F:\sarah\fri_MV

Sarah Medland and Manuel Ferreira -with heavy borrowing from Kate Morley and Frühling Rijsdijk

• • MV analyses can address

Questions of common aetiology

- Same gene (snp)
- Co-incidental covariation due to LD between two different genes
- Co-variation due to shared social/environmental risk factors

Aust. Albatross

MV analyses can address

Questions of common aetiology

- Same gene (snp)
- Co-incidental covariation due to LD between two different genes
- Co-variation due to shared social/environmental risk factors
- Pleiotropy occurs when a single gene influences multiple phenotypic traits.

Bilby

• • • • Studying multiple phenotypes...

 Run multiple univariate analyses on correlated traits

Bandicoot

• • • • Studying multiple phenotypes...

• Run multiple univariate analyses

- Correct for multiple testing...
 - Bonferroni 🛞
 - Correction for equivalent number of independent variables
- Doesn't really address the idea of common aetiology

Blue ringed octopus

• • • Studying multiple phenotypes...

• Run multiple univariate analyses

 Try and determine if the coincident linkage/association is statistically unlikely

Box jellyfish

• • • • Studying multiple phenotypes...

• Run multiple univariate analyses

- Try and determine if the coincident linkage/association is statistically unlikely
 - Simulate/Permute data and assess how often this group of traits reaches this pattern of sig. by chance

Brown Snake

• • • • Studying multiple phenotypes...

o Study a number of proxies ☺

Cockatoo

• • • Studying multiple phenotypes...

• Make a composite phenotype ⊗

Cuscus

• • • • Studying multiple phenotypes...

Make a factor score

- combine both factor level and traitspecific effects
- latent factor effects are inherently pleiotropic
- residual effects are not
- assumes factor loadings are constant across genome

• • • Alternative...

- Explicitly model the covariation between traits
 - Traits may be correlated due to shared genetic factors (A) or shared environmental factors (C or E)

Dingo

• Explicitly model the covariation between traits...

- Directly assess pleiotropyIncreased power
 - Esp. when the pattern of QTL effects is different from the background covariation
 - ie positive r but gene effects are in opposite directions
- Reduced multiple testing

Drop Bear

Multivariate analysis…

 In the context of linkage analysis when we have family data

- two traits measured in twin pairs
- Interested in:
 - Cross-trait covariance within individuals
 - Cross-trait covariance between twins
 - MZ:DZ ratio of cross-trait covariance between twins

Echidna

Observed Covariance Matrix

		Tw	in 1	Τν	/in 2
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
vin 1	Phenotype 1	Variance P1			
Ļ	Phenotype 2	Covariance P1-P2	Variance P2		
win 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1	
-	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2

Observed Covariance Matrix

		Twi	n 1	Tw	in 2
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
		Within-twin	covariance		
/in 1	Phenotype 1	Variance P1			
N N	Phenotype 2	Covariance P1-P2	Variance P2		
				Within-twin	covariance
win 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1	
F-	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2

Within-Twin Covariances (E) Twin 1 Twin 1 e_{11} e_{21} e_{22} Phenotype 2 Phenotype 1 **e**₂₁ **e**₂₂ , **e**₁₁ Ε Twin 1

		Phenotype 1	Phenotype 2
С -	Phenotype 1	a ₁₁ ² +q ₁₁ ² +e ₁₁ ²	
Twi	Phenotype 2	a ₁₁ a ₂₁ +q ₁₁ q ₂₁ +e ₁₁ e ₂₁	$a_{22}^{2}+a_{21}^{2}+q_{21}^{2}+e_{22}^{2}+e_{21}^{2$

Observed Covariance Matrix

		Twi	n 1	. Tw	in 2
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
		Within-twin	covariance		
/in 1	Phenotype 1	Variance P1			
N H	Phenotype 2	Covariance P1-P2	Variance P2		
		Cross-twin covariance		Within-twin	covariance
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1	
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2

Cross-Twin Covariances (A) 1/0.5 1/0.5 A A **a**₂₁ a₂₂, a₂₂, a₁₁ **a**₂₁ a_{11} Twin 2 Twin 1 Twin 2 Twin 1 Phenotype 2 Phenotype 2 Phenotype 1 Phenotype 1 Twin 1 Phenotype 2 Phenotype 1 Twin 2 1/0.5a₁₁² Phenotype 1 Phenotype 2

Predicted Model

		Twi	in 1	Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
~	Phenotype 1	Within-twin	covariance			
Twin		a ₁₁ ² +q ₁₁ ² +e ₁₁ ²				
•	Phenotype 2	a ₁₁ a ₂₁ +q ₁₁ q ₂₁ +e ₁₁ e ₂₁	a ₂₂ ² +a ₂₁ ² +q ₂₁ ² + e ₂₂ ² +e ₂₁ ²			
		Cross-twin	covariance	Within-twin	covariance	
win 2	Phenotype 1	1/.5 a_{11}^2 + πq_{11}^2		a ₁₁ ² +q ₁₁ ² +e ₁₁ ²		
	Phenotype 2	1/.5a ₁₁ a ₂₁ + <i>π</i> q ₁₁ q ₂₁	1/.5(a ₂₂ ²+a ₂₁ ²)+ π q ₂₁ ²	a ₁₁ a ₂₁ +q ₁₁ q ₂₁ +e ₁₁ e ₂₁	$a_{22}^{2}+a_{21}^{2}+q_{21}^{2}+q_{21}^{2}+e_{22}^{2}+e_{21}^{2}$	

Running MV linkage analysis...

Numerous programs

- Mx
- Solar
- Loki
- Merlin
 - Repeated measures
- Computationally intensive
- Multiple boundary issues
 - p-values difficult to obtain

Emu (not e-moo)

• • MV association...

 Maximum likelihood – factor based approach

• Mx

Canonical Correlation approach

- Plink
- Principal components approach
 - F-bat

Maximum likelihood approach

Unrelated individuals

- Shared variance due to a common factor
- Residual non-shared variance
- Family based data
 - ACE type models

Great white

• • Factor level association
$$\begin{bmatrix}
\hat{\mu}_{11} \\
\hat{\mu}_{21} \\
\hat{\mu}_{31} \\
\hat{\mu}_{41}
\end{bmatrix} = \left(\begin{bmatrix}
\beta_{factor}\end{bmatrix} \bullet \begin{bmatrix}Genotype\end{bmatrix}\right) \otimes \begin{bmatrix}
f_{11} \\
f_{21} \\
f_{31} \\
f_{41}
\end{bmatrix} + \begin{bmatrix}
m_{11} \\
m_{21} \\
m_{31} \\
m_{41}
\end{bmatrix}$$

- Estimate a factor level beta
- Use the factor loadings as weights
- Add the uncorrected or grand mean
- 1 df

Green Tree Frog

Green Tree Frog

Green Tree Frog

Variable specific association

$$\begin{bmatrix} \hat{\mu}_{11} \\ \hat{\mu}_{21} \\ \hat{\mu}_{31} \\ \hat{\mu}_{41} \end{bmatrix} = \begin{bmatrix} Genotype \end{bmatrix} \otimes \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} + \begin{bmatrix} m_{11} \\ m_{21} \\ m_{31} \\ m_{41} \end{bmatrix}$$

- Estimate a separate beta for each trait
- Add the uncorrected or grand mean
- o *n* df

Simulated data set

• 10 traits, Moderately correlated ~.4

o 1 snp, MAF .2

• 500 individuals

Correlations

	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
V3	1	.390**	.403**	.366**	.396**	.418**	.410**	.340**	.429**	.412**
V4	.390**	1	.425**	.394**	.428**	.445**	.455**	.428**	.501**	.425**
V5	.403**	.425**	1	.387**	.479**	.453**	.444**	.405**	.410**	.403**
V6	.366**	.394**	.387**	1	.394**	.426**	.461**	.379**	.367**	.426**
V7	.396**	.428**	.479**	.394**	1	.403**	.425**	.416**	.370**	.438**
V8	.418**	.445**	.453**	.426**	.403**	1	.447**	.360**	.426**	.461**
V9	.410**	.455**	.444**	.461**	.425**	.447**	1	.387**	.444**	.412**
V10	.340**	.428**	.405**	.379**	.416**	.360**	.387**	1	.406**	.439**
V11	.429**	.501**	.410**	.367**	.370**	.426**	.444**	.406**	1	.445**
V12	.412**	.425**	.403**	.426**	.438**	.461**	.412**	.439**	.445**	1

**. Correlation is significant at the 0.01 level (2-tailed).

factorlevel.mx... dataset.ped

Example Factor level association script - Boulder 2009 Sarah Medland Data NI=15 NGroups=1 Rec file=dataset.ped Labels fid iid a1 a2 genotype V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Select genotype V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 ; Definition genotype ;

Begin Matrices; F full 10 1 free R diag 10 10 free M full 10 1 free B full 1 1 free G full 1 1 End Matrices;

- ! factor
- ! residuals
- ! grand means
- ! association beta
- ! genotype

Numbat

• factorlevel.mx... dataset.ped

st .6 F 1 1 to F 10 1 st .4 R 1 1 to R 10 10 st 0 M 1 1 to M 10 1 sp G genotype

Covariance (F*F')+(R*R') ; Means M + (B.G)@F ;

Options multiple issat jiggle end

drop B 1 1 1 end

• variablespecific.mx... dataset.ped

Example Factor level association script - Boulder 2009 Sarah Medland Data NI=15 NGroups=1 Rec file=dataset.ped Labels fid iid a1 a2 genotype V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Select genotype V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 ; Definition genotype ;

Begin Matrices; F full 10 1 free R diag 10 10 free M full 10 1 free B full 10 1 free G full 1 1 End Matrices;

- ! factor
- ! residuals
- ! grand means
- ! association beta
- ! genotype

variablespecific.mx... dataset.ped

st .6 F 1 1 to F 10 1 st .4 R 1 1 to R 10 10 st 0 M 1 1 to M 10 1 sp G genotype

Covariance (F*F')+(R*R') ; Means M + (G@B).F ;

Options multiple issat jiggle end

drop B 1 1 1 to B 1 10 1 end

Red back spider

• • Vour task

- Run both FL and VS tests in Mx for the first data set
 - Edit the data file name
 - Calculate the p-value for the VS test using excel...
- Which variables are associated?
- What is the mean for variable 1 by genotype?

Results – factor level

F	B	Μ
0.608	0.169	0.061
0.670		0.068

0.654 0.066

0.614 0.062

0.640 0.065

0.659 0.066

0.665 0.067

0.604 0.061

0.652 0.066

0.066

0.659

Pademelon

Association with a factor score... Data set 1

	Factor	
	1	
V1	.610	
V2	.673	
V3	.655	
V4	.617	
V5	.644	
V6	.663	
V7	.670	
V8	.609	
V9	.655	
V10	.664	

Factor Matrix^a

Coefficients^a Standardized Unstandardized Coefficients Coefficients Std. Error Model В Beta t Sig. (Constant) .100 1.455 .146 .068 genotype .083 .090 2.023 .168 .044

a. Dependent Variable: BART factor score 1 for analysis 1

Extraction Method: Maximum Likelihood.

a. 1 factors extracted. 3 iterations required.

Pigmy Possum

Results – variable specific

F	B	M
0.600	0.388	0.139
0.662	0.393	0.155
0.644	0.460	0.176
0.609	0.317	0.115
0.644	0.075	0.029
0.660	0.131	0.051
0.675	-0.042	-0.017
0.615	-0.087	-0.032
0.654	0.107	0.042
0.668	-0.019	-0.008

Difference Chi-squared	46.361
Difference d.f. >>>>	10
Probability >>>>>>>	1.2*10 ⁻⁶

Rainbow Lorikeet

Mean under different genotypes

-1	0	1
AA	AB	BB
-0.249	0.139	0.527

Salt water croc

Advantages to the ML approach

Completely flexible

- Can be applied to any model
 - Longitudinal models
 - Simplex/Autoregressive processed
- Easy to add dominance etc
- Covariates
- Extends to family data

Stone fish

Disadvantages

• Correction for multiple testing?

- FL & VS tests provide complementary information
- o Inflation of type 1 error
 - use a Bonferroni correction if you use both

Taipan

Tree Kangaroo

Thorny Devil

Wombat

Zebra finch

Tiger Snake

Tassie Tiger

Tassie Devil