
Population stratification

Background & PLINK practical 



Variation between, within populations

• Any two humans differ ~0.1% of their genome (1 in ~1000bp)

• ~8% of this variation is accounted for by the major continental 
racial groups

• Majority of variation is within group
– but genetic data can still be used to accurately cluster individuals
– although biological concept of “race” in this context controversial



Stratified populations: Wahlund effect

Sub-population
1 2

A1 0.1 0.9
A2 0.9 0.1

A1A1 0.01 0.81
A1A2 0.18 0.18
A2A2 0.81 0.01

1+2
0.5
0.5

0.41 (0.25)
0.18 (0.50)
0.41 (0.25)



Quantifying population structure

• Expected average heterozygosity
– in random mating subpopulation (HS)
– in total population (HT)

• from the previous example,
– HS = 0.18 , HT = 0.5

• Wright’s fixation index
– FST = ( HT - HS ) / HT

• FST = 0.64

– 0.01 - 0.05 for European populations
– 0.1 - 0.3 for most divergent populations



• Confounding due to unmeasured variables 
is a common issue in epidemiology

– “Simpson’s paradox”

• Berkley sex bias case
– claim that female graduate applicants were 

prejudiced against
– 44% men accepted, 35% women

– but, stratified by department, no intra-
department differences (see figure)

– i.e. women more likely to apply to 
departments that were harder to get into (for 
both males and females)

• In genetic association studies, 
– “accepted or not” → disease or not
– “male/female” → genetic variant
– “department” → ancestry

• Happens when both outcome and genotype 
frequencies vary between different ethnic 
groups in the sample
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Approaches to detecting stratification 
using genome-wide SNP data

• Genomic control
– average correction factor for test statistics
– ratio of median chi-sq to expectation under null (0.456 for 1df)

• Clustering approaches
– assign individuals to groups
– model based and distance based

• Principal components analysis, multidimensional scaling
– continuous indices of ancestry



Genomic control

Test locus Unlinked ‘null’ markers

( )2χE

χ2 No stratification

( )2χE

χ2

Stratification → adjust test statistic



Structured association

Unlinked ‘null’ markers

LD observed under stratification

Subpopulation A Subpopulation B



Discrete subpopulation model

• K sub-populations, “latent classes”
– Sub-populations vary in allele frequencies
– Random mating within subpopulation

• Within each subpopulation
– Hardy-Weinberg and linkage equilibrium 

• For population as a whole
– Hardy-Weinberg and linkage disequilibrium



Worked example
• Look at Excel spreadsheet ~pshaun/pop-strat.xls

• Scenario: two sub-populations, of equal frequency in total population. We know 
allele frequencies for 5 markers unlinked markers

• Problem: For a given individual with genotypes on these 5 markers, what is the 
probability of belonging to population 1 versus population 2?

• Allele frequencies:

Steps:
1) Class-specific allele frequencies → class-specific genotype frequencies  (HWE)
2) Single locus → multi-locus (5 marker) genotype frequencies (LE), P(G|C)
3) Prior probability of class, P(C). Hint: we are given this above.
4) Bayes theorem to give P(C|G) from P(G|C) and P(C)

Population M1 M2 M3 M4 M5 
P1 0.05 0.3 0.4 0.2 0.15 
P2 0.3 0.9 0.3 0.05 0.6 
 



Statistical approaches to uncover 
hidden population substructure

• Goal : assign each individual to class C of K
• Key : conditional independence of genotypes, G within classes (LE, 

HWE)
P(C) prior probabilities
P(G | C) class-specific allele/genotype frequencies
P(C | G) posterior probabilities

Bayes theorem: Problem: in practice, we 
don’t know P(G|C) or P(C) 
either!

Solution: EM algorithm 
(LPOP), or Bayesian 
approaches (STRUCTURE) 
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Sum over j = 1 to K classes



E-M algorithm

P(C | G) P(G |C)

P(C)

E step: 
counting individuals and alleles in classes

M step: 
Bayes theorem, assume conditional independence

-2LL
Converged?



Stratification analysis in PLINK

• Calculate IBS sharing between all pairs
– “--genome” command; can take long time, but can be parallelized 

easily
– generates (large) .genome file
– can be used to spot sample duplicates
– also contains IBD estimates: these are only meaningful within a 

~homogeneous sample
• Given IBS data, perform clustering

– complete linkage clustering
– can specify various constraints, e.g. PPC test, cluster size (e.g. 1:1 

matching) or # of clusters
• Given IBS data, perform MDS

– extract first K components, e.g.4-6
– plot each component, each pair of components



Han Chinese
Japanese

Reference

Same population

Different population

Pairwise allele-sharing metric

Hierarchical clustering

Multidimensional scaling/PCA



Distribution of IBS between and 
within HapMap subpopulations

YRI (P/O) 

CEU (P/O) 

CHB
JPT

CHB/JPT

CEU

YRI

CEU/CHB
CEU/JPT

YRI/CEU
YRI/CHB
YRI/JPT



Multidimensional scaling (MDS) 
analysis HapMap data (equiv. to PCA) 

~2K SNPs

CEPH/European
Yoruba
Han Chinese
Japanese



Han Chinese
Japanese

~10K SNPs



PPC (pairwise population 
concordance) test

{ AA , BB }  :  { AB , AB } 

1       :       2 

{ individual 1 , individual 2 }

Expected 1:2 ratio in individuals from same population
Significance test of a binomial proportion

Note: Requires analysis to be of subset of SNPs in approx. LE
within sub-population. Would also be sensitive to inbreeding



1        HCB1 HCB8 HCB26 HCB5 HCB15
2        HCB2 HCB45 HCB12
3        HCB3 HCB14 HCB32 HCB18 HCB27 HCB23 HCB30
4        HCB4 HCB38 HCB39 HCB20
5        HCB6 HCB21 HCB43
6        HCB7 HCB29 HCB31 HCB11 HCB40 HCB24 HCB33
7        HCB9 HCB16 HCB22
8        HCB10 HCB44 HCB19 HCB41 HCB42 HCB35 HCB36
9        HCB13 HCB17 HCB34 HCB25 HCB28 HCB37

10       JPT1 JPT19 JPT13 JPT16 JPT29 JPT36
11       JPT2 JPT28
12       JPT3 JPT17 JPT38 JPT44 JPT8 JPT23
13       JPT4 JPT18 JPT21 JPT27 JPT41 JPT43
14       JPT5 JPT30 JPT39 JPT42 JPT9
15       JPT6 JPT37 JPT24
16       JPT7 JPT12 JPT10 JPT25 JPT14 JPT26 JPT34 JPT33
17       JPT11 JPT31 JPT40 JPT15 JPT22
18       JPT20
19       JPT32*

20       JPT35

Ind1 Ind2 { AA , BB } { AB , AB } Ratio p-value

CHB CHB 3451 6927 1 : 2.007 0.569

JPT CHB 3484 6595 1 : 1.892 0.004

Two example pairs: (50K SNPs with 100% genotyping)

Proportion of all CHB-CHB pairs significant = 0.076
Proportion of all CHB-JPT pairs significant = 0.475

(Power for difference at p=0.05 level) 



MDS analysis

• Often useful to treat each MDS component as a QT and perform 
WGAS (regress it on all SNPs), to ask:

– what is the genomic control lambda? If not >>1, then the 
component probably does not represent true, major stratification

– which genomic regions load particularly strongly on the component 
(i.e. which regions show largest frequency differences between the 
groups the component is distinguishing?)



Practical example: bipolar GWAS

USA

UK

CONTROLS CASES

Evaluated via permutation that within site the average case 
is equally similar to the average control as another case



Novembre et al, Nature (2008)

Fine-scale genetic variation reflects geography
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