

Introduction to Linkage and Association for Quantitative Traits

Michael C Neale Boulder Colorado Workshop March 2 2009

Overview

- A brief history of SEM
- Regression
- Maximum likelihood estimation
- Models
 - Twin data
 - Sib pair linkage analysis
 - Association analysis

Origins of SEM

- Regression analysis
 - 'Reversion' Galton 1877: Biological phenomenon
 - Yule 1897 Pearson 1903: General Statistical Context
 - Initially Gaussian X and Y; Fisher 1922 Y|X
- Path Analysis
 - Sewall Wright 1918; 1921
 - Path Diagrams of regression and covariance relationships

Structural Equation Modeling Basics

- Two kinds of relationships
 - Linear regression X -> Y single-headed
 - Unspecified covariance X<->Y double-headed
- Four kinds of variable
 - Squares: observed variables
 - Circles: latent, not observed variables
 - Triangles: constant (zero variance) for specifying means
 - Diamonds: observed variables used as moderators (on paths)

Linear Regression Covariance SEM

Models *covariances* only Of historical interest

Linear Regression SEM with means

Models Means and Covariances

Linear Regression SEM: Individual-level

$$Y_i = a + bX_i$$

Models Mean and Covariance of Y *only* Must have raw (individual level) data X_i is a *definition* variable Mean of Y different for every observation

Single Factor Covariance Model

Two Factor Model with Covs & Means

Factor model essentials

- In SEM the factors are typically assumed to be normally distributed
- May have more than one latent factor
- The error variance is typically assumed to be normal as well
- May be applied to binary or ordinal data
 Threshold model

Multifactorial Threshold Model Normal distribution of liability. 'Affected' when liability x > t0.5 0.4 0.3 0.2 0.1 0 -2 3 -3 ()2 -1 1

Measuring Variation

- Distribution
 - Population
 - Sample
 - Observed measures
- Probability density function 'pdf'
 - Smoothed out histogram
 - f(x) >= 0 for all x

$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$

Flipping Coins

1 coin: 2 outcomes

2 coins: 3 outcomes

8 coins: 9 outcomes

4 coins: 5 outcomes

Bank of China Coin Toss

Infinite outcomes

Variance: Average squared deviation Normal distribution

Variance = $\Sigma d_i^2/N$

Deviations in two dimensions

Covariance

- Measure of association between two variables
- Closely related to variance
- Useful to partition variance
 - "Analysis of Variance" term coined by Fisher

Variance covariance matrix Univariate Twin/Sib Data Var(Twin1) Cov(Twin1,Twin2)

Cov(Twin2,Twin1) Var(Twin2)

Suitable for modeling when no missing data Good conceptual perspective

Maximum Likelihood Estimates: Nice Properties

- 1. Asymptotically unbiased
 - Large sample estimate of p -> population value
- 2. Minimum variance "Efficient"
 - Smallest variance of all estimates with property 1
- 3. Functionally invariant
 - If g(a) is one-to-one function of parameter a
 - and MLE (a) = a^*
 - then MLE g(a) = g(a*)
- See <u>http://wikipedia.org</u>

Full Information Maximum Likelihood (FIML) Calculate height of curve for each raw data vector • Univariate - height of normal pdf $- \oplus (\mathbf{X}) =$ - $(2\Pi\sigma^2)^{-.5} e^{-.5((x_i - \mu)^2)/\sigma^2)}$ Multivariate - height of multinormal pdf $- |2\Pi\Sigma|^{-n/2} e^{-.5((\mathbf{x}_{i} - \mu)\Sigma^{-1}(\mathbf{x}_{i} - \mu))}$

Height of normal curve: $\mu_x = 0$ Probability density function

 $\phi(x_i)$ is the likelihood of data point x_i for particular mean & variance estimates VCU

Height of normal curve at xi: $\mu_x = .5$ Function of *mean*

Likelihood of data point x_i increases as μ_x approaches x_i

Likelihood of x_i as a function of μ Likelihood function

L(x_i) is the likelihood of data point x_i for particular mean & variance estimates VCU

Height of normal curve at x1 Function of *variance*

Likelihood of data point x_i changes as variance of distribution changes

Height of normal curve at x1 and x2

 x_1 has higher likelihood with var=1 whereas x_2 has higher likelihood with var=2 VCU

Height of bivariate normal density function Likelihood varies as $f(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$

Likelihood of Independent Observations

- Chance of getting two heads
- $L(x_1...x_n) = Product (L(x_1), L(x_2), ..., L(x_n))$
- $L(x_i)$ typically < 1
- Avoid vanishing $L(x_1...x_n)$
- Computationally convenient log-likelihood
- $\ln (a * b) = \ln(a) + \ln(b)$
- Minimization more manageable than maximization
 Minimize -2 In(L)

Likelihood Ratio Tests

- Comparison of likelihoods
- Consider ratio L(data,model 1) / L(data, model 2)
- $\ln(a/b) = \ln(a) \ln(b)$

- Log-likelihood InL(data, model 1) In L(data, model 2)
- Useful asymptotic feature when model 2 is a submodel of model 1
 -2 (InL(data, model 1) InL(data, model 2)) ~ χ²
 df # parameters of model 1 # parameters of model 1

df = # parameters of model 1 - # parameters of model 2

- BEWARE of gotchas!
 - Estimates of a² q² etc. have implicit bound of zero
 - Distributed as 50:50 mixture of 0 and χ_1^2

Two Group ACE Model for twin data

Linkage vs Association

Linkage

- 1. Family-based
- 2. Matching/ethnicity generally unimportant
- Few markers for genome coverage (300-400 STRs)
- 4. Can be weak design
- 5. Good for initial detection; poor for fine-mapping
- 6. Powerful for rare variants

Association

- 1. Families or unrelated individuals
- 2. Matching/ethnicity crucial
- 3. Many markers req for genome coverage (10⁵ 10⁶ SNPs)
- 4. Powerful design
- 5. Ok for initial detection; good for fine-mapping
- 6. Powerful for common variants; rare variants generally impossible

Identity by Descent (IBD)												
Number of alleles shared IBD at a locus, parents AB and CD: Three subgroups of sibpairs												
	AC	AD	BC	BD								
AC	2	1	1	0								
AD	1	2	0	1								
BC	1	0	2	1								
BD	0	1	1	2								

Partitioned Twin Analysis

Nance & Neale (1989) Behav Genet 19:1

Separate DZ pairs into subgroups
IBD=0 IBD=1 IBD=2
Correlate Q with 0 .5 and 1 coefficients
Compute statistical power

IBD=0 group

Problem 1 with Partitioned Twin analysis: Low Power

Table II.Twin Pairs Required to Reject False Hypotheses Under Two Research Designs:(A) MZ and DZ Twins; (B) Only DZ Twins

	True model (G, M, E)									
Heritability	.9	.6	.3	.9	.6	.3	.9	.6	.3	
% marker effect	75	75	75	50	50	50	25	25	25	

(B) No. of pairs in three DZ subgroups in 1:2:1 ratio

Problem 2: IBD is not known with certainty

- Markers may not be fully informative
 - Only so much heterozygosity in e.g., 20 allele microsatellite marker
 - Less in a SNP
 - Unlikely to have typed the exact locus we are looking for
 - Genome is big!

IBD pairs vary in similarity

Improving Power for Linkage

- Increase marker density (yaay SNP chips)
- Change design
 - Families
 - Larger Sibships
 - Selected samples
- Multivariate data
- More heritable traits with less error

Problem 2: IBD is not known with certainty

- Markers may not be fully informative
 - Only so much heterozygosity in e.g., 20 allele microsatellite marker
 - Less in a SNP
 - Unlikely to have typed the locus that causes variation
 - Genome is big!
 - The Universe is Big. Really big. It may seem like a long way to the corner chemist, but compared to the Universe, that's peanuts. - D. Adams

ess 🙋 http://www.sph.umich.edu/csg/abecasis/Merlin/

Center for STATISTICAL GENETICS

©1998 Jeff Bucchino

Welcome!

MERLIN uses sparse trees to represent gene flow in pedigrees and is one of the fastest pedigree analysis packages around <u>(Abecasis et al, 2002)</u>. Comments and suggestions are welcome, please e-mail <u>goncalo@umich.edu</u>.

MERLIN

Thanks to the Wizard of Draws for the cool cartoon!

University of Michigan | School of Public Health | Gonçalo Abecasis

FAQ

-

*∂*Go

Li

Using Merlin/Genehunter etc

- Several Faculty experts
 - Goncalo Abecasis
 - Sarah Medland
 - Stacey Cherny
- Possible to use Merlin via Mx GUI

"Pi-hat" approach

- 1 Pick a putative QTL location
- 2 Compute p(IBD=0) p(IBD=1) p(IBD=2) given marker data [Use Mapmaker/sibs or Merlin]

3 Compute
$$\hat{\pi}_i = p(IBD=2) + .5p(IBD=1)$$

4 Fit model

Repeat 1-4 as necessary for different locations across genome

Elston & Stewart

Basic Linkage (QTL) Model $\pi_i = p(IBD_i=2) + .5 p(IBD_i=1)$ individual-level

Q: QTL Additive GeneticF: Family EnvironmentE: Random Environment3 estimated parameters: q, f and eEvery sibship may have different model

