Copy the folder...

Faculty/Sarah/Tues_merlin

to

the C Drive

C:/Tues_merlin

MERLIN (and other Abecasis products)

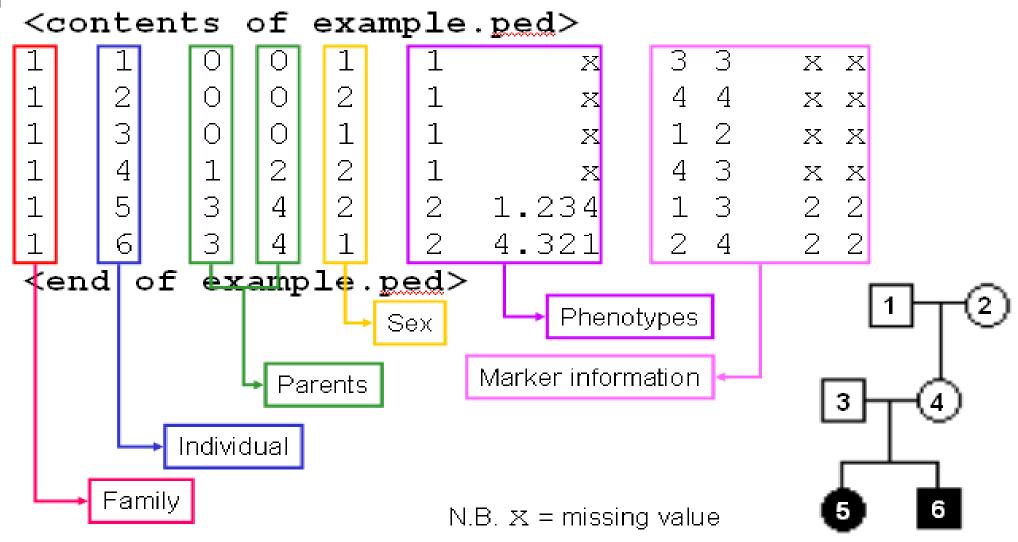
Sarah Medland & Kate Morley Boulder 2009

MERLIN software

Programs:

- GRR
- MERLIN
- MinX
- MERLIN-regress
- Pedstats
- Pedwipe
- Pedmerge

- Unix emulator for windows
- Open by double clicking
- Migrate to this sessions working directory
 - cd C:/tues_merlin
- Check to see the files in the directory
 - o Is


Data Input Files

Getting your data into Merlin

Input File Types

- Pedigree File
 - Family relationships
 - Phenotype data
 - Genotype data
- Data File
 - Describes contents of pedigree file
- Map File
 - Records location of genetic markers

Example Pedigree File

Data File Field Codes

Code	Description
M	Marker Genotype.
А	Affection Status.
Т	Quantitative Trait.
С	Covariate.
Z	Zygosity.
S[n]	Skip n columns.

First step check relationships

GRR

GRR - www.sph.umich.edu/csg/abecasis/GRR

- Graphs mean IBS against sd IBS
 - Either within families or across everyone in the sample
 - Ideally 200+ markers genotyped in common for each pair
- If you want to try this later...Sample.ped
 - 1300 individuals from 200 families
 - Genotyped on 320 markers across the genome

GRR is good for finding...

- MZ pairs labeled as sib-pairs
- Duplicates
- Dads that aren't dads
- Full sibs who are half-sibs

Manipulating Data Files

Pedmerge

Manipulating Data Files

- Pedmerge
 - Combine multiple data files
 - Remove columns from a ped file
 - Recode the dat file so unwanted columns are skipped
 - Assumes ped and dat files have the same prefix – example.ped example.dat

Type 'pedmerge'

Checking for genotype error

Pedstats

Usage

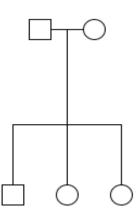
pedstats.exe –p pedstats.ped –d pedstats.dat

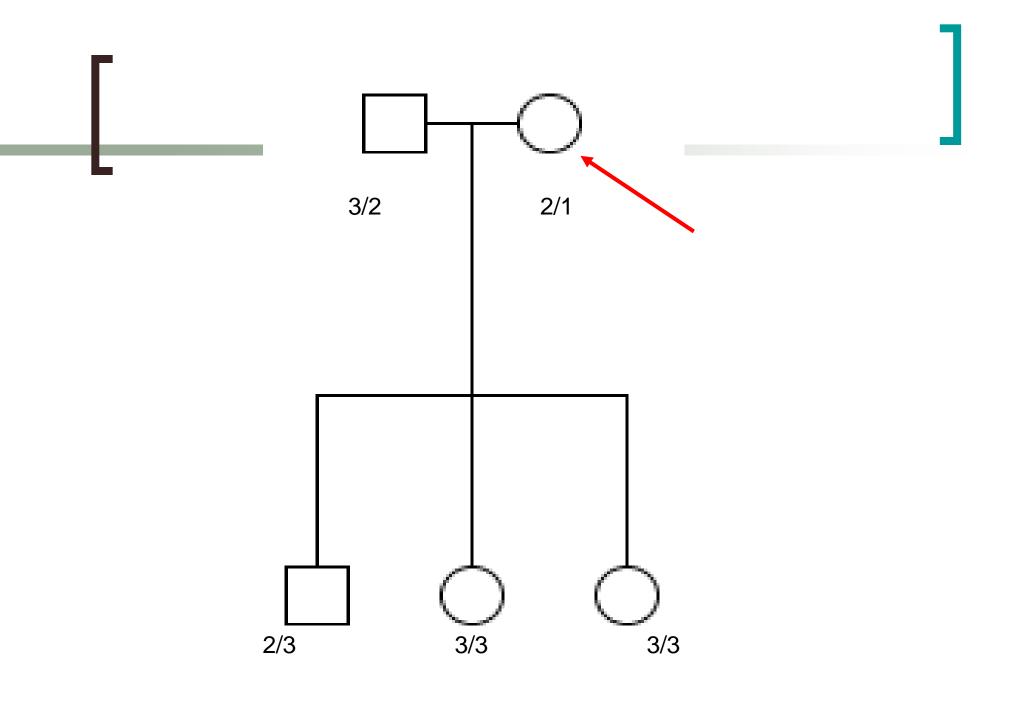
```
sarahm@medland-office /cygdrive/c/working/tim/monday
$ ./pedstats.exe -p pedstats.ped -d pedstats.dat
Pedigree Statistics - 0.6.10
(c) 1999-2006 Goncalo Abecasis, 2002-2006 Jan Wigginton
The following parameters are in effect:
              Pedigree File: pedstats.ped (-pname)
Data File: pedstats.dat (-dname)
IBD File: pedstats.ibd (-iname)
Adobe PDF File: pedstats.pdf (-aname)
Missing Value Code: -99.999 (-xname)
Additional Options
     Pedigree File: --ignoreMendelianErrors, --chromosomeX, --trim
   Hardy-Weinberg: --hardyWeinberg, --showAll, --cutoff [0.05]
HW Sample: --checkFounders, --checkAll, --checkUnrelated
             Output : --pairs, --rewritePedigree, --markerTables, --verbose
           Grouping: --bySex, --byFamily
      Age Checking: --age [], --birth []
       Generations : --minGap [13.00], --maxGap [70.00], --sibGap [30.00]
       PDF Options : --pdf, --familyPDF, --traitPDF, --affPDF, --markerPDF
             Filter: --minGenos, --minPhenos, --minCovariates, --affectedFor []
```

Summarizes pedigree

```
PEDIGREE STRUCTURE
   Individuals: 1500
      Founders: 600 founders, 900 nonfounders
        Gender: 719 females, 781 males
      Families: 300
 Family Sizes
       Average: 5.00 (5 to 5)
 Distribution: 5 (100.0%), 0 (0.0%) and 1 (0.0%)
  Generations
       Average: 2.00 (2 to 2)
 Distribution: 2 (100.0%), 0 (0.0%) and 1 (0.0%)
Checking family connectedness ...
   All individuals in each family are connected.
```

Trait summary


QUANTITATIVE TRAIT STATISTICS									
[All Phenotypes] TRAIT 1500 100.0% Total 1500 100.0%	Min -2.877	Max 3.496	Mean -0.009	Uar 1.033	SibCorr 0.318				
[Founders Only] TRAIT 600 100.0% Total 600 100.0%	Min -2.536	Max 3.496	Mean 0.016	Uar 1.066	SibCorr -				


Pedstats will crash if there are Medelian errors

```
M2 - Fam 1: Child 4 [3/3] has parents [2/3]*[1/2]
M2 - Fam 1: Child 5 [3/3] has parents [2/3]*[1/2]
Mendelian inheritance errors detected
FATAL ERROR -
Mendelian inheritance errors detected
```

Draw a diagram for this family

fam	id	dad	mum	sex	A1	A2
1	1	0	0	m	3	2
1	2	0	0	f	2	1
1	3	1	2	m	2	3
1	4	1	2	f	3	3
1	5	1	2	f	3	3

Mendelian errors

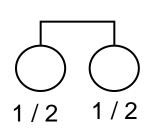
- Try to localize the error
- Short term solution delete the bad genotypes
- Long term solution retype the family at this marker

After fixing the problems

```
MARKER GENOTYPE STATISTICS
                     [Genotypes]
                                        [Founders]
                                                        Hetero
                     1500 100.0%
                                                         69.5%
                                       600 100.0%
             M4
                     1500 100.0%
                                       600 100.0%
                                                         66.6%
             М6
                     1500 100.0%
                                       600 100.0%
                                                         68.9%
             М8
                     1500 100.0%
                                       600 100.0%
                                                         68.7%
            M10
                     1500 100.0%
                                       600 100.0%
                                                         70.3%
            M12
                     1500 100.0%
                                       600 100.0%
                                                         70.3%
                                                         67.7%
            M14
                     1500 100.0%
                                       600 100.0%
            M16
                     1500 100.0%
                                       600 100.0%
                                                         69.6%
            M18
                     1500 100.0%
                                       600 100.0%
                                                         68.0%
            M20
                     1500 100.0%
                                       600 100.0%
                                                         68.1%
            M22
                     1500 100.0%
                                                         67.8%
                                       600 100.0%
            M24
                     1500 100.0%
                                       600 100.0%
                                                         64.5%
            M26
                     1500 100.0%
                                       600 100.0%
                                                         69.4%
            M28
                     1500 100.0%
                                       600 100.0%
                                                         66.0%
            M30
                     1500 100.0%
                                       600 100.0%
                                                         68.9%
            M32
                     1500 100.0%
                                       600 100.0%
                                                         66.5%
            M34
                     1500 100.0%
                                       600 100.0%
                                                         67.3%
            M36
                     1500 100.0%
                                       600 100.0%
                                                         70.5%
            M38
                     1500 100.0%
                                       600 100.0%
                                                         68.4%
            M40
                     1500 100.0%
                                       600 100.0%
                                                         69.2%
            M42
                     1500 100.0%
                                       600 100.0%
                                                         67.6%
            M44
                     1500 100.0%
                                       600 100.0%
                                                         70.1%
            M46
                     1500 100.0%
                                       600 100.0%
                                                         69.0%
                     1500 100.0%
            M48
                                       600 100.0%
                                                         69.7%
            M50
                     1500 100.0%
                                       600 100.0%
                                                         67.3%
                     1500 100.0%
            M52
                                       600 100.0%
                                                         68.9%
                     1500 100.0%
                                       600 100.0%
                                                         68.5%
```

Merlin

MERLIN


- Automates simple linkage tests ("black box")
- Uses fast multipoint calculations to generate IBD and kinship matrices
- Key options are
 - -vc (variance components analysis)
 - -useCovariates (user-specified covariates)
- Means model
 - Can incorporate user-specified covariates
- Variance components model...

Merlin's Standard Variance Components Model - AQE

- Environmental component
 - Non shared, uses identity matrix
- Additive Polygenic component
 - Shared among relatives, according to kinship matrix
- QTL component
 - Shared when individuals are IBD, kinship matrix at marker

What is a Kinship Coefficient?

• Kinship coefficient (Φ) : probability that two alleles sampled at random, one from each individual, are identical by descent

For MZ twins
$$\Phi = .5$$

For Full sibs $\Phi = .25$

- 2 x Φ_{ij} = expected proportion of alleles IBD across genome for individuals i and j (π)
- But will vary at each locus $\rightarrow \hat{\pi}$

General covariance model

$$\Omega_{jk} = \begin{cases} \sigma_q^2 + \sigma_a^2 + \sigma_e^2 & \text{if } j = k \\ \hat{\pi} \sigma_q^2 + 2\phi \sigma_a^2 & \text{if } j \neq k \end{cases}$$

Where,

 ϕ is the theoretical kinship coefficient for the two individuals $\hat{\pi}$ depends on the number of alleles shared IBD for individuals j, k j and k index different individuals in the family

Practical overview

- Using the LDL data from chromosome 19 (yesterday afternoon's practical)
- Data cleaning
 - Merging phenotype and genotype data
 - Checking you data with pedstats
- VC analysis in MERLIN
- MERLIN-regress analysis
- Comparison of MERLIN vs Mx

Step #1: combining phenotypes and genotypes

- Start with four files:
 - o pheno.ped + pheno.dat (phenotype data)
 - ogeno.ped + geno.dat (genotype data)

 Combine .ped files and combine .dat files using pedmerge to create 1 pedigree file and 1 .dat file

Practical #1: commands

Have a look at your files

head <filename>

Combine your pedigree files and dat files

Calls up the programme

Names of the two sets of files to be combined
(N.B. the matching .ped and .dat files must have the same name)

Name of the newly created .ped and .dat files

Check your file using the head command

linkage.ped

7 01	1	9	9	1	0/	0	0/	0	6/	15	7/	15	0/	0
701	2	0	0	2	0/	Ø	0/	0	5/	9	7/	14	9/	0
701	3	1	2	2	2/	8	6/	6	5/	15	14/	15	13/	23
701	4	1	2	2	2/	7	6/	6	6/	9	7/	7	7/	17
7 06	1	0	0	1	0/	Ø	0/	0	0/	0	0/	0	9/	0
7 06	2	9	0	2	0/	Ø	0/	0	0/	0	0/	0	9/	0
7 06	3	1	2	2	2/	2	4/	5	8/	8	2/	8	20/	20
7 06	4	1	2	2	2/	2	5/	5	8/	8	2/	7	18/	20
713	1	9	0	1	0/	Ø	0/	0	0/	0	0/	0	9/	0
713	2	9	0	2	0/	Ø	0/	0	0/	0	0/	0	9/	0

Step #2: checking your data with pedstats

- Pedstats provides preliminary data checks
 - Initial check of input files
 - Pedigree consistency
 - Information on genetic marker data
 - Marker heterozygosity
 - Proportion of individuals genotyped
 - Tests of Hardy Weinberg equilibrium

Prac #2: commands

./pedstats -x-9999.000 -d linkage.dat -p linkage.ped > prac2.out

-x-9999.000pedstats Specifies the missing value Calls up the programme -d linkage.dat|| -p linkage.ped Identify the .ped file Identify the .dat file prac2.out Send the output to a text file

```
Pedigree Statistics - 0.6.10
(c) 1999-2006 Goncalo Abecasis, 2002-2006 Jan Wigginton
The following parameters are in effect:
                 Pedigree File : linkage.ped (-pname)
                     Data File : linkage.dat (-dname)
                      IBD File : pedstats.ibd (-iname)
            Adobe PDF File : pedstats.pdf (-aname)
Missing Value Code : -9999.000 (-xname)
Additional Options
    Pedigree File : --ignoreMendelianErrors, --chromosomeX, --trim
   Hardy-Weinberg : --hardyWeinberg, --showAll, --cutoff [0.05]
        HW Sample : --checkFounders, --checkAll, --checkUnrelated
           Output : --pairs, --rewritePedigree, --markerTables, --verbose
         Grouping : --bySex, --byFamily
     Age Checking : --age [], --birth []
      Generations : --minGap [13.00], --maxGap [70.00], --sibGap [30.00]
      PDF Options : --pdf, --familyPDF, --traitPDF, --affPDF, --markerPDF
           Filter: --minGenos, --minPhenos, --minCovariates, --affectedFor []
```

PEDIGREE STRUCTURE Individuals: 452 Founders: 226 founders, 226 nonfounders Gender: 231 females, 221 males Families: 113 Family Sizes Average: 4.00 (4 to 4) Distribution: 4 (100.0%), 0 (0.0%) and 1 (0.0%) Generations Average: 2.00 (2 to 2) Distribution: 2 (100.0%), 0 (0.0%) and 1 (0.0%) Checking family connectedness ...

All individuals in each family are connected.

QUANTITATIVE TRAIT STATISTICS

[A1]	l Pheno	types]	Min	Max	Mean	Var	SibCorr
1d1	225	49.8%	0.580	6.390	3.616	0.997	0.443
Total	225	49.8%					

COVARIATE STATISTICS

[All Phenotypes]		Min	Max	Mean	Var	SibCorr	
sex	226	50.0%	0.000	1.000	0.522	0.251	0.326
age	226	50.0%	34.500	59.500	44.199	44.905	1.000
Total	452	50.0%					

MARKER GENOTYPE STATISTICS

	[Geno	types]	[Founders]		Hetero
d19M47	220	48.7%	g	0.0%	78.2%
d19s1034	219	48.5%	9	0.0%	71.7%
d19s391	251	55.5%	41	18.1%	83.7%
d19s865	248	54.9%	42	18.6%	86.3%
d19s394	219	48.5%	9	0.0%	87.7%
D19S588	221	48.9%	g	0.0%	80.1%
d19549	224	49.6%	9	0.0%	80.4%
d19s433	225	49.8%	9	0.0%	80.0%
d19s47	210	46.5%	9	0.0%	67.1%
d195420	242	53.5%	55	24.3%	80.6%
d19s178	249	55.1%	57	25.2%	75.1%
apoe	269	59.5%	44	19.5%	46.8%
apoc2	205	45.4%	g	0.0%	88.8%
d19M46	216	47.8%	g	0.0%	88.9%
d19s180	211	46.7%	9	0.0%	73.9%
d19M10	224	49.6%	9	0.0%	78.1%
d19M54	223	49.3%	9	0.0%	83.9%
Total	3876	50.4%	239	6.2%	78.0%

Total markers: 17

Step #3: running VC linkage

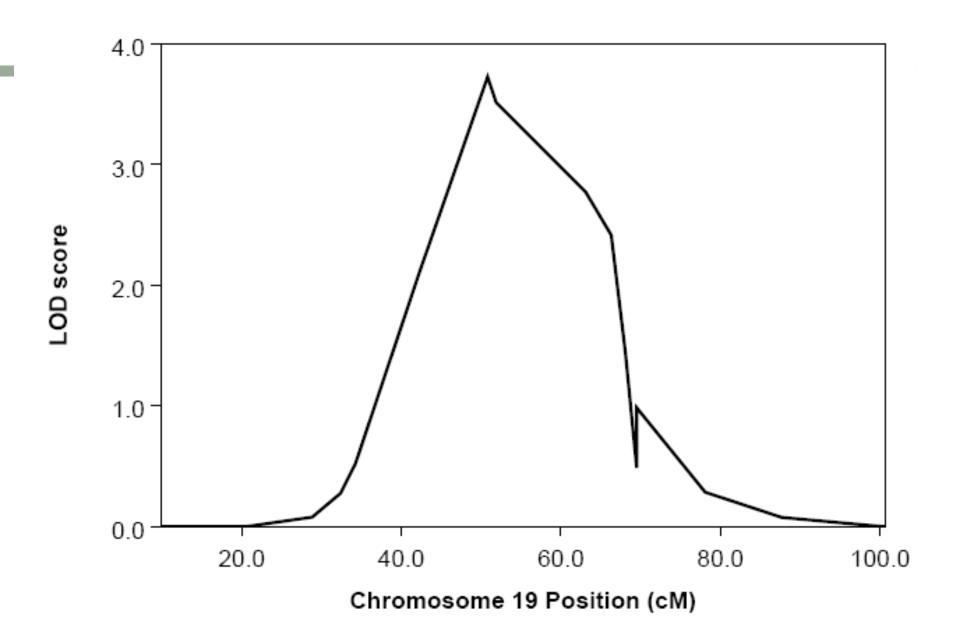
./merlin --vc -x -9999.000 -p linkage.ped -d linkage.dat -m linkage.map > linkage.out

Calls up the programme

Specifies VC linkage and the missing value

```
-p linkage.ped -d linkage.dat -m
linkage.map
```

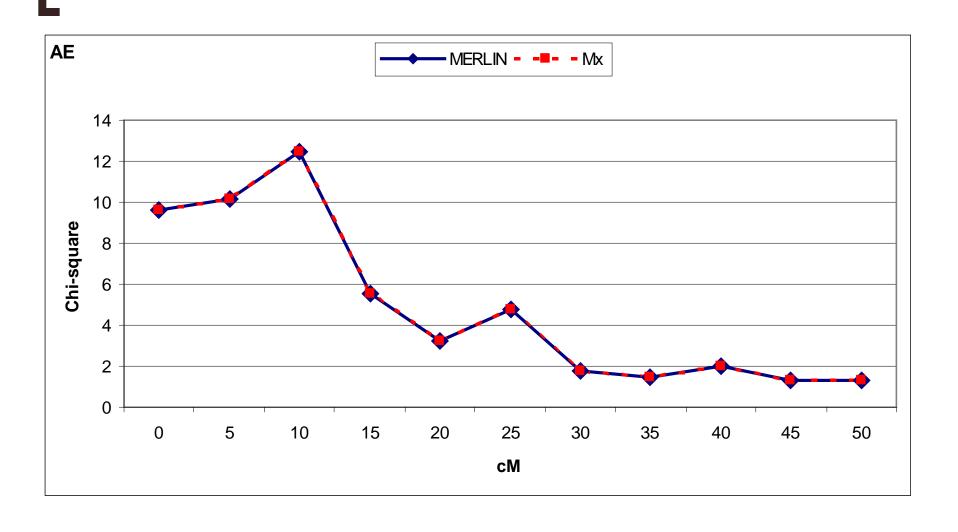
Identify the .ped, .dat, and .map files

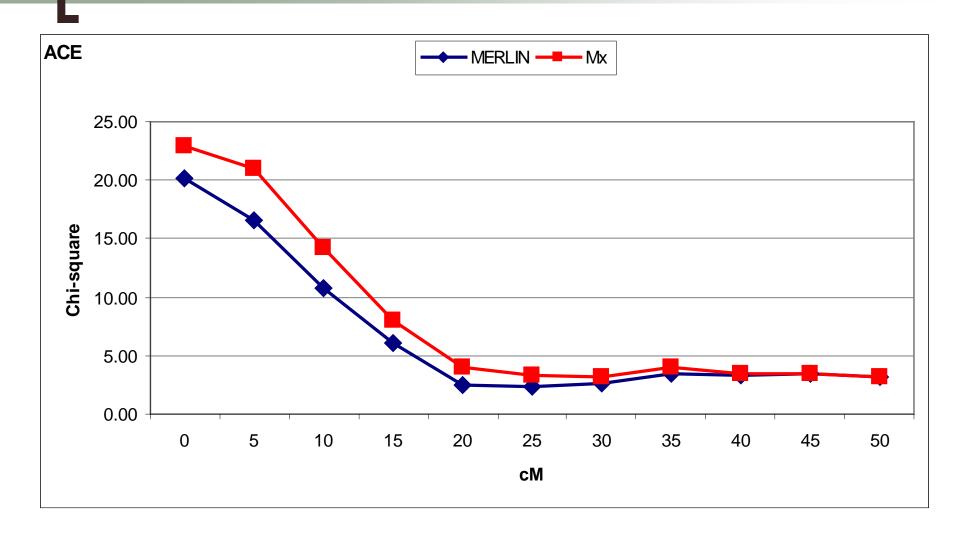

> linkage.out

Send the output to a text file

Phenotype: 1d1 [UC] (113 families, h2 = 88.38%)

======================================	:=======		=======	=======
Position	H2	ChiSq	rod	pvalue
9.840	0.00%	0.00	0.00	0.5
20.750	0.00%	0.00	0.00	0.5
28.830	14.31%	0.35	0.08	0.3
32.390	25.05%	1.26	0.27	0.13
34.250	34.56%	2.39	0.52	0.06
42.280	63.45%	9.71	2.11	0.0009
50.810	77.33%	17.17	3.73	0.00002
51.880	76.57%	16.20	3.52	0.00003
63.100	80.53%	12.77	2.77	0.0002
66.300	74.89%	11.12	2.42	0.0004
68.080	58.58%	6.66	1.45	0.005
69.490	37.96%	2.24	0.49	0.07
69.500	45.02%	4.53	0.98	0.02
78.080	25.38%	1.30	0.28	0.13
87.660	12.81 %	0.34	0.07	0.3
100.010	0.00%	0.00	0.00	0.5
100.610	0.00%	0.00	0.00	0.5


Idl [VC]


So why would we run Mx

- Merlin can not analyse ordinal data
- Limited correction for ascertainment
- Limited multivariate linkage
 - repeated measures using the mean and TRT correlation
- Only runs an AE model no C or D

A 86% E 14%

A 60% C 30% E 10%

Aim

- To develop a regression-based method that
 - Has same power as maximum likelihood variance components, for sib pair data
 - Will generalise to general pedigrees
 - Is computationally efficient

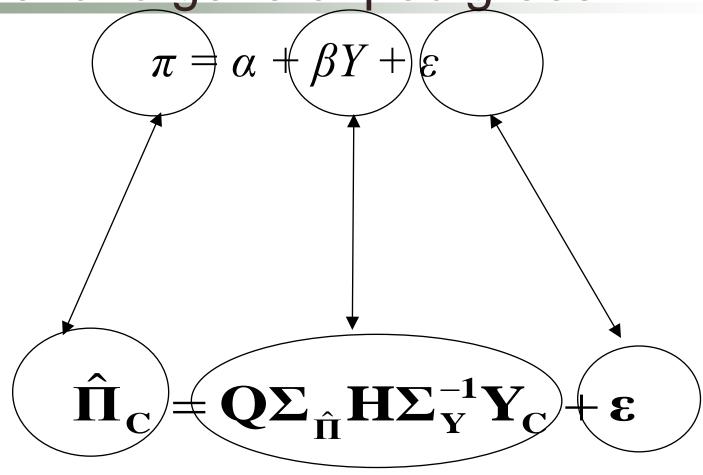
Powerful Regression-Based Quantitative-Trait Linkage Analysis of General Pedigrees

Pak C. Sham, Shaun Purcell, Stacey S. Cherny, and Gonçalo R. Abecasis

¹Institute of Psychiatry, King's College, London; ²Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford; and ³Center for Statistical Genetics, University of Michigan, Ann Arbor

- Multivariate Regression Model
- Weighted Least Squares Estimation
- Weight matrix based on IBD information
 - Dependent variables = IBD
 - Independent variables = Trait

General approach


 Standard regression based methods model trait (D², S²) in terms of estimated IBD status

$$Y = \alpha + \beta \pi + \varepsilon$$

Instead IBD estimate is regressed on trait value

$$\pi = \alpha + \beta Y + \varepsilon$$

Extend to general pedigrees

Dependent Variables

- Estimated IBD sharing of all pairs of relatives
- Example:

$$\hat{m{\Pi}} = egin{bmatrix} \hat{\pi}_{13} \\ \hat{\pi}_{14} \\ \hat{\pi}_{23} \\ \hat{\pi}_{24} \\ \hat{\pi}_{34} \end{bmatrix}$$

Independent Variables

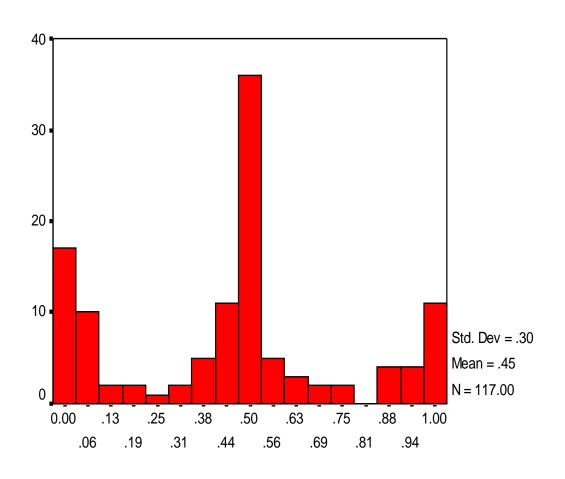
- Squares and cross-products
 - (equivalent to non-redundant squared sums and differences)
- Example

$$\mathbf{Y} = \begin{bmatrix} x_{1}x_{2} \\ x_{1}x_{3} \\ x_{2}x_{3} \\ x_{2}x_{4} \\ x_{3}x_{4} \\ x_{1}x_{1} \\ x_{2}x_{2} \\ x_{3}x_{3} \\ x_{4}x_{4} \end{bmatrix}$$

Estimation

For a family, regression model is

$$\boldsymbol{\hat{\Pi}}_{\mathbf{C}} = \boldsymbol{Q}\boldsymbol{\Sigma}_{\hat{\boldsymbol{\Pi}}}\boldsymbol{H}\boldsymbol{\Sigma}_{\mathbf{Y}}^{-1}\boldsymbol{Y}_{\mathbf{C}} + \boldsymbol{\epsilon}$$


Estimate Q by weighted least squares, and obtain sampling variance, family by family

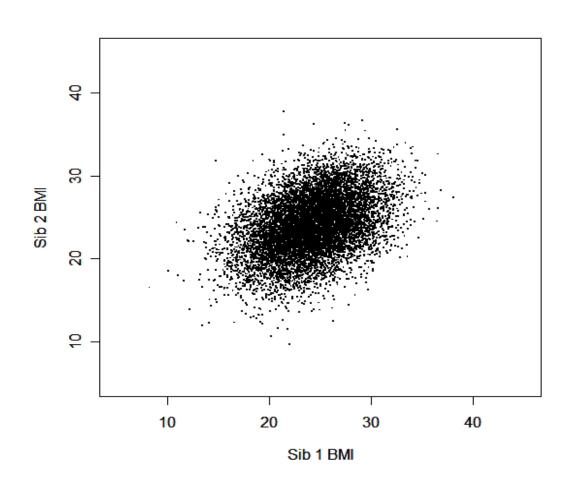
Combine estimates across families, inversely weighted by their variance, to give overall estimate, and its sampling variance

Why is that better?

 Regression methods assume that the dependant variable (left hand side) is normally distributed

Distribution of pi-hat

PIHAT65

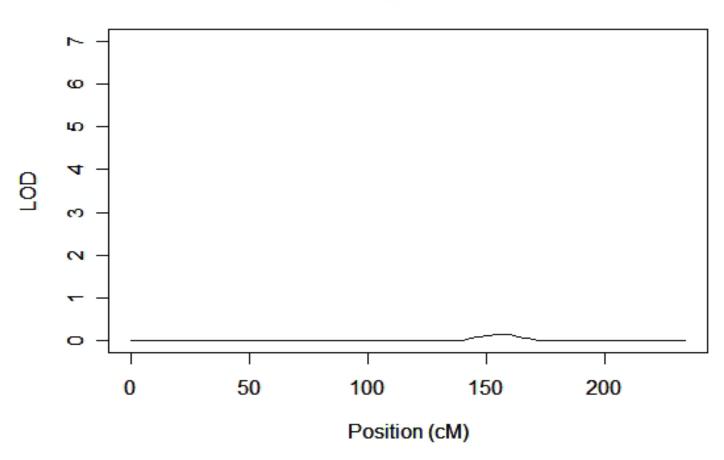

Why is that better?

- But "central limit theorem" works well when data a symmetric with mode in the centre
- In a general pedigree, sib-pairs provide the most information on linkage
- IBD under null hypothesis (with complete inheritance information)
 - 0 − 25%
 - 0.5 50%
 - 1 − 25%

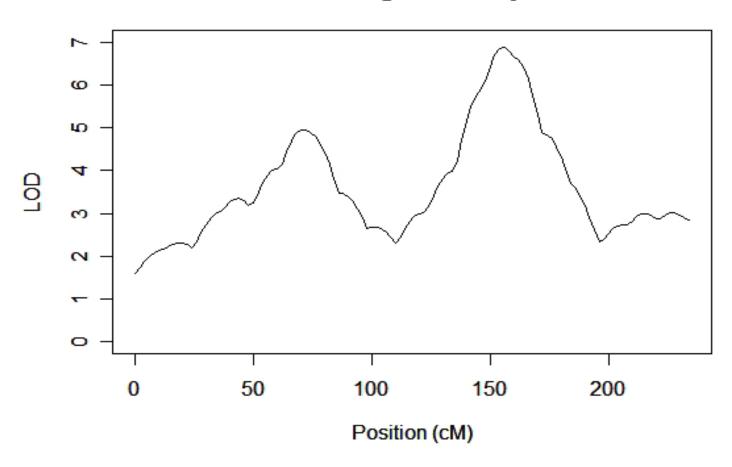
Selected Samples

- Merlin-regress is particularly suited to the analysis of selected samples
 - Ordinary variance component analysis (e.g. using Merlin) gives biased QTL estimates
 - Merlin-regress is designed to be robust to data selection

Example Data – BMI 10000 pairs



Selected Sample – 500 pairs


Results – VC

Variance Components Analysis

Results – Merlin-Regress

Merlin-Regress Analysis

Practical #4: running regress

./merlin-regress -x -9999.000 -p linkage.ped -d
linkage.dat -m linkage.map --mean ? --variance ?
--heritability ? > linkage2.out

merlin-regress

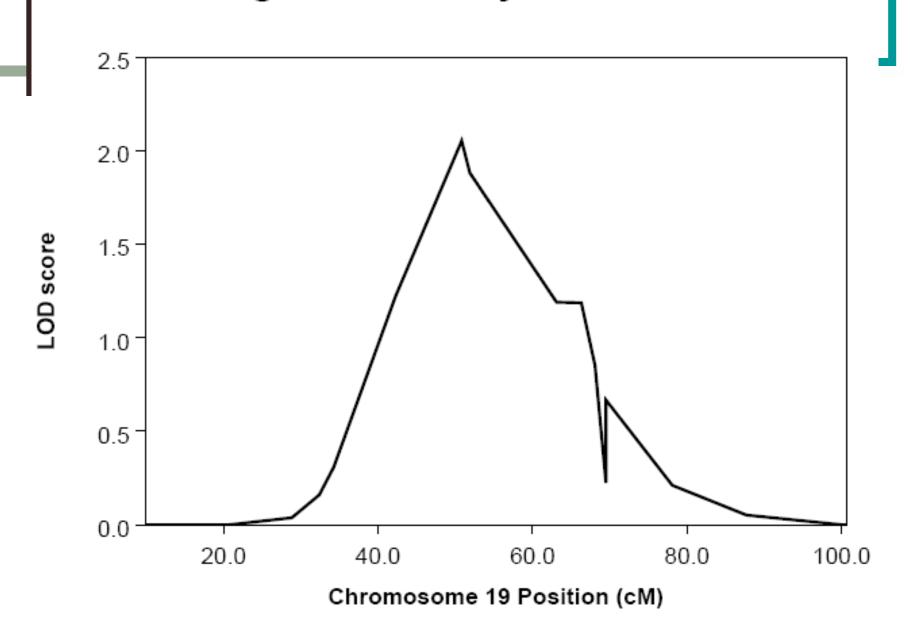
-vc -x -9999.000

Calls up the programme

Specifies VC linkage and the missing value

```
-p linkage.ped -d linkage.dat -m
linkage.map
```

Identify the .ped, .dat, and .map files


```
--mean ? --variance ? --heritability ?
```

Specify the mean, variance, and heritability from the whole population (Pedstats)

> linkage.out

Send the output to a text file

Regression Analysis for Trait: Idl

