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Overview
• A brief history of SEM
• Regression
• Maximum likelihood estimation
• Models

– Twin data
– Sib pair linkage analysis 
– Association analysis



Origins of SEM
• Regression analysis

– ‘Reversion’ Galton 1877: Biological 
phenomenon

– Yule 1897 Pearson 1903: General Statistical 
Context

– Initially Gaussian X and Y; Fisher 1922 Y|X

• Path Analysis
– Sewall Wright 1918; 1921
– Path Diagrams of regression and covariance 

relationships



Structural Equation Modeling Basics
• Two kinds of relationships 

– Linear regression X -> Y    single-headed
– Unspecified covariance X<->Y   double-headed

• Four kinds of variable
– Squares: observed variables
– Circles: latent, not observed variables
– Triangles: constant (zero variance) for specifying means
– Diamonds: observed variables used as moderators (on 

paths)



Linear Regression Covariance SEM
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b

Models covariances only
Of historical interest



Linear Regression SEM with means
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Models Means and Covariances



Linear Regression SEM: Individual-level

Yi
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Models Mean and Covariance of Y only
Must have raw (individual level) data
Xi is a definition variable
Mean of Y different for every observation

1

X i 

Yi = a + bXi



Single Factor Covariance Model
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Two Factor Model with Covs & Means
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Factor model essentials

• In SEM the factors are typically assumed to be 
normally distributed

• May have more than one latent factor

• The error variance is typically assumed to be normal 
as well

• May be applied to binary or ordinal data
– Threshold model



Multifactorial Threshold Model
Normal distribution of liability.  ‘Affected’ when liability x > t
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Measuring Variation
• Distribution

– Population
– Sample
– Observed measures

• Probability density function ‘pdf’
– Smoothed out histogram
– f(x) >= 0  for all x



Flipping Coins
1 coin: 2 outcomes
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Outcome

0
0.1
0.2
0.3
0.4
0.5
0.6 Probability

4 coins: 5 outcomes

HHHH HHHT HHTT HTTT TTTT
Outcome

0

0.1

0.2

0.3

0.4 Probability

2 coins: 3 outcomes

HH HT/TH TT
Outcome

0
0.1
0.2
0.3
0.4
0.5
0.6 Probability

8 coins: 9 outcomes

Outcome

0
0.05

0.1
0.15

0.2
0.25

0.3 Probability



Bank of China Coin Toss
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Variance: Average squared deviation
Normal distribution
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Deviations in two dimensions
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Deviations in two dimensions: dx x dy
µx

µy

+
dx
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Covariance

• Measure of association between two variables

• Closely related to variance

• Useful to partition variance
• “Analysis of Variance” term coined by Fisher



Variance covariance matrix
Univariate Twin/Sib Data

Var(Twin1)       Cov(Twin1,Twin2)   

Cov(Twin2,Twin1)       Var(Twin2) 

Suitable for modeling when no missing data
Good conceptual perspective



Maximum Likelihood Estimates: Nice 
Properties

1.  Asymptotically unbiased
• Large sample estimate of p -> population value

2.  Minimum variance “Efficient”
• Smallest variance of all estimates with property 1

3.  Functionally invariant
• If g(a) is one-to-one function of parameter a
• and MLE (a) = a*
• then MLE g(a) = g(a*)

• See http://wikipedia.org

http://wikipedia.org�


Full Information Maximum Likelihood (FIML)
Calculate height of curve for each raw data vector

-1



Height of normal curve: µx = 0
Probability density function
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φ(xi) is the likelihood of data point xi for 
particular mean & variance estimates



Height of normal curve at xi: µx = .5
Function of mean
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Likelihood of data point xi increases as µx 
approaches xi



Likelihood of xi as a function of µ
Likelihood function
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L(xi) is the likelihood of data point xi for 
particular mean & variance estimates
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Height of normal curve at x1
Function of variance
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Likelihood of data point xi changes as 
variance of distribution changes

φ (xi var = 2)

φ (xi var = 3)



Height of normal curve at x1 and x2
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x1 has higher likelihood with var=1 whereas 
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Height of bivariate normal density function
Likelihood varies as f(µ1, µ2, σ1, σ2, ρ)
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Likelihood of Independent Observations
• Chance of getting two heads
• L(x1…xn) = Product (L(x1),  L(x2) , … L(xn))
• L(xi) typically < 1

• Avoid vanishing L(x1…xn) 
• Computationally convenient log-likelihood
• ln (a * b) = ln(a) + ln(b)

• Minimization more manageable than maximization 
– Minimize -2 ln(L)



Likelihood Ratio Tests

• Comparison of likelihoods
• Consider ratio  L(data,model 1) / L(data, model 2)
• ln(a/b) = ln(a) - ln(b)
• Log-likelihood lnL(data, model 1) - ln L(data, model 2)

• Useful asymptotic feature when model 2 is a submodel of model 1
-2 (lnL(data, model 1) - lnL(data, model 2)) ~ χ2 

df = # parameters of model 1 - # parameters of model 2

• BEWARE of gotchas!
– Estimates of a2 q2 etc. have implicit bound of zero
– Distributed as 50:50 mixture of 0 and χ1

2 

l
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Two Group ACE Model for twin data
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Linkage vs Association

Linkage
1. Family-based

2. Matching/ethnicity generally 
unimportant

3. Few markers for genome coverage 
(300-400 STRs)

4. Can be weak design

5. Good for initial detection; poor for 
fine-mapping 

6. Powerful for rare variants

Association
1. Families or unrelated individuals

2. Matching/ethnicity crucial

3. Many markers req for genome 
coverage (105 – 106 SNPs)

4. Powerful design

5. Ok for initial detection; good for 
fine-mapping

6. Powerful for common variants; rare 
variants generally impossible



Identity by Descent (IBD)
Number of alleles shared IBD at a locus, 

parents AB and CD: Three subgroups of sibpairs

AC AD BC BD

AC 2 1 1 0

AD 1 2 0 1

BC 1 0 2 1

BD 0 1 1 2



Partitioned Twin Analysis

• Nance & Neale (1989) Behav Genet 19:1

– Separate DZ pairs into subgroups
• IBD=0 IBD=1 IBD=2

– Correlate Q with 0 .5 and 1 coefficients
– Compute statistical power



Partitioned Twin Analysis: Three DZ groups
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Problem 1 with Partitioned Twin 
analysis: Low Power

• Power is low



Problem 2: IBD is not known with certainty

• Markers may not be fully informative
– Only so much heterozygosity in e.g., 20 allele 

microsatellite marker
– Less in a SNP
– Unlikely to have typed the exact locus we are 

looking for
– Genome is big!



IBD pairs vary in similarity
Effect of selecting concordant pairs
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Improving Power for Linkage

• Increase marker density (yaay SNP chips)
• Change design

– Families
– Larger Sibships
– Selected samples

• Multivariate data
• More heritable traits with less error



Problem 2: IBD is not known with certainty

• Markers may not be fully informative
– Only so much heterozygosity in e.g., 20 allele 

microsatellite marker
– Less in a SNP
– Unlikely to have typed the locus that causes 

variation
– Genome is big!
– The Universe is Big. Really big. It may seem like a long way 

to the corner chemist, but compared to the Universe, that's 
peanuts. - D. Adams





Using Merlin/Genehunter etc

• Several Faculty experts
– Goncalo Abecasis
– Sarah Medland
– Stacey Cherny

• Possible to use Merlin via Mx GUI



“Pi-hat” approach

1  Pick a putative QTL location 

2  Compute p(IBD=0) p(IBD=1) p(IBD=2) given 
marker data [Use Mapmaker/sibs or Merlin]

3  Compute πi =  p(IBD=2) +  .5p(IBD=1)

4  Fit model

Repeat 1-4 as necessary for different locations across 
genome

Elston & Stewart

^



Basic Linkage (QTL) Model

Q: QTL Additive Genetic          F: Family Environment            E: Random Environment
3 estimated parameters: q, f and e       Every sibship may have different model

πi = p(IBDi=2) + .5 p(IBDi=1)   individual-level
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Association Model

LDL1 LDL2
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b a a

LDL1i= a + b Geno1i

Var(LDLi) = R

Cov(LDL1,LDL2)
= C

C may be f(πi) in
joint linkage & 
association

b



Between/Within Fulker Association Model

Model for the 
means
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