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MV analyses can address

o Questions of common aetiology
Same gene (snp)

Co-incidental covariation due to LD
between two different genes

Co-variation due to shared
soclal/environmental risk factors
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Aust. Albatross




MV analyses can address

o Questions of common aetiology
Same gene (snp)

Co-incidental covariation due to LD
between two different genes

Co-variation due to shared
soclal/environmental risk factors

o Pleiotropy occurs when a
single gene influences
multiple phenotypic traits.




Studying multiple
phenotypes...

o Run multiple univariate analyses on
correlated traits

Bandicoot



LOD scores

Maximal LOD = 3.7 at 242 cM
Near marker D15249

P

— \\gight (kg)
e BMI (kg/m®)
Waist-to-hip

0 50 100 150 200 250 300
Loci (cM)



Studying multiple
phenotypes...

o Run multiple univariate analyses

Correct for multiple testing...
Bonferroni ®

Correction for equivalent number of
Independent variables

Doesn’t really address the idea of
common aetiology

W

Blue ringed octopus



Studying multiple
phenotypes...

o Run multiple univariate analyses

Try and determine if the coincident
linkage/association is statistically

unlikely

LOD scores
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Box jellyfish



Studying multiple
phenotypes...

o Run multiple univariate analyses

Try and determine if the coincident
linkage/association is statistically
unlikely

Simulate/Permute data and assess how
often this group of traits reaches thls
pattern of sig. by chance DN

Brown Snake



-Logqg(P-vaule)

Studying multiple
phenotypes...

o Study a number of proxies ®
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Studying multiple
phenotypes...

o Make a composite phenotype ®

— Persistent Tobacco Use

—— Persistent Tobacco Use & Drinking Severity Score
Drinking Severity Score
Chr4 Hﬁl

50 100 150 ?ﬂg

Cuscus



Studying multiple
phenotypes...

o Make a factor score

combine both factor level and trait-
specific effects

latent factor effects are inherently
pleiotropic
residual effects are not

assumes factor loadings are constant
across genome »

Cuscus (again)



Alternative... @ @

ay;° a,,°
o Explicitly model the R .
covariation between traits 1 T
Traits may be correlated due €11 €25°
to shared genetic factors (A) ‘(%)
or shared environmental t@
factors (C or E) ~_




Explicitly model the
covariation between traits...

o Directly assess pleiotropy

o Increased power

Esp. when the pattern of QTL effects
Is different from the background
covariation

le positive r but gene effects are in
opposite directions

o Reduced multiple testing

2% ﬁ-‘ &n
Drop Bear



Multivariate analysis...

o In the context of linkage analysis
when we have family data

two traits measured In twin pairs

Interested In:
Cross-trait covariance within individuals
Cross-trait covariance between twins

MZ:DZ ratio of cross-trait covariance
between twins 7

_\ e A :
Echidna



Twin 1

Twin 2

Observed Covariance Matrix

Twin 1 Twin 2
I
Phenotype 1 Phenotype 2 : Phenotype 1 Phenotype 2
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Phenotype 2 Covariance Variance
P1-P2 P2 I
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Twin 2

Observed Covariance Matrix

Twin 1 Twin 2

i
Phenotype 1 Phenotype 2 : Phenotype 1 Phenotype 2

Within-twin covariance

Phenotype 1

Phenotype 2

|| Within-twin covariance
I
Phenotype 1 Within-trait Cross-trait 1 Variance
P1 : P1
I
Phenotype 2 Cross-trait Within-trait : Covariance Variance
P2 : P1-P2 P2



Within-Twin Covariances (A)

Twin 1

all
_a21 a‘22
Twin 1 Twi\r: 1
Phenotype 1 Phenotype 2
Twin 1
Phenotype 1 Phenotype 2

Phenotype 1

Phenotype 2




Within-Twin Covariances (A)

Twin 1

all
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Twin 1 Twi;1 1
Phenotype 1 Phenotype 2
Twin 1
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Phenotype 1 11
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Within-Twin Covariances (A)

Twin 1

Ay
_a21 dy,
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Within-Twin Covariances (A)

Twin 1

dpq
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o Within-Twin Covariances (Q)
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Twin 1

Within-Twin Covariances (E)
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® © = | Observed Covariance Matrix

Twin 1 Twin 2

i
Phenotype 1 Phenotype 2 : Phenotype 1 Phenotype 2

Within-twin covariance

~— Phenotype 1
S
=

Phenotype 2
AN )
— Phenotype 1 Variance
g P1
L .

Covariance Variance

Phenotype 2

P1-P2 P2



Cross-Twin Covariances (A)
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Twin 1
Phenotype 1

1/0.5

Twin 1
Phenotype 2

Phenotype 1
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Twin 2
Phenotype 1

Twin 1

Cross-Twin Covariances (A)
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Twin 1
Phenotype 1
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Cross-Twin Covariances (Q)

A\ 4
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® © = | Predicted Model

Twin 1 Twin 2

i
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Running MV linkage
analysis...

o Numerous programs
MX
Solar
Loki

Merlin
Repeated measures

o Computationally intensive

o Multiple boundary issues
p-values difficult to obtain

e

Emu (not e-moo)



MV association...

o Maximum likelihood — factor based
approach

MX

o Canonical Correlation approach
Plink

o Principal components approach
F-bat

Funnel Web Spider



Maximum likelihood
approach

o Unrelated individuals

Shared variance due to a common
factor

Residual non-shared variance
o Family based data
ACE type models




Common factor model

1
fn/l/ \ fu

Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4

Great white



Factor level association

li"}fl.l_ _fll_ _mll_
[121 f21 m21
i, = ([ Brucor | +[Genotype]) @ £ [ m,

1 1
l[’\l4l_ _f41_ _m4l_

o Estimate a factor level beta

o Use the factor loadings as weights
o Add the uncorrected or grand mean
o 1df

Green Tree Frog



Factor level association

1 T m,
1[121 Ty my,
/}31 — ([ﬂfaetor :| [GenOtype]) ® f31 + m31
/}41_ _f41_ my;

Dot product
see page 61 of the Mx
manual

Green Tree Frog



Factor level association

raN

1 T m,
1[121 Ty my,
/}31 — ([ﬂfaetor :| ¢ [GenOtype]) ® f3 + m
1 31
_/}41_ _f41_ my;

Kronecker product
see page 61 of the Mx
manual

Green Tree Frog



Variable specific association

_/}11_ ( _ﬂl \ m,,
7 m

6121 =| [Genotype|® Pa + 4
Hz 153 ms,
_/}41_ \ _164_) _m41_

o Estimate a separate beta for each trait
o Add the uncorrected or grand mean
o n df

EI“;\'E' Wiatts Illt'"
Kookaburra



& Simulated data set

o 10 traits, Moderately correlated ~.4
o 1 snp, MAF .2
o 500 individuals

Correlations

V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

V3 1 .390*4 403* .366™ .396™ 418* A410™ .340™ 429 4127
V4 .390™ 1 A425* .394* 428 445 455*4 A428* .501* 425
V5 .403** A25% 1 387 479 453 444 .405* 410 .403**
V6 .366* .394* 387 1 .394*4 A26™ ABLMY .379% .367* A26™4
V7 .396** .428* A79* .394*4 1 .403*4 425 A416™ .370™} 438
V8 .418* 445* A53* 426™ .403*4 1 AAT7 .360™ 426™ 461
V9 410™ 4554 AA4* 461 425 A47 1 .387* 4447 4127
V10 .340* A28* .405* 379 .416™ .360™ .387* 1 .406™ 439
V11 429 .501* A410™ .367* 370"} A26™ A48 406 1 445
V12 A412% 425* .403* 426* A38* ABL™Y AL2% A39% 445 1

**. Correlation is significant at the 0.01 lewvel (2-tailed).




factorlevel.mx... dataset.ped

Example Factor level association script - Boulder 2009 Sarah Medland
Data NI=15 NGroups=1

Rec file=dataset.ped

Labels fid iid al a2 genotype V1V2V3V4V5V6 V7V8VIV10
Select genotype V1V2V3V4V5V6V7V8VIVI1O0,;

Definition genotype ;

Begin Matrices;

F full 10 1 free I factor

R diag 10 10 free I residuals

M full 10 1 free I grand means

B full 11 free I association beta
Gfulll1l I genotype

End Matrices;

Numbat



factorlevel.mx

st 6F11toF101

st 4R11toR1010
stOM11toM101
sp G genotype

Covariance (F*F)+(R*R) ;
Means M + (B.G)@F ;

Options multiple issat jiggle
end

dropB1l11
end

... dataset.ped

Perentie Monitor



variablespecific.mx...
dataset.ped

Example Factor level association script - Boulder 2009 Sarah Medland
Data NI=15 NGroups=1

Rec file=dataset.ped

Labels fid iid al a2 genotype V1V2V3V4V5V6V7V8VIV10
Select genotype V1V2V3V4V5V6V7V8VIVIO,;

Definition genotype ;

Begin Matrices;

F full 10 1 free | factor

R diag 10 10 free | residuals

M full 10 1 free I grand means

B full 10 1 free I association beta
Gfulll1l | genotype

End Matrices;




variablespecific.mx...

dataset.ped

st 6F11toF101

st 4R11toR1010
stOM11toM101
sp G genotype

Covariance (F*F)+(R*R") ;
Means M + (G@B).F ;

Options multiple issat jiggle
end

dropB111toB1101
end

Red back spider



Your task

o Run both FL and VS tests in Mx for
the first data set

Edit the data file name

Calculate the p-value for the VS test
using excel...

o Which variables are associated?

o What is the mean for variable 1 by
genotype?




0.608
0.670
0.654
0.614
0.640
0.659
0.665
0.604
0.652
0.659

B
0.169

M
0.061

0.068
0.066
0.062
0.065
0.066
0.067
0.061
0.066
0.066

Results — factor level

Difference Chi-squared >>
Difference d.f. >>>>>>>>>
Probability >>>>>>>>>>>>

4.116
1
0.042

Pademelon



Assoclation with a factor
score... Data set 1

Factor Matri»@

Factor
1

V1 .610
V2 .673
Ve 655 Coefficients?
V4 617 Unstandardized Standardized
V5 .644 Coefficients Coefficients
V6 .663 Model B Std. Error Beta t Sig.
V7 670 1 (Constant) .100 .068 1.455 146
V8 609 genotype .168 .083 .090 2.023 .044
V9 655 a. Dependent Variable: BART factor score 1 for analysis 1
V10 .664

Extraction Method: Maximum Likelihood.
a. 1 factors extracted. 3 iterations required.

Pigmy Possum



F
0.600
0.662
0.644
0.609
0.644
0.660
0.675
0.615
0.654
0.668

Results — variable specific

B M Difference Chi-squared 46.361
0.388 0.139 Difference d.f. >>>> 10

0.393 0.155  Probability >>>>>>>>  1.2*10¢
0.460 0.176

0.317 0.115

0.075 0.029
0.131 0.051
-0.042 -0.017 v N
-0.087 -0.032
0.107 0.042 \
-0.019 -0.008

Rainbow Lorikeet



Mean under different

genotypes
-1 0) 1
AA AB BB
-0.249 0.139 0.527

......
W

Salt water croc



Advantages to the ML
approach

o Completely flexible

Can be applied to any model
Longitudinal models
Simplex/Autoregressive processed

Easy to add dominance etc
Covariates
Extends to family data

Stone fish



Disadvantages

o Correction for multiple testing?

o FL & VS tests provide complementary
iInformation
o Inflation of type 1 error

use a Bonferroni correction if you use
both
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