## (Re)introduction to Mx Sarah Medland <br> 



## Starting at the beginning

## - Data preparation

- Mx expects 1 line per case/family
- Almost limitless number of families and variables
White space delimited
- No fixed column formats (unlike ped files)
Can use a missing code ie -9 or can use the default '.'

| 1.6299 | 1.6399 | 22.5827 | 21.5645 | 21.8203 | 21.4974 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1.5698 | 1.5698 | 22.3133 | 22.3133 | 21.7363 | 21.7363 |
| 1.5698 | 1.5498 | 18.662 | 20.3954 | 20.4854 | 21.1072 |
| 1.7698 | - | 17.2364 | - | 19.9292 | - |
| 1.6899 | 1.6899 | 20.3674 | 21.0077 | 21.6769 | 21.3142 |
| 1.6399 | 1.6399 | 20.0773 | 21.1927 | 20.9971 | 21.3756 |
| 1.73 | 1.73 | 17.6403 | 20.6474 | 19.8491 | 20.9867 |

## Important structural stuff

- Script is composed of one or more jobs (can handle many 'nested' jobs in one script or 2 non nested jobs)
- Each job is composed of one or more groups
- Each group is 'opened' with a title
- Each group is 'closed' with an end statement
- You must tell Mx how many groups will be in the job


## A bit about groups

- 3 types of groups
- Calculation
- Data
- If analysing raw data Mx expects a Means

Model and a Covariance Model

- Constraint


## Matrices: the building blocks

- Many types
- Denoted by a single letter
- Elements defined by letter and 3 numbers
- A 121 = A matrix group 1 row 2 column 1
- All constants and estimated parameters must be placed in a matrix \& Mx must be told what type of matrix it is
- Letters can be reused in subsequent groups


## Matrices: the building blocks

## - Many types

| A Zero 23 Free | 000 | 000 |  | 230 |  | ? 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 000 | 000 | H Stand 33 Free | 012 |  | ? ? |
| B Unit 23 Free | 000 | 111 |  | 103 | ? | 1 ? |
|  | 000 | 111 |  | 230 | ? | ? 1 |
| C Iden 33 Free | 000 | 100 | I Symm 33 Free | 124 | ? | ? ? |
|  | 000 | 010 |  | 235 | ? | ? ? |
|  | 000 | 001 |  | 456 | ? | ? ? |
|  |  |  | J Lower 33 Free | 100 | ? | 00 |
|  |  |  |  | 230 | ? | ? 0 |
|  |  |  |  | 456 | ? | ? ? |
|  |  |  | K Full 24 Free | 1234 | ? | ? ? ? |
|  |  |  |  | 5678 | ? | ? ? ? |

## Short cuts

- Anything after!is read as a comment
- Can predefine frequently used/changed parameters
- \#define nvar2=2
- Can read in another file within the script
- \#include ozbmi2.dat
- Can run loops - via the repeat comand
- Use an end of line signal (; or /) except in the Labels command


## Setting up the script - calculation group

- $1^{\text {st }}$ line is the title
- $2^{\text {nd }}$ specifies group type
- Matrix definition
- Begin Matrices - End Matrices
- If a matrix is not specified free it will be considered fixed
- Algebra
- Begin Algebra - End Algebra
- Starting values for free/estimated parameters or specified values for constants
- End


## Setting up the script data group

- $1^{\text {st }}$ line is the title
- $2^{\text {nd }}$ specifies group type and number of variables (in ozbmi2.dat)
- $3^{\text {rd }}$ line gives data location (in ozbmi2.dat)
- Rectangular file = continuous data
- Ordinal file = ordinal data (Mx will expect a thresholds model not a means model)
- List the variables (in ozbmi2.dat)
- Select if ...
- Select variables
- Order is important! Select all vs for twin1 then twin2 then sibl ect
- Specify which vs are covariates (definition variables)


## Order is important!

# Select all vs for twin1 then twin2 then sib1 ect 

## Setting up the script data group

- Matrix definition
- Call matrices from previous groups and/or define new matrices
- Algebra \& starting values
- Means Model
- can include covariates ie age, sex ...
- Covariance Model
- Expected to be nsib* nvar by nsib* nvar
- End


Variance/covariance matrices

MZ
DZ

|  | t1 | t2 |  | t1 | t2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| t1 | $\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$ | $\mathrm{a}^{2}+\mathrm{c}^{2}$ | t1 | $\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$ | $0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$ |
| t2 | $\mathrm{a}^{2}+\mathrm{c}^{2}$ | $\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$ | t2 | $0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$ | $\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$ |

## So what do you get

```
- Mx starts by reading back the script
    ** Mx startup successful **
    **HX-PC 1.63h** Job started on 03/07/66 at 01:51:69
: ESTIMATE GENETIC AND ENUIRONHENTAL COHPONENTS - ACED MODEL
: OZ BHI DATA - YOUNGER FEHALES
The following MX script lines were read for group 1
#NGROUPS 4
    Note: #NGroup set number of groups to 4
#DEFINE NUAR 1
#DEFINE NUAR2 2
TITLE G1: MODEL PARAMETERS
CALCULATION
BEGIN HATRICES;
X LOWER NUAR NUAR FREE
Y LOWER NUAR NUAR
Z LOWER NUAR NUAR FRE
: COHHON ENUIRONHENTAL PATH, C
! SPECIFIC ENUIRONHENTAL PATH, E
W LOWER NUAR NUAR FREE ! DOHINANCE GENETIC PATH, D
```


## So what do you get

## - Data summary

Summary of UL file data for group 2

|  | BHI1 | BHI2 |
| ---: | ---: | ---: |
| Code | 1.0909 | 2.0909 |
| Number | 647.0999 | 651.0909 |
| Hean | 21.9076 | 21.8684 |
| Uariance | 0.9801 | 0.9528 |
| Minimum | 19.4150 | 18.5724 |
| Haximum | 26.0885 | 25.9592 |

Summary of UL file data for group 3

|  | BMI 1 | BMI 2 |
| :---: | :---: | :---: |
| Code | 1.0009 | 2.0008 |
| Number | 389.0091 | 391.0908 |
| Mean | 21.8207 | 21.8615 |
| Uariance | 9.9155 | 1.0274 |
| Minimum | 19.4145 | 19.6650 |
| Maximum | 26.1492 | 25.6367 |

## So what do you get

## - Parameter specifications

```
```

PARAMETER SPECIFICATIONS

```
```

PARAMETER SPECIFICATIONS
GROUP NUMBER: 1
GROUP NUMBER: 1
Fitle G1: Model Parameters
Fitle G1: Model Parameters
MatRIX A
MatRIX A
This is a computed FULL matrix of order
This is a computed FULL matrix of order
It has no free parameters specified
It has no free parameters specified
MATRIX C
MATRIX C
This is a computed FULL matrix of order
This is a computed FULL matrix of order
It has no free parameters specified
It has no free parameters specified
MATRIX D
MATRIX D
This is a computed FULL matrix of order
This is a computed FULL matrix of order
It has no free parameters specified

```
```

    It has no free parameters specified
    ```
```

```
1 by
```


## So what do you get

```
Hx starting optimization; number of parameters = 7
```

```
        MX PARAMETER ESTIMATES
```

        MX PARAMETER ESTIMATES
        GROUP NUHBER: 1
        GROUP NUHBER: 1
    Title G1: Model Parameters
Title G1: Model Parameters
MATRIX A
MATRIX A
This is a computed FULL matrix of order 1 by 1
This is a computed FULL matrix of order 1 by 1
[=X*X']
[=X*X']
1
1
10.5613
10.5613
HATRIX C
HATRIX C
This is a computed FULL matrix of order 1 by 1
This is a computed FULL matrix of order 1 by 1
[=Y*Y']
[=Y*Y']
1
1
10.0000
10.0000
MATRIX D
MATRIX D
This is a computed FULL matrix of order 1 by 1
This is a computed FULL matrix of order 1 by 1
[=W*W']
[=W*W']
1
1
10.1084

```
10.1084
```

Estimates

## So what do you get

## - Warnings \& Fit information (not from

 ozbmiyface.mx)*** WARNING! ***
Minimization may not be successful. See above
CODE GREEN - it probably was OK
Your model has 6 estimated parameters and 500 0bserved statistics
-2 times log-likelihood of data >>> 2355.338
Degrees of freedom >>>>>>>>>>>>>>>> 494
This problem used $5.6 \%$ of my workspace
Task Time elapsed (DD:HH:HH:SS)
Reading script \& data
0: 0: 0: 1.61
Execution
0: 0: 0:-1.10
TOTAL
0: 6: 6: 0.51

## Testing for significance

- Drop the parameter(s) from the model or equate parameters using the multiple job option
- Specify the matrix elements you wish to drop/equate
- Drop A 111
-EQA111B111
- Compare the fit of the two models


Variance/covariance matrices

MZ
DZ


## What to report

- Summary statistics
- Usually from a simplified 'saturated' model
- Standardized estimates
- Easier to conceptualise
- ie $40 \%$ of the phenotypic variance vs a genetic effect of 2.84
- Can easily be returned to original scale if summary statistics are provided


## What to report

- Path coefficients
- Very Important in multivariate analyses
- Gives a much clearer picture of the directionality of effects
- Variance components/proportion of variance explained
- Genetic correlations


## General Advice/Problem solving

- Scripting styles differ
- Check the parameter numbers
- Check the sample description
- Learn to love the manual
- Comments are your friends


## Time for coffee

## MATH 15 HARD


explodingdog.com

