1.00	1.00	0.80	0.31	0.20	0.71	0.36	0.17		
7	rs2066713	0.388	0.00	0.07	0.03	0.15	0.44	0.16	١	1.00	0.74	0.59	0.50	0.55	0.38	0.46		
8	rs4251417	0.091	0.00	0.01	0.00	0.03	0.14	0.03	0.06	١	1.00	0.87	0.91	0.95	0.95	0.95		
9	rs2020935	0.064	0.03	0.05	0.00	0.18	0.03	0.18	0.02	0.01	\	1.00	0.94	0.96	0.92	0.08		
10	rs2020934	0.489	0.00	0.07	0.02	0.02	0.33	0.02	0.21	0.08	0.07	\	0.79	1.00	0.92	0.91		
11	5HTTLPR	0.429	0.00	0.03	0.01	0.01	0.16	0.01	0.12	0.06	0.05	0.49	١	0.97	0.91	0.90		
13	rs2020930	0.036	0.00	0.00	0.00	0.08	0.02	0.08	0.01	0.00	0.50	0.04	0.03	\	1.00	0.95		
14	rs7214991	0.374	0.00	0.08	0.02	0.05	0.30	0.05	0.14	0.05	0.10	0.48	0.38	0.06	\	1.00		
15	rs1050565	0.325	0.00	0.09	0.03	0.02	0.25	0.01	0.16	0.04	0.00	0.39	0.30	0.02	0.81	\		

Summary

- Huge amount of repetitive sequence
- Highly polymorphic
- Some evidence that it has functional significance
- Earlier studies too small (100s) to detect effect sizes now known to be realistic
- Much (most?) such variation poorly tagged with current chips
- Current CNV arrays only detect large variants; no systematic coverage of the vast number of small CNVs (including microsatellites)