$\begin{array}{llllllll}\mathbf{V} & \mathbf{i} & \mathbf{r} & \mathbf{g} & \mathbf{i} & \mathrm{n} & \mathbf{i} & \mathbf{a}\end{array}$
 (

Introduction to Linkage and Association

 for Quantitative TraitsMichael C Neale
Boulder Colorado Workshop March 22009

Overview

- A brief history of SEM
- Regression
- Maximum likelihood estimation
- Models
- Twin data
- Sib pair linkage analysis
- Association analysis

Origins of SEM

- Regression analysis
- 'Reversion' Galton 1877: Biological phenomenon
- Yule 1897 Pearson 1903: General Statistical Context
- Initially Gaussian X and Y; Fisher 1922 Y|X
- Path Analysis
- Sewall Wright 1918; 1921
- Path Diagrams of regression and covariance relationships

Structural Equation Modeling Basics

- Two kinds of relationships
- Linear regression X -Y single-headed
- Unspecified covariance X<->Y double-headed
- Four kinds of variable
- Squares: observed variables
- Circles: latent, not observed variables
- Triangles: constant (zero variance) for specifying means
- Diamonds: observed variables used as moderators (on paths)

Linear Regression Covariance SEM

Models covariances only
Of historical interest

Linear Regression SEM with means

Models Means and Covariances

Linear Regression SEM: Individual-level

$$
Y_{i}=a+b X_{i}
$$

Models Mean and Covariance of Y only Must have raw (individual level) data X_{i} is a definition variable Mean of Y different for every observation

Single Factor Covariance Model

Two Factor Model with Covs \& Means

Factor model essentials

- In SEM the factors are typically assumed to be normally distributed
- May have more than one latent factor
- The error variance is typically assumed to be normal as well
- May be applied to binary or ordinal data
- Threshold model

Multifactorial Threshold Model

Normal distribution of liability. 'Affected' when liability $x>t$

Measuring Variation

- Distribution
- Population
- Sample
- Observed measures
- Probability density function 'pdf'
- Smoothed out histogram
- $f(x)>=0$ for all x

Flipping Coins

1 coin: 2 outcomes

2 coins: 3 outcomes

4 coins: 5 outcomes
8 coins: 9 outcomes

Bank of China Coin Toss

Infinite outcomes

De Moivre 1733 Gauss 1827

Variance: Average squared deviation

 Normal distribution
Deviations in two dimensions

Deviations in two dimensions: dx x dy

Covariance

- Measure of association between two variables
- Closely related to variance
- Useful to partition variance
- "Analysis of Variance" term coined by Fisher

Variance covariance matrix

Univariate Twin/Sib Data

$\operatorname{Var}(T w i n 1) \quad \operatorname{Cov}(T w i n 1, T w i n 2)$
$\operatorname{Cov}(T w i n 2, T w i n 1) \quad \operatorname{Var}(T w i n 2)$

Suitable for modeling when no missing data Good conceptual perspective

Maximum Likelihood Estimates: Nice Properties

1. Asymptotically unbiased

- Large sample estimate of p-> population value

2. Minimum variance "Efficient"

- Smallest variance of all estimates with property 1

3. Functionally invariant

- If $\mathrm{g}(\mathrm{a})$ is one-to-one function of parameter a
- and MLE (a) = a^{*}
- then MLE $g(a)=g\left(a^{*}\right)$
- See http://wikipedia.org

Full Information Maximum Likelihood (FIML)

Calculate height of curve for each raw data vector
Univariate - height of normal pdf
$-\phi(\mathrm{x})=$
$-\left(2 \Pi \sigma^{2}\right)^{-.5} e^{\left.-.5\left(\left(x_{1}-\mu\right)^{\wedge} 2\right) / \sigma^{\wedge} 2\right)}$

- Multivariate - height of multinormal pdf

$$
-\left|2 \Pi \sum\right|-n / 2 e^{-.5\left(\left(\mathbf{x}_{1}-\mu\right) \sum^{-1}\left(\mathbf{x}_{1}-\mu\right)^{\prime}\right)}
$$

Height of normal curve: $\mu_{x}=0$

 Probability density function
$\phi\left(\mathrm{x}_{\mathrm{i}}\right)$ is the likelihood of data point x_{i} for particular mean \& variance estimates VCU

Height of normal curve at xi: $\mu_{x}=.5$ Function of mean

Likelihood of data point x_{i} increases as approaches x_{i}

Likelihood of x_{i} as a function of μ

 Likelihood function
$L\left(x_{i}\right)$ is the likelihood of data point x_{i} for particular mean \& variance estimates VCU

Height of normal curve at x1

Function of variance

Likelihood of data point x_{i} changes as variance of distribution changes

Height of normal curve at x1 and x2

x_{1} has higher likelihood with var=1 whereas x_{2} has higher likelihood with var=2

Height of bivariate normal density function

Likelihood varies as $\mathrm{f}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$

Likelihood of Independent Observations

- Chance of getting two heads
- $\mathrm{L}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right)=\operatorname{Product}\left(\mathrm{L}\left(\mathrm{x}_{1}\right), \mathrm{L}\left(\mathrm{x}_{2}\right), \ldots \mathrm{L}\left(\mathrm{x}_{\mathrm{n}}\right)\right)$
- $\mathrm{L}\left(\mathrm{X}_{\mathrm{i}}\right)$ typically <1
- Avoid vanishing $\mathrm{L}\left(\mathrm{X}_{1} \ldots \mathrm{X}_{n}\right)$
- Computationally convenient log-likelihood
- $\ln \left(a^{*} b\right)=\ln (a)+\ln (b)$
- Minimization more manageable than maximization
- Minimize - $2 \ln (\mathrm{~L})$

Likelihood Ratio Tests

- Comparison of likelihoods
- Consider ratio L(data,model 1) / L(data, model 2)
- $\ln (a / b)=\ln (a)-\ln (b)$

- Log-likelihood InL(data, model 1) - In L(data, model 2)
- Useful asymptotic feature when model 2 is a submodel of model 1
-2 (inL(data, model 1) - InL(data, model 2)) ~ χ^{2} df = \# parameters of model 1 - \# parameters of model 2
- BEWARE of gotchas!
- Estimates of $a^{2} q^{2}$ etc. have implicit bound of zero
- Distributed as $50: 50$ mixture of 0 and $\chi_{1}{ }^{2}$

Two Group ACE Model for twin data

Linkage vs Association

Linkage

1. Family-based
2. Matching/ethnicity generally unimportant
3. Few markers for genome coverage (300-400 STRs)
4. Can be weak design
5. Good for initial detection; poor for fine-mapping
6. Powerful for rare variants

Association

1. Families or unrelated individuals
2. Matching/ethnicity crucial
3. Many markers req for genome coverage ($10^{5}-10^{6}$ SNPs)
4. Powerful design
5. Ok for initial detection; good for fine-mapping
6. Powerful for common variants; rare variants generally impossible

Identity by Descent (IBD)

Number of alleles shared IBD at a locus, parents $A B$ and CD: Three subgroups of sibpairs
AC
AD
BC
BD

AC
2
1
1

AD
1
2
0
1
BC
1
0
2
1
BD1
1
2

Partitioned Twin Analysis

- Nance \& Neale (1989) Behav Genet 19:1
- Separate DZ pairs into subgroups - $\operatorname{IBD}=0 \mid \mathrm{IBD}=1$ IBD=2
- Correlate Q with 0.5 and 1 coefficients
- Compute statistical power

Partitioned Twin Analysis: Three DZ groups

$\mathrm{IBD}=2$ group

IBD=0 group

Problem 1 with Partitioned Twin analysis: Low Power

Table II. Twin Pairs Required to Reject False Hypotheses Under Two Research Designs: (A) MZ and DZ Twins; (B) Only DZ Twins

True model (G, M, E)

Heritability
\% marker effect

.9	.6	.3	.9	.6	.3	.9	.6	.3
75	75	75	50	50	50	25	25	25

Problem 2: IBD is not known with certainty

- Markers may not be fully informative
- Only so much heterozygosity in e.g., 20 allele microsatellite marker
- Less in a SNP
- Unlikely to have typed the exact locus we are looking for
- Genome is big!

IBD pairs vary in similarity

Improving Power for Linkage

- Increase marker density (yaay SNP chips)
- Change design
- Families
- Larger Sibships
- Selected samples
- Multivariate data
- More heritable traits with less error

Problem 2: IBD is not known with certainty

- Markers may not be fully informative
- Only so much heterozygosity in e.g., 20 allele microsatellite marker
- Less in a SNP
- Unlikely to have typed the locus that causes variation
- Genome is big!
- The Universe is Big. Really big. It may seem like a long way to the corner chemist, but compared to the Universe, that's peanuts. - D. Adams

Using Merlin/Genehunter etc

- Several Faculty experts
- Goncalo Abecasis
- Sarah Medland
- Stacey Cherny
- Possible to use Merlin via Mx GUI

"Pi-hat" approach

1 Pick a putative QTL location
2 Compute $p(I B D=0) p(I B D=1) p(I B D=2)$ given marker data [Use Mapmaker/sibs or Merlin]

3 Compute $\hat{\pi}_{i}=p(I B D=2)+.5 p(I B D=1)$
4 Fit model
Repeat 1-4 as necessary for different locations across genome

Basic Linkage (QTL) Model

 $\pi_{\mathrm{i}}=\mathrm{p}\left(\mathrm{IBD}_{\mathrm{i}}^{\hat{=}}=2\right)+.5 \mathrm{p}\left(\mathrm{IBD}_{\mathrm{i}}=1\right) \quad$ individual-level

Q: QTL Additive Genetic
F: Family Environment
E: Random Environment 3 estimated parameters: q, f and e Every sibship may have different model

Association Model

LDL1 $_{i}=\mathrm{a}+\mathrm{b}$ Geno1 $_{\mathrm{i}}$
$\operatorname{Var}\left(\mathrm{LDL}_{\mathrm{i}}\right)=\mathrm{R}$
$\operatorname{Cov}\left(\mathrm{LDL}_{1}, \mathrm{LDL}_{2}\right)$ = C

C may be $f\left(\pi_{i}\right)$ in joint linkage \& association

Between/Within Fulker Association Model

Model for the means

LDL1 $_{i}=.5 b G e n o 1+$.5bGeno2 + .5wGeno1 .5wGeno2
$=.5(\mathrm{~b}($ Geno1+Geno2) + w(Geno1-Geno2))

