I have the power and multiple testing

Boulder 2008 Benjamin Neale

Slide of Contents

- Boring Statistical principles
- Power
 - Simple example
 - Formal definition
 - Influences on Power
- Multiple testing
 - Definition
 - FDR
 - QQ-Plots and you

Importance of power calculation

- Help design studies that are likely to succeed
 - Determine the minimum sample size necessary to achieve the desired level of statistical power (usually > 80%), for a given effect size
 - Determine the minimum effect size that can be detected with adequate statistical power, for a fixed sample size

Importance of power calculation

- Help design studies that are likely to succeed
 - Determine the minimum sample size necessary to achieve the desired level of statistical power (usually > 80%), for a given effect size
 - Determine the minimum effect size that can be detected with adequate statistical power, for a fixed sample size

Usually obligatory for grant applications

Simple example

- Investigate the linear relationship (ρ)
- between two random variables X and Y: ρ=0 vs. ρ≠0 (correlation coefficient).

- draw a sample, measure X,Y
- calculate the measure of association ρ (Pearson product moment corr. coeff.)
- test whether $\rho \neq 0$.

How to Test $\rho \neq 0$

- assumed the data are normally distributed
- defined a null-hypothesis ($\rho = 0$)
- chosen α level (usually .05)
- utilized the (null) distribution of the test statistic associated with $\rho=0$
- t=ρ √ [(N-2)/(1-ρ²)]

How to Test $\rho \neq 0$

- Sample N=40
- r=.303, t=1.867, df=38, p=.06 α=.05
- As $p > \alpha$, we fail to reject $\rho = 0$

• have we drawn the correct conclusion?

 $\alpha = type \ I \ error \ rate$ probability of deciding $\rho \neq 0$ (while in truth $\rho=0$)

α is often chosen to equal .05...why?DOGMA

N=40, r=0, nrep=1000 – central t(38), α=0.05 (critical value 2.04)

Observed non-null distribution (p=.2) and null distribution

In 23% of tests of $\rho=0$, |t|>2.024($\alpha=0.05$), and thus draw the correct conclusion that of rejecting $\rho = 0$.

The probability of rejecting the nullhypothesis (ρ =0) correctly is 1- β , or the power, when a true effect exists

Hypothesis Testing

- Correlation Coefficient hypotheses:
 - $-h_o$ (null hypothesis) is $\rho=0$
 - $-h_a$ (alternative hypothesis) is $\rho \neq 0$
 - Two-sided test, where $\rho > 0$ or $\rho < 0$ are one-sided
- Null hypothesis usually assumes no effect
- Alternative hypothesis is the idea being tested

Summary of Possible ResultsH-0 trueH-0 falseaccept H-0 $1-\alpha$ β reject H-0 α $1-\beta$

α=type 1 error rate
β=type 2 error rate
1-β=statistical power

STATISTICS

Power

- The probability of rejection of a false null-hypothesis depends on:
 - -the significance criterion (α)
 -the sample size (N)
 -the effect size (Δ)

"The probability of detecting a given effect size in a population from a sample of size N, using significance criterion α "

Increased effect size Sampling Sampling distribution if distribution if *alpha 0.05* H_A were true H_0 were true 4 0.3 POWER Frequency **-**β ↑ 0.2 ß α 0.1 0.0 -2 6 8

Non-centrality parameter

More conservative α Sampling Sampling distribution if distribution if alpha 0.01 H_A were true H_0 were true 4 **POWER:** 0.3 Frequency **1** - β ↓ 0.2 ß 0 0.0 -2 2 6 4 8 -4 Non-centrality parameter

χ² distributions

http://www2.ipcku.kansai-u.ac.jp/~aki/pdf/chi21.htm

Noncentral χ^2

- Null χ^2 has μ =df and σ^2 =2df
- Noncentral χ^2 has μ =df + λ and σ^2 =2df + 4 λ
- Where df are degrees of freedom and λ is the noncentrality parameter

http://www2.ipcku.kansai-u.ac.jp/~aki/pdf/chi21.htm

Short practical on GPC

- Genetic Power Calculator is an online resource for carrying out basic power calculations
- For our 1st example we will use the probability function calculator to play with power
- http://pngu.mgh.harvard.edu/~purcell/gpc/

GPC Power Practical

🕲 Genetic Power Calculator - Mozilla Firefox	
<u> Eile E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
C X (http://pngu.mgh.harvard.edu/~purcell/g	🖂 🖉 🔹 🔀 workshop ibg genetics twin 🔎 📗 🔹
🖻 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotmail 🧕 Amazon.com: Sta	tistic 💥 The Arreat Summit - It 📄 Share on Facebook
M Gmail - GENEVA I Gmail - GENEVA I Fig workshop:2009: Fig Index of /work This site provides automated power analysis for variance compo- tests. It is currently under construction - suggestions, comments Purcell S, Cherny SS, Sham PC. (2003) Genetic Po- design of linkage and association genetic mapping traits. Bioinformatics, 19(1):149-150.	sh Wiley InterScien In Hulu - Videos Cypriots and U.N Constraints (VC) quantitative trait locus (QTL) linkage and association tests in sibships, and other common to <u>Shaun Purcell</u> . If you use this site, please reference the following <u>Bioinformatics article</u> :
Modules	
VC QTL linkage for sibships Notes VC QTL association for sibships and singletons Notes TDT for discrete traits Notes TDT and parenTDT with ascertainment Notes Case-control for discrete traits (new output features) Notes TDT for threshold-selected quantitative traits Notes Case-control for threshold-selected quantitative traits Notes Case-control for threshold-selected quantitative traits Notes Probability Function Calculator Notes Various miscellaneous utilities Notes	Click this link [no this isn't a banner ad]
Instructions for VC power calculations All calculations are based upon formula derived in Sham et al (2 power calculations are strongly advised to consult this article. × Find: exclude ▶ Next Previous Bosoton: Wed 11:41 UK: Wed 16:41 Netherlands: Wed 17:41	000) [AJHG, 66, 1616-1630]. Users of this site who are unsure of the nature of the VC tests and Match case Kong: Thu 00:41 Image: Los Angeles: Wed 08:41 http://pngu.mgh.harvard.edu/~purcell/gpc/pdf.html Image: Imag
🛃 start 🔰 🥹 2 F 🗸 🖻 2 W. 🕞 🖾 2 M 👻 💽 2 M	🔹 🔟 5 M 👻 🦷 RGu 📋 mac 🦿 😰 😰 🌹 🧕 54% 🗰 🖝 🔷 🕬 😒 🏹 11:41 AM

Parameters in probability function calculator

- Click on the link to probability function calculator
- 4 main terms:
- X: critical value of the chi-square
- P(X>x): Power
- df: degrees of freedom
- NCP: non-centrality parameter

🕲 Statistical Genetics Group - Mozilla Firefox	
Eile Edit View History Bookmarks Iools <u>H</u> elp	
C X (http://pngu.mgh.harvard.edu/~purcell/gpc/pdf.html	🗇 🖉 🔹 18 workshop ibg genetics twin 🔎 📗 🔹
🙍 Most Visited 🚞 Smart Bookmarks 教 Free Hotmail 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 🗋 Share on Facebook	
M Gmail - GENEVA I 🖂 🛛 🧧 workshop:2009: 🖂 🛛 🥵 Index of /worksh 🖂 🕅 Wiley InterScien 🖂 📘 Hulu - Videos	🛛 🛑 Cypriots and U.N 🖾 📄 Statistical Ge 🛛 🔹

Probability Function Calculator

S. Purcell, 2000, 2005.

This site is designed to provide a calculator for the chi-squared and normal distributions. See below for notes on how to use the forms.

🗙 Find: exclude 🗸 🕹 Next 👚 Previous 🖌 Highlight all 🗌 Match case								
Bosoton: Wed 11:4	46 UK: Wed 16:46	Netherlands: Wed 17:46	Hong Kong: Thu 00:46	Los Angeles: Wed 08:46	Done		🥶 🧕 🔸	
🛃 start 🔰	😢 2 F 🔹 🧰 2	2 W. 👻 💯 2 M. 👻 💽	2 M. 👻 🔀 5 M. 👻	R RG 📋 ma	🧷 💀 🕄 🌷	59% 🛛 🖝 🤇	🖓 🖃 🧐 🤫 😪 👷 🎦 11:46 AM 👘	

🕲 Statistical Genetics Group - Mozilla Firefox	
Eile Edit View History Bookmarks Iools <u>H</u> elp	
C X (http://pngu.mgh.harvard.edu/~purcell/gpc/pdf.html	🗇 🖉 🔹 josity snp information content 🔎 📗 🔹
🙍 Most Visited 🚞 Smart Bookmarks ಶ Free Hotmail 🤹 Amazon.com: Statistic 🐲 The Arreat Summit - It 🗋 Share on Facebook	
M Gmail - GENEVA I 🖂 🛛 📙 workshop:2009: 🖂 🛛 📙 Index of /worksh 🖾 🛛 🛞 Wiley InterScien 🖂 📘 Hulu - Videos	🛛 🛑 Cypriots and U.N 🖾 📄 Statistical Ge 🛛 🔹

Probability Function Calculator

S. Purcell, 2000, 2005.

This site is designed to provide a calculator for the chi-squared and normal distributions. See below for notes on how to use the forms.

X 3.85 ?	P(X>x) ?	df 1	NCP 10 ?	Non-central chi-squared Inverse non-central chi-squared NCP non-central chi-squared
x ?	P(X>x) ?	mean		Normal cumulative
X : critical value for P(X>x) : probability df : degrees of freed NCP : noncentrality For central chi-squa i.e. df=1, P(X>x) = 0. For standard normal i.e. mean = 0, sd = 1,	statistic of being <i>above</i> th om parameter red distribution, N 05, NCP = 0 gives I distribution, meau P(X>x) = 0.025 giv	ne critical value ICP = 0. X = 3.84146 n = 0, sd = 1 ve X = 1.95996	1) Fill i 2) Clic 3) Rev	n three k the button reals the fourth

🗙 Find: exclude 🗸 Next 👚 Previous 🖌 Highlight all 🗌 Match case								
Bosoton: Wed 11:4	ed 11:49 UK: Wed 16:49 Netherlands: Wed 17:49 Hong Kong: Thu 00:49			Los Angeles: Wed 08:49 Done			🥶 🙂 ٨	
🛃 start 🔰	😢 2 F., 🔹 🛅 2	2 W. 👻 💯 2 M. 👻 💽	2 M. 👻 🔀 5 M. 👻	🖳 RG 📋 ma	1 💀 😰 🏅	61% 🛛 🗲 🤇	🗸 🖻 🧐 🤫 😵 🧐 🖓 🦕 🎦 11:49 AM 👘	

😂 Statistical Genetics Group - Mozilla Firefox	
Eile Edit View History Bookmarks Iools Help	
C > C X I http://pngu.mgh.harvard.edu/~purcell/cgi-bin/pdf.cgi	🗇 🗸 🔹 josity snp information content 🔎 🕌 🔹
🙍 Most Visited 🚞 Smart Bookmarks 🧳 Free Hotmail 🧟 Amazon.com: Statistic 💥 The Arreat Summit - It 🗋 Share on Facebook	
M Gmail - GENEVA I 🖂 🛛 🧧 workshop:2009: 🖂 🛛 📙 Index of /worksh 🖂 🕅 🛞 Wiley InterScien 🖂 📘 Hulu - Videos	🖂 (Cypriots and U.N 🖂 📄 Statistical Ge 🛛 🔹

Probability Function Calculator

This site is designed to provide a calculator for the chi-squared and normal distributions. See below for notes on how to use the forms.

X 3.85 ?	P(X>x) 0.884957	df 1	NCP 10 ?	Non-central chi-squared Inverse non-central chi-squared NCP non-central chi-squared
x ?	P(X>x) ?	mean	SD	Normal cumulative
X : critical value for s: P(X>x) : probability of df : degrees of freedo: NCP : noncentrality p For central chi-square i.e. $df=1$, $P(X>x) = 0.0$. For standard normal of i.e. mean = 0, sd = 1, F	tatistic of being <i>above</i> the critic m ed distribution, NCP = (5, NCP = 0 gives X = 3. distribution, mean = 0, s P(X>x) = 0.025 give X =	$\begin{array}{c} \text{cal value} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $) Fill in th) Click th) Reveals	nree e button s the fourth

🗙 Find: exclude 🗸 Vext 🛧 Previous 🖌 Highlight all 🗌 Match case								
Bosoton: Wed 11:5	0 UK: Wed 16:50	Netherlands: Wed 17:50	Hong Kong: Thu 00:50	Los Angeles: Wed 08:50	Done		🙆 🐸 🔸	
🛃 start 🌖	😻 2 F 🔹 🛅 2	2 W. 👻 💯 2 M. 👻 💽	2 M. 👻 🌌 5 M. 👻	R RG 🔳 ma	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62% 🖿 🖝 📀	🖃 💫 📚 💟 🧠 👷 🎦 11:50 AM 👘	

Exercises

- 1) Find the power when NCP=5, degrees of freedom=1, and the critical X is 3.84
- 2) Find the NCP for power of .8, degrees of freedom=1 and critical X is 13.8

Answers

- 1) Power=0.608922, when NCP=5, degrees of freedom=1, and the critical X is 3.84
- 2) NCP=20.7613 when power of .8, degrees of freedom=1 and critical X is 13.8

Additional Factors

- Type of Data:
 - Continuous > Ordinal > Binary
 - Do not turn "true" binary into continuous
- Multivariate analysis
- Remove confounding/bias

Effects on Power Recap

- Larger Effect Size
- Larger Sample Size
- Alpha Level shifts
 Bowara the False Pasi
 - Beware the False Positive!!!
- Empirical significance/permutation
When To Do Power Calculations?

- Generally study planning stages of study
- Occasionally with negative result
- No need if significance is achieved
- Computed to determine chances of success

Steps in power calculation

- Specify
 - Study design (e.g. case-control)
 - Statistical test

Steps in power calculation

- Specify
 - Study design (e.g. case-control)
 - Statistical test
- Assume hypothetical values for 2 of the 3 parameters:
 - Sample size
 - Effect size (including "exposure" frequency)
 - Statistical power

Steps in power calculation

- Specify
 - Study design (e.g. case-control)
 - Statistical test
- Assume hypothetical values for 2 of the 3 parameters:
 - Sample size
 - Effect size (including effect frequency)
 - Statistical power
- Calculate the remaining parameter

Practical using GPC for association

🕲 Genetic Power Calculator - Mozilla Firefox			
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp			
C × http://pngu.mgh.harvard.edu/~purcell/gpc	:/ 🖸 🖓 🔹 josity snp information content 🔎 📗		
🖻 Most Visited 🚞 Smart Bookmarks ಶ Free Hotmail 🤱 Amazon.com: Statis	tic 💥 The Arreat Summit - It 📋 Share on Facebook		
Gmail - Inbox (85 🖂 🛛 IBG workshop:2009: 🖾 🗌 IBG Index of /worksh	n 🗵 🚯 Wiley InterScien 🖂 📘 Hulu - Videos 🛛 🖾 🍥 Cypriots and U.N 🖂 📑 Genetic Powe 🔯 🕝		
This site provides automated power analysis for variance compor tests. It is currently under construction - suggestions, comments to	nents (VC) quantitative trait locus (QTL) linkage and association tests in sibships, and other common <u>Shaun Purcell</u> . If you use this site, please reference the following <u>Bioinformatics article</u> :		
Purcell S, Cherny SS, Sham PC. (2003) Genetic Pow design of linkage and association genetic mapping traits. Bioinformatics, 19(1):149-150.	ger Calculator:		
Modules			
VC QTL linkage for sibships Notes			
VC QTL association for sibships and singletons Notes			
TDT for discrete traits Notes	These are all association tests		
TDT and parenTDT with ascertainment Notes	Each refere to a different study decign		
Case-control for discrete traits (new output features) Notes			
TDT for threshold-selected quantitative traits Notes			
Case-control for threshold-selected quantitative traits Notes			
Epistasis power calculator Notes			
Probability Function Calculator Notes			
Various miscellaneous utilities			
Instructions for VC power calculations			
All calculations are based upon formula derived in Sham et al (20 nower calculations are strongly advised to consult this article	00) [AJHG, 66, 1616-1630]. Users of this site who are unsure of the nature of the VC tests and		
➤ Find: exclude	Match case		
Bosoton: Wed 12:11 UK: Wed 17:11 Netherlands: Wed 18:11 Hong K	ong: Thu 01:11 📑 Los Angeles: Wed 09:11 Done 🧔 🔞 🚸		

 What case control sample size do we need to achieve genome-wide significance for an odds ratio of 1.2 in a multiplicative model and an allele frequency of 20% when we directly type the locus for a disease with 5% prevalence?

👻 Genetic Power Calculator - Mozilla Firefox
Eile Edit View Higtory Bookmarks Tools Help
💽 🗸 C X 🕒 http://pngu.mgh.harvard.edu/~purcell/gpc/
🖻 Most Visited 🚞 Smart Bookmarks 🌌 Free Hotmail 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 🗋 Share on Facebook
M Gmail - Inbox (85 🗵 🛛 🔞 workshop:2009: 🗵 🛛 📴 Index of /worksh 🖾 🛞 Wiley InterScien 🖾 🦙 Hulu - Videos 🛛 🐼 Cypriots and U.N 🖄 📑 Genetic Powe 🔯 🔹
This site provides automated power analysis for variance components (VC) quantitative trait locus (QTL) linkage and association tests in sibships, and other common
tests. It is currently under construction - suggestions, comments to <u>Swaun Purceu</u> . If you use this site, please reference the following <u>Bioinformatics article</u> :
Purcell S, Cherny SS, Sham PC. (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex
traits. Bioinformatics, 19(1):149-150.
Modules
VC QTL linkage for sibships Notes
VC QTL association for sibships and singletons Notes
TDT for discrete traits
TDT and parenTDT with ascertainment Notes CIICK TOIS IINK
Case-control for discrete traits (new output features) Notes
TDT for threshold-selected quantitative traits Notes
Case-control for threshold-selected quantitative traits Notes
Epistasis power calculator Notes
Probability Function Calculator Notes
Various miscellaneous utilities
Instructions for VC power calculations
All calculations are based upon formula derived in Sham et al (2000) [AJHG, 66, 1616-1630]. Users of this site who are unsure of the nature of the VC tests and
power calculations are strongly advised to consult this article.
× Find: exclude ↓ Next ↑ Previous ♀ Highlight all □ Match case
Bosoton: Wed 12:11 UK: Wed 17:11 Netherlands: Wed 18:11 Hong Kong: Thu 01:11 🔤 Los Angeles: Wed 09:11 Done
🛃 Start 🔰 🥹 2 F 🗸 🗂 2 W. 👻 2 M 👻 2 M 👻 5 M 👻 8 M 👻 8 Gu 🗒 mac 🖉 😕 😰 🐥 78% 🖉 🗲 🔍 3 % 😪 🐙 📴 12:11 PM

Be give we helow gowinds up of the product of the produ	Statistical Constics Group - Mozilla First	ox.	
Image: Single Singl	File Edit View History Bookmarks Tools	<u>H</u> elp	
<pre>Mode Vished is mark toochmarks if Pree Hotmal is Anazon.com: Statistic if the Arreat Summk - R is Share on Pacebook</pre>		harvard.edu/~purcell/gpc/cc2.html	☆ 🖉 🔹 josity snp information content 🔎 🛄 🔹
Maral - Update: Be workshop:2009: Image of workshow We workshop:2009: Image of workshow Case - control for discrete traits Allele frequency at the risk locus High risk allele frequency (A) Image of workshow Image of the state of the	🧖 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	il 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Facebook	
Genetic Power Calculator Case - control for discrete traits Allele frequency at the risk locus High risk allele frequency (A) 02 (0 - 1) Prevalence 05 (0.0001 - 0.9999) Genotype relative risk AA 114 (>1) D-prime 1 (0 - 1) Marker allele frequency (B) 02 (0 - 1) Number of cases 1 (0 - 10000000) Control : case ratio 1 (0 - 10000000) (1 - type I error rate : 5e-8 (0.000000001 - 0.5) User-defined type I error rate : 5e-8 (0.000000001 - 0.5) User-defined power: determine N : 00 (0 - 1) (1 - type II error rate) 00 (0 - 1) Process: Reaet Created by Sharay Purcell 24. Oct.2008 X Ind: exclude Wat Provides & Holdight al Matgh case Booton: Wed 124.90 Wet Wet 18:49 Hong kong: Moline 10 Non Papeles: Wed 09:49 Septed	M Gmail - Update: 🖂 🛛 📙 🛛 🔀 G workshop:2009:	🛛 🛛 🚯 🚯 🚯 🚯 🛛 🚯 🛛 🕹 🖪 😨 📓 🔹 🖪 📓 📓 📓 📓 📓	🖂 🌔 Cypriots and U.N 🖂 📄 Statistical Ge 🔀 🔹
Case - control for discrete traits Allele frequency at the risk locus High risk allele frequency (A) : 02 (0 - 1) Prevalence : 05 (0.0001 - 0.9999) Genotype relative risk Aa : 12 (>1) D-prime : 12 (>1) Mumber of cases : 000 (0 - 10000000) Control : case ratio : 000 (0 - 100000000) (1 = equal number of cases and controls) : (>0) (1 = equal number of cases and controls) : (>000 User-defined type I error rate : 5e-8 (0.00000001 - 0.5) User-defined power: determine N : 080 (0 - 1) (1 - type II error rate) : 080 (0 - 1) Process Reset Created by Shann Purcell 24 Oct.2005 : Math case Bootstide Wat Previous P Highlight all : Math case Bootstide Wat Wed 12/19 Net Wed 10/19 Ico Angels: Wed 09/19 Stopped	Genetic Power Calo	culator	^
High risk allele frequency (A) : 02 (0 - 1) Prevalence : 05 (0.0001 - 0.9999) Genotype relative risk AA : 112 (>1) Genotype relative risk AA : 114 (>1) D-prime : 1 (0 - 1) Marker allele frequency (B) : 02 (0 - 1) Number of cases : 1000 (0 - 10000000) Control : case ratio : 1 (>0) User-defined type I error rate : 5e-8 (0.00000001 - 0.5) User-defined power: determine N : 0.80 (0 - 1) (1 - type II error rate) : 0.80 (0 - 1) (1 - type II error rate) : 0.80 (0 - 1) (1 - type II error rate) : 0.80 (0 - 1) (1 - type II error rate) : Math ese • Desctor : : : : : * : : : : : : : : : : : : <t< td=""><td>Case - control for discrete traits</td><td>Allele frequen</td><td>cy at the risk locus</td></t<>	Case - control for discrete traits	Allele frequen	cy at the risk locus
User-defined type I error rate : 5e-8 (0.00000001 - 0.5) User-defined power: determine N : 0.80 (0 - 1) (1 - type II error rate) Process Reset Created by Shaun Purcell 24.Oct.2008 × Find: exclude	High risk allele frequency (Å) Prevalence Genotype relative risk Åa Genotype relative risk ÅÅ D-prime Marker allele frequency (B) Number of cases Control : case ratio	<pre>: 0.2 (0 - 1) : .05 (0.0001 - 0.9999) : 1.2 (>1) : 1.44 (>1) :</pre>	
Created by Shaun Purcell 24.Oct.2008 × Find: exclude ▶ Next Previous Previous ✓ Highlight all Match case Bosoton: Wed 12:49 UK: Wed 17:49 Netherlands: Wed 18:49 Hong Kong: Thu 01:49 Start P2 E P2 E P2 W P3 M P3 M P4 P4 P4 P3 M	User-defined type I error rate User-defined power: determine N (1 - type II error rate) Process Reset	: 5e-8 (0.0000001 - 0.5) : 0.80 (0 - 1)	
	Created by Shaun Purcell 24, Oct. 2008	evious 🔊 Highlight all 🔲 Match case ds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	

Statistical Genetics Group - Mozilla Firef	ox.	
<u>File Edit View History Bookmarks Tools I</u>	<u>i</u> elp	
	.harvard.edu/~purcell/gpc/cc2.html	😭 🖉 🔹 josity snp information content 🔎 📗 🔹
🧖 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	il 🥶 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Fac	ebook
Gmail - Update: 🖂 🛛 IBG workshop:2009: 🛛	🛛 🛛 📴 Index of /worksh 🖂 🛛 🛞 Wiley InterScien 🖂 📘 Hulu - Vide	eos 🛛 😸 Cypriots and U.N 🖂 📑 Statistical Ge 🔀 🔹
Genetic Power Calo	culator	
Case - control for discrete traits	How comn	non disease is
High risk allele frequency (A) Prevalence Genotype relative risk Aa Genotype relative risk AA D-prime Marker allele frequency (B) Number of cases Control : case ratio	<pre>: 0.2 (0 - 1) : 0.5 (0.0001 - 0.9999) : 1.2 (>1) : 1.44 (>1) : 1.44 (>1) : 0.2 (0 - 1) : 1000 (0 - 10000000) : 1 (>0) (1 = equal number of cases and control Unselected controls? (* see below)</pre>	p1a)
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Process Reset		
Created by Shawn Purcell 24.Oct.2008		~
× Find: exclude ↓ Next ↑ Pre	vious 🖌 Highlight <u>a</u> ll 🔲 Mat <u>c</u> h case	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	ds: Wed 18:49 🛛 Hong Kong: Thu 01:49 🛛 🚟 Los Angeles: Wed 09:49 Sto	pped 💩 🚸
🯄 start 🔰 🥹 2 F. 🗸 🖻 2 W 👻 💯	2 M. 🝷 👩 3 M. 👻 5 M. 🝷 🖳 RG 🗒 ma 🛃 silv.	🥜 😨 😰 🚏 🧧 92% 🖡 🖝 🌾 🔊 🎇 🎇 12:49 PM

🐸 Statistical Genetics Group - Mozilla Firefox		
<u>Eile E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
🔇 🗲 C 🔀 📄 http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html	😭 🛷 🔹 🔀 🖸 sosity snp information content 🔎 📗	
应 Most Visited 🚞 Smart Bookmarks 🍂 Free Hotmail 🤱 Amazon.com: Statistic 🐲	The Arreat Summit - It 📋 Share on Facebook	
Gmail - Update: 🖂 🛛 📴 workshop:2009: 🖂 🗍 📴 Index of /worksh 🖂 🗍	🏵 Wiley InterScien 🖂 📘 Hulu - Videos 🛛 🖂 🧼 Cypriots and U.N 🖂 📄 Statistical Ge 🔞 💽	
Genetic Power Calculator		
Case - control for discrete traits	This is the relative risk—not the	
High risk allele frequency (A) : 0.2 (0 - 1)	odds ratio. The OR is	
Genotype relative risk Aa : 1.2 (>1)	approximately equivalent to the DD	
Genotype relative risk AA : 1.44 (>1)	approximately equivalent to the RR	
D-prime : 1 (0 - 1)	for small values of RR.	
Marker allele frequency (B) : 0.2 (0 - 1)		
Number of cases : 1000 (0 - 1	0000000)	
Control : case ratio : 1 (>0)		
(1 = equal	number of cases and controls)	
Unselected cont	rols? (* see below)	
User-defined type I error rate : $5e-8$ (0.00000001 - 0.5) User-defined power: determine N : 0.80 (0 - 1) (1 - type II error rate)		
Process		
Created by Shaun Purcell 24.Oct.2008		
× Find: exclude	ase	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlands: Wed 18:49 Hong Kong: Thu	01:49 🔤 Los Angeles: Wed 09:49 Stopped 🙆 🚸	
🦉 start 🔰 🥹 2 F. → 🛅 2 W → 💯 2 M. → 💽 3 M. → 🗷 5 M.	🕐 🔣 RG 📋 ma 🛃 silv 🧷 🕺 🕄 🌹 🧕 92% 🖡 🌾 🏈 🖫 12:49 PM	

😂 Statistical Genetics Group - Mozilla Fire	fox		
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	Help		1.5
🔇 💽 - C 🗙 🗋 http://pngu.mgl	n.harvard.edu/~purcell/gpc/cc2.html	☆ ✓ • Josity snp information content	🔎 💵 -
📄 Most Visited 🚞 Smart Bookmarks ಶ Free Hotma	ail 🤹 Amazon.com: Statistic 💥 The Arreat S	ummit - It 📄 Share on Facebook	
🛛 M Gmail - Update: 🖾 🛛 🧧 workshop:2009:	🖂 📔 📴 Index of /worksh 🖂 🗍 🚱 Wiley Inte	rScien 🖂 📘 Hulu - Videos 🛛 🔀 🍥 Cypriots and U.N 🖂 🕒 Statistical G	je 🔯 🔹
Genetic Power Cal	culator		^
Case - control for discrete traits		Risk of the AA genotype. Note that	
High risk allele frequency (Å) Prevalence Genotype relative risk Åa Genotype relative risk ÅÅ	$\begin{array}{c} 0.2 & (0 - 1) \\ \vdots & .05 & (0.0001 - 0.9999) \\ \vdots & 1.2 & (>1) \\ \cdot & 144 & (>1) \end{array}$	the model of risk is defined by the relationship between Aa and AA.	
D-prime Marker allele frequency (B) Number of cases Control : case ratio	$\begin{array}{c} 1 \\ \vdots \\ 0.2 \\ \vdots \\ 1000 \\ \vdots \\ 1 \\ \vdots \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	We have a multiplicative model because 1.44 = 1.2*1.2.	
Unselected controls? (* see below) User-defined type I error rate : 5e-8 (0.00000001 - 0.5) User-defined power: determine N : 0.80 (0 - 1) (1 - type II error rate)			
Process Reset Created by Shaun Purcell 24.Oct.2008			
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	nds: Wed 18:49 Hong Kong: Thu 01:49 🔤 I	os Angeles: Wed 09:49 Stopped 6	٠
🛃 start 🛛 😢 2 F. 🔹 🖿 🛛 🖤 🗸	2 M 💽 3 M 🕱 5 M 🖳 RG.	📋 ma 🧬 silv 🥜 😰 😰 🗘 🗧 92% 🖝 🔇 🔊 🗞 🌾	12:49 PM

Statistical Genetics Group - Mozilla Firefox	
Eile Edit View History Bookmarks Tools Help	
C X http://pngu.mgh.harvard.edu/~purc	ell/gpc/cc2.html 🔀 🖉 🔹 josity snp information content 🔎 🚺
🧖 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotmail 🧕 Amazon.com:	Statistic 💥 The Arreat Summit - It 📋 Share on Facebook
🛛 M Gmail - Update: 🖂 🛛 IBG workshop:2009: 🖂 🗍 IBG Index of /v	vorksh 🖂 🛛 🟵 Wiley InterScien 🖂 📘 Hulu - Videos 🛛 🐼 🍥 Cypriots and U.N 🖂 📑 Statistical Ge 🔞 🔹
Genetic Power Calculator	
Case - control for discrete traits	The LD statistic D' which represents
High risk allele frequency (A) : 0.2 (9)	recombination natterns historically
Prevalence : .05 ()	
Genotype relative risk Aa : 1.2 ($D' \perp$ allele frequency at the typed
Genotype relative risk AA : 1.44 ($\rightarrow 1$) D + allele frequency at the typed
D-prime : 1 (1 Marker allele frequency (B) : 0.2 (1	locus information yields r^2
Number of cases : 1000 Control : case ratio : 1 ((0 - 10000000) >0) 1 = equal number of cases and controls)
Unsele	cted controls? (* see below)
User-defined type I error rate : 5e-8 User-defined power: determine N : 0.80 (0 (1 - type II error rate)	(0.00000001 - 0.5) D - 1)
Process Reset	
Created by Shaun Purcell 24. Oct. 2008	all 🔲 Match area
Bosotop: Wed 12:49 LIK: Wed 17:49 Netherlands: Wed 12:40 H	gi 🔄 Haugh Case
∛ start 2 F. → 2 W → 2 2 M. → 3 3 M.	- 💌 5 M 🕞 RG 🗒 ma 🛃 silv 🧷 🖓 🕄 🗘 🗘 — 92% 🔰 🖝 🔷 🖓 🎇 12:49 PM

😂 Statistical Genetics Group - Mozilla Firef	ox	
<u> E</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools !	<u>t</u> elp	
	.harvard.edu/~purcell/gpc/cc2.html	🟫 🖉 🔹 🖸 🖸 🔹 sosity snp information content 🔎 📔
📄 Most Visited 🚞 Smart Bookmarks 🌌 Free Hotma	il 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Facebook	
🛛 🖂 Gmail - Update: 🖂 🛛 IBG workshop:2009: [🛛 🛛 🔀 Index of /worksh 🖂 🛛 🛞 Wiley InterScien 🖂 📘 Hulu - Videos	🖂 🚺 Cypriots and U.N 🖂 📋 Statistical Ge 🛛 🔹
Genetic Power Calc	culator	<u>^</u>
Case - control for discrete traits	Sample size	for cases
High risk allele frequency (A) Prevalence Genotype relative risk Aa Genotype relative risk AA D-prime Marker allele frequency (B) Number of cases Control : case ratio	<pre>: 0.2 (0 - 1) : 05 (0.0001 - 0.9999) : 1.2 (>1) : 1.44 (>1) : 1.44 (>1) : 1000 (0 - 10000000) : 1 (>0) (1 = equal number of cases and controls) Unselected controls? (* see below)</pre>	
User-defined type I error rate User-defined power: determine N (1 - type II error rate) Process Reset	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Created by Shaun Purcell 24. Oct. 2008 Find: exclude	vious 🔊 Highlight all 🔲 Match case	×
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	ds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	🗇 🔮 🛧
🛃 start 🔰 🥹2 F. 🔹 🖻 2 W 🔹 🕎	2 M. 👻 💽 3 M. 👻 S M. 👻 RG 🗒 ma 🛃 silv	🧷 🕺 🕄 🌷 92% 🕴 🖝 🏈 🕾 🖓 🚰 12:49 РМ

Statistical Genetics Group - Mozilla Firefox
Eile Edit View History Bookmarks Tools Help
C X (http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html 🖓 🔹 issity snp information content 🔎 🕌
🖻 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotmail 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 🗋 Share on Facebook
M Gmail - Update: 🛛 📴 workshop:2009: 🖾 📴 Index of /worksh 🐼 🚯 Wiley InterScien 🖄 👆 Hulu - Videos 💿 🍥 Cypriots and U.N 😒 📄 Statistical Ge 🔯
Genetic Power Calculator
Case - control for discrete traits Ratio of Controls to Cases
High risk allele frequency (A) : 0.2 (0 - 1) Prevalence : 0.5 (0.0001 - 0.9999) Genotype relative risk Aa : 1.2 (>1) Genotype relative risk AA : 1.44 (>1) D-prime : 1 (0 - 1) Marker allele frequency (B) : 0.2 (0 - 1) Number of cases : 1000 (0 - 10000000) Control : case ratio : 1 (>0) Unselected controls? (* see below) Unselected controls? (* see below)
User-defined type I error rate : 5e-8 (0.00000001 - 0.5) User-defined power: determine N : 0.80 (0 - 1) (1 - type II error rate)
[Process] Reset
Created by Shaun Purcell 24.Oct.2008
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlands: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped
🛃 Start 📄 🥹 2 F. 🗸 🖿 2 W 🔹 💯 2 M. 🖌 💽 3 M. 🖌 🔀 5 M. 🦷 🦷 RG 🗒 ma 🧬 silv 🧷 🗭 😰 🗘 🌹 92% 🖡 🌾 🔇 🖓 🎇 🏹 🔭

🥹 Statistical Genetics Group - Mozilla Firef	fox	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools	<u>H</u> elp	
C X http://pngu.mgh	n.harvard.edu/~purcell/gpc/cc2.html	🟫 🛷 🔹 💽 🔹 josity snp information content 🔎 🚺
📄 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	ail 🤹 Amazon.com: Statistic 💸 The Arreat S	iummit - It 📄 Share on Facebook
Gmail - Update: 🖂 🛛 📴 workshop:2009:	🖂 🛛 📴 Index of /worksh 🖂 🛛 🛞 Wiley Inte	erScien 🖂 📘 Hulu - Videos 🛛 🔀 🤤 Cypriots and U.N 🖾 📄 Statistical Ge 💌 🖛
Genetic Power Calo	culator	
Case - control for discrete traits		Genome-wide significance threshold
High risk allele frequency (A)	: 0.2 (0 - 1)	Wa'll learn about this later in the
Prevalence	: .05 (0.0001 - 0.9999)	
Genotype relative risk Aa	: 1.2 (>1)	spesion
Genotype relative risk AA	: 1.44 (>1)	36331011
D-prime	: 1 (0 - 1)	
Marker allele frequency (B)	: 0.2 (0 - 1)	
Number of cases Control : case ratio	$\begin{array}{c} : 1000 & (0 - 10000000) \\ : 1 & (>0) \\ (1 = equal pumber) \end{array}$	of games and gontrole)
	Unselected controls? (*	see below)
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0 : 0.80 (0 - 1)	0.5)
Process		
Created by Shaun Purcell 24. Oct. 2008		
Find: exclude Vert Pre	evious 🖌 Highlight all 🔄 Match case	Las Annahan Wad Option Channed
busucin: wed 12:49 UK: wed 17:49 Netherlan		
	[∠m. + @ 3m. + ⊠ 5m. + K RG	

🥹 Statistical Genetics Group - Mozilla Firef	ox	
<u> Eile E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>I</u>	<u>d</u> elp	
Kara Contraction of the contract	.harvard.edu/~purcell/gpc/cc2.html	🗇 🗹 🔹 josity snp information content 🔎 📘 🔹
🧖 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	il 🤹 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Facebook	
Gmail - Update: 🖂 🛛 IBG workshop:2009: 👔	🛛 🛛 📴 Index of /worksh 🖂 🛛 🐨 Wiley InterScien 🖂 🛛 👆 Hulu - Videos	🖂 🔘 Cypriots and U.N 🖂 📄 Statistical Ge 🔞 🕞
Genetic Power Calo	culator	~
Case - control for discrete traits	Power level-	-what we're interested
High risk allele frequency (Å) Prevalence Genotype relative risk Åa Genotype relative risk ÅÅ D-prime Marker allele frequency (B)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Number of cases Control : case ratio	: 1000 (0 - 10000000) : 1 (>0) (1 = equal number of cases and controls) Unselected controls? (* see below)	
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Process Reset		
Createa by Shaun Furcell 24.Oct.2008 Find: exclude Ind: exclude	evious 🖌 Highlight all 🔲 Match case	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	ds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	i 🕲 🚸
🐉 start 🛛 🕹 2 F. 🔸 🚞 2 W 🔸 🔯	2 M. 🔹 💽 3 M. 🔹 🖼 5 M. 🍷 🎅 RG 📋 ma 🛃 silv	🥜 😨 😰 🍹 🧧 92% 🌓 🖝 🔇 🕬 🏹 🌄 12:49 PM

🥹 Statistical Genetics Group - Mozilla Firef	x	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools !	telp	
	.harvard.edu/~purcell/gpc/cc2.html	☆ 🗸 ・
🖻 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotma	l 🧕 Amazon.com: Statistic 💥 The Arreat Summit - It 📄 Share on Facebook	
🛛 M Gmail - Update: 🖂 🛛 🛛 🔀 workshop:2009: [🛛 🛛 📴 Index of /worksh 🖂 🛛 🛞 Wiley InterScien 🖂 🗧 📘 Hulu - Videos 🛛 🖉	🛛 (🚫 Cypriots and U.N 🖂 📄 Statistical Ge 😣 🕞
Genetic Power Calo	ulator	
Case - control for discrete traits		
High risk allele frequency (A) Prevalence Genotype relative risk Aa Genotype relative risk AA D-prime Marker allele frequency (B) Number of cases Control : case ratio	<pre>: 0.2 (0 - 1) : 05 (0.0001 - 0.9999) : 1.2 (>1) : 1.44 (>1) : 1.44 (>1) : 0.2 (0 - 1) : 0.2 (0 - 1) : 1000 (0 - 10000000) : 1 (>0) (1 = equal number of cases and controls)</pre>	
User-defined type I error rate User-defined power: determine N (1 - type II error rate)	: 5e-8 (0.00000001 - 0.5) : 0.80 (0 - 1)	
Process Reset	Click here to process	
Created by Shaun Purcell 24.Oct.2008		×
× Find: exclude	vious 🖌 Highlight <u>a</u> ll 🔲 Mat <u>c</u> h case	
Bosoton: Wed 12:49 UK: Wed 17:49 Netherlan	ds: Wed 18:49 Hong Kong: Thu 01:49 🔤 Los Angeles: Wed 09:49 Stopped	i 🕲 🏵 🔸
🯄 start 🔰 🥹 २ ह. 🔸 🛅 २ W 🔹 🗹	2 M. 👻 📴 3 M. 👻 🕱 S M. 👻 🦳 RG 📋 ma 🧬 silv 🧷	👳 😰 🌹 🧧 92% 🖡 🖝 🔇 🕬 🗞 🌄 12:49 PM

Answer 1

👻 Genetic Power Calculator - Mozilla Firefox		
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
C 🗙 http://pngu.mgh.harvard.edu/~purcell/cgi-	bin/cc2k.cgi	☆ 🖉 🔹 josity snp information content 🔎 🚺
🔟 Most Visited 🚞 Smart Bookmarks 💐 Free Hotmail 遵 Amazon.com: Statist	ic 💥 The Arreat Summit - It 📄 Share on Facebook	
M Gmail - Update: 🖂 🛛 📴 workshop:2009: 🖂 🗍 📴 Index of /worksh	🖂 🛛 🛞 Wiley InterScien 🖂 📘 Hulu - Videos	🖂 🛛 🍪 Cypriots and U.N 🖂 📄 Genetic Powe 🔀
Alpha	Power	N cases for 80% power
0.1	0.4374	2803
0.05	0.3177	3559
0.01	0.1377	5296
0.001	0.0355	7742
5e-08	3.674e-05	17958
Sample NCP = 6.216 Alpha	Power	N cases for 80% power
	0.716	1240
0.05	0.6002	1550
0.01	0.3609	2233
0.001	0.1451	3163
5e-08	0.0007464	6920
Case-control statistics: allelic 1 df test (B versus b) Sample NCP = 6.224	to the bottom for answe	r
Apha	Power	N cases for 80% power
0.1	0.8024	993
0.05	0.7037	1260
0.01	0.4677	1876
0.001	0.2131	2743
5e-08	0.001557	6362

Controls are selected (i.e. screened for not being a case)

Find: exclude									
Bosoton: Wed 13:02	2 UK: Wed 18:02	Netherlands: Wed 19:02	Hong Kong: Thu 02:02	Los Angeles: Wed 10:02	Done			٢	٠
🦺 start	😢 2 F 👻 🛅	2 W. 👻 😿 2 M 👻 🙋	2 M., 👻 🛛 2 M., 👻	🕞 RG 📋 mac	🥵 silv	🧷 💀 😰 🏅	94% 📔 🖝 🄇)="	1:02 PM

😂 Genetic Power Calculator - Mozilla Firefox		t de la companya de l	×		
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp			3		
🕜 🕞 🗸 📋 http://pngu.mgh.harvard.edu/~purcell/c	🖙 🛷 🔹 💽 🔹 josity snp information content 🔎 📗	•			
🙍 Most Visited 🚞 Smart Bookmarks 🏘 Free Hotmail 🤹 Amazon.com: Sta	tistic 💥 The Arreat Summit - It 📄 Share on Facebook				
M Gmail - Update: 🖂 🛛 🛛 🔀 workshop:2009: 🖂 🛛 🔀 Index of /work	sh 🖂 🛛 🕀 Wiley InterScien 🖂 📘 Hulu - Videos	💿 (Cypriots and U.N 🖂 📄 Genetic Powe 🛛	•		
Alpha	Power	N cases for 80% power	^		
0.1	0.4374	2803			
0.05	0.3177	3559			
0.01	0.1377	5296			
0.001	0.0355	7742			
5e-08	3.674e-05	17958			
0.1 0.03 0.01 0.001	0.716 0.6002 0.3609 0.1451	1240 1550 2233 3163			
5e-08	0.0007464	6920			
Case-control statistics: allelic 1 df test (B versus b) Sample NCP = 6.224	I to the bottom for answ				
Афла	0.8034	19 cases for 80 % power			
0.1	0.8024	1240			
0.05	0.7037	1200			
0.01	0.2121	18/0			
5.02	0.001557	6262	1		
	0.001557	0.02			
Contro	ls are selected (i.e. screened for not being a case)		1		

🔀 Find: exclude 🕹 Mext 👚 Previous 🌮 Highlight all 🗌 Match case											
Bosoton: Wed 13:02	UK: Wed 18:02	Netherlands: Wed 19:	02 Hong Kong): Thu 02:02	🛄 Los Angele	es: Wed 10:02	Done			0	🔶 🌜
🛃 start 🔰	🕹 2 F 🔹 🗀	2 W. 👻 📝 2 M 👻	0 2 M →	💌 2 M., 🕞	RG	🔳 mac	🧬 silv	🧷 🐺 😰 🌷	94% 📔 🖝 🤇)=" F	1:02 PM

6,362 case samples required: total sample size 12,724

Questions on your own

- For the same model as above, find the total sample size required for a TDT
 - Hint: use TDT for discrete traits
 - Try for different effect sizes and models (e.g. dominance)
- What is the effect of degrading LD in case-control data?
 - Change the D' and keep allele freq the same
 - Change allele freq and keep D' the same
- How well does the additive model capture a dominance only effect?
- Should you use 2x population controls vs 1x screened controls
 - For a prevalence of 5% and for a prevalence of 25%?

- Additive
 - Total case number for CC: 6,362
 - Total case number for TDT: 7,079
- Dominance only
 - -RR: 1; 1; 1.44
 - 30,595 cases for CC
 - 33,950 cases for TDT

Impact of indirect association

If a direct association study of a causal SNP would provide an NCP of λ

Then an indirect association study of a SNP in LD with the causal SNP has NCP of $R^2\lambda$

Impact of indirect association

If a direct association study of a causal SNP would provide an NCP of λ

- Then an indirect association study of a SNP in LD with the causal SNP has NCP of $R^2\lambda$
- i.e. NCP is linearly related to the magnitude of R² between causal and genotyped SNP
- Hence the appropriateness of using R² as an LD metric for the selection of tag SNPs.

Case-control for discrete traits

Disease	K = 0.1
Locus	$R_{AA} = R_{Aa} = 2$
	MAF = 0.05

Marker1	MAF = 0.05	$D' = \{ 1, 0 \}$.8, 0.6,	0.4,	0.2,	0}
Marker2	MAF = 0.25	D' = { 1, 0	.8, 0.6,	0.4,	0.2,	0}

Sample 500 cases, 500 controls

Genotypic risk at marker1 (left) and marker2 (right) as a function of D'

• Recall from the biometrical model that

 $-V_a =$

• Recall from the biometrical model that $-V_a = 2pq[a + (q-p)d]^2$

• Recall from the biometrical model that $-V_a = 2pq[a + (q-p)d]^2$ $-V_d =$

- Recall from the biometrical model that
 - $-V_a = 2pq[a + (q-p)d]^2$ $-V_d = Chlamydia$

• Recall from the biometrical model that

 $-V_a = 2pq[a + (q-p)d]^2$ $-V_d = [2pqd]^2$

- Recall from the biometrical model that
 - $-V_a = 2pq[a + (q-p)d]^2$
 - $-V_{d} = [2pqd]^{2}$
- Therefore, there can still be association evidence when the two homozygous classes have the same trait value mean and the heterozygous class does not equal the homozygotes

- Recall from the biometrical model that
 - $-V_a = 2pq[a + (q-p)d]^2$ $-V_d = [2pqd]^2$
- V_a = 0 can only be achieved if a = 0 and p
 = q or a = (p-q)d

- Should you use 2x population controls vs 1x screened controls
 - For a prevalence of 5% and for a prevalence of 25%?
- For a prevalence of 5% the 2x population controls are more powerful; for a prevalence of 25% the 1x screened controls are more powerful

The effect of adding misclassified cases

Increase in NCP as a function of including unselected controls

Power and NCP (df=1)

 $\alpha = 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001$

NCP
Ways to enhance power

- Increase sample size
- Combination of studies: meta-analysis
- Increase marker density
- Increase accuracy of phenotype measurements
- Increase accuracy of genotyping
- Rigorous quality control and error checking
- Collect and adjust for environmental covariates

Ways to enhance power

- Appropriate treatment of heterogeneity (including geneenvironment interaction)
- Appropriate treatment of population substructure
- Select individuals with highest genetic loading as cases, and individuals with lowest genetic loading as controls (e.g. use quantitative endophenotypes and select individuals in the two extreme tails of the trait distribution)
- Well thought-through and sophisticated analysis plan, making full use of phenotype and genotype information

Simulation using PLINK

- PLINK simulation file-format
 - #SNPs label lower-freq upper-freq geno-rel-risk
- Exercise, to replicate result of analytic power calculation
 - See PLINK web-page on simulation
 - 600 cases, 600 controls
 - disease variant 20% MAF and GRR of 1.5
 - simulate and test 100,000 markers under the model
 - calculate power for type I error rate of 1x10⁻⁴
 - *Hint*. To determine how many passing SNPs, you have several options:
 - Load results into R
 - Use --pfilter and wc Unix command
 - Use awk / gawk
 - Use Haploview to examine PLINK results file

• File *sim1.txt*

100000 alt 0.2 0.2 1.5

• Generate and test SNPs on-the-fly

./plink --simulate sim1.txt

- --simulate-ncases 600
- --simulate-ncontrols 600
- --simulate-prevalence 0.01

--assoc

Calculate power

awk ' \$9 < 1e-4 ' plink.assoc | wc -1

Simulation using PLINK

• To specify 2-SNP haplotypes, given SNP frequencies and D' (not documented on current www yet) add the flag --simulate-tags also

#SNPs	label	l-freq	u-freq	l-freq u-freq	d-prime	geno-rel-risk ↑	
		Disease variant		Marker locus	_	 At disease	
		(not obse	erved)	(genotyped)		locus	

- Now simulate a 2% disease allele, with 5-fold (multiplicative) effect, that is in complete LD with a marker allele of 20% MAF
 - what is power now at the 20% genotype?
 - verify this using the GPC calculator
 - what is the apparent odds-ratio at the genotyped SNPs
 - what is the LD in terms of r^2 between the two loci (from GPC)?

• File *sim2.txt*

100000 alt 0.02 0.02 0.2 0.2 1.0 5.0

- Generate and test SNPs on-the-fly
 - ./plink --simulate sim2.txt
 --simulate-tags
 --simulate-ncases 600
 --simulate-ncontrols 600
 --simulate-prevalence 0.01
 --assoc
- Calculate power

awk ' \$9 < 1e-4 ' plink.assoc | wc -1

Working with NCPs

- Expected chi-square = NCP + df
- The NCP scales linearly with sample N
 - for same case/control ratio
- Two useful properties
 - combine independent tests by summing NCPs
 - NCP at marker ~ $r^2 \times$ NCP at disease locus
- To calculate power given NCP
 - using R
 - > 1 pchisq(qchisq(1 1e-4 , df=1) , df = 1 , ncp = 17.96)
 [1] 0.6358291
 - or PDF utility in GPC

Hodgepodge anyone?

- Multiple testing
 - Where it comes from
 - Why is it a problem
- False discovery
 - Theory & practice

Hodgepodge anyone?

- Multiple testing
 - Where it comes from
 - Why is it a problem
- False discovery – Theory & practice

• Raise your hand if:

- Raise your hand if:
 - You have analyzed more than 1 phenotype on a dataset

- Raise your hand if:
 - You have analyzed more than 1 phenotype on a dataset
 - Used more than one analytic technique on a dataset (e.g. single marker association and haplotype association)

• Raise your hand if:

- You have analyzed more than 1 phenotype on a dataset
- Used more than one analytic technique on a dataset (e.g. single marker association and haplotype association)
- Picked your best result from the bunch

Genome-wide association

High throughput genotyping

Other multiple testing considerations

- Genome-wide association is really bad
 - At 1 test per SNP for 500,000 SNPs
 - 25,000 expected to be significant at p<0.05, by chance alone

Other multiple testing considerations

- Genome-wide association is really bad
 - At 1 test per SNP for 500,000 SNPs
 - 25,000 expected to be significant at p<0.05, by chance alone
- To make things worse
 - Dominance (additive/dominant/recessive)
 - Epistasis (multiple combinations of SNPs)
 - Multiple phenotype definitions
 - Subgroup analyses
 - Multiple analytic methods

Bonferroni correction

• For testing 500,000 SNPs

- 5,000 expected to be significant at p<0.01
- 500 expected to be significant at p<0.001

-

- 0.05 expected to be significant at p<0.0000001
- Suggests setting significance level to $\alpha = 10^{-7^*}$
- Bonferroni correction for m tests
 - set significance level for p-values to α = 0.05 / m
 - (or adjust the p-values to m \times p, before applying the usual α = 0.05 significance level)
- *See Risch and Merikangas 1999

Genome-wide significance

- Multiple testing theory requires an estimate of the number of 'independent tests'
- Risch and Merikangas 1996 estimated a threshold of 10⁻⁶ = (0.05/(5*10,000))
- HapMap 2005 estimate 10⁻⁸ based on encode deep sequencing in ENCODE regions
- Dudbridge and Gusnato, and Pe'er et al. 2008 Genetic Epidemiology estimate based on 'infinite density' like Lander and Kruglyak 1995 generate 5x10⁻⁸

Implication for sample size

Genetic Power Calculator

m	α	χ²	NCP	Ratio
			(80% power)	
1	0.05	3.84	7.85	1
500	10-4	15.14	22.39	2.85
500 × 10 ³	10-7	28.37	38.05	4.85
500 × 10 ⁶	10 ⁻¹⁰	41.82	53.42	6.81

Large but not "impossible" increase in sample size

Technical objection

Conservative when tests are non-independent

- Nyholt (2004)
 - Spectral decomposition of correlation matrix
 - Effective number of independent tests
 - May be conservative: Salyakina et al (2005)
- False Discovery
- Permutation procedure

Philosophical objection

"Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)

- Counter-intuitive: interpretation of finding depends on the number of other tests performed
- The general null hypothesis (that all the null hypotheses are true) is rarely of interest
- High probability of type 2 errors, i.e. of not rejecting the general null hypothesis when important effects exist

A Bayesian perspective

For each significant test, we can consider the probability that H_0 is in fact true (i.e. false positive probability)

Prob (H₀ True | H₀ Rejected)

Using Bayes' rule

$$P(H_0 \mid p \le \alpha) = \frac{P(p \le \alpha \mid H_0)P(H_0)}{P(p \le \alpha \mid H_0)P(H_0) + P(p \le \alpha \mid H_1)P(H_1)}$$
$$= \frac{\alpha \pi_0}{\alpha \pi_0 + (1 - \beta)(1 - \pi_0)}$$

$$\begin{split} \mathbf{P}(H_0 \mid p \leq \alpha) &= \frac{\mathbf{P}(p \leq \alpha \mid H_0)\mathbf{P}(H_0)}{\mathbf{P}(p \leq \alpha \mid H_0)\mathbf{P}(H_0) + \mathbf{P}(p \leq \alpha \mid H_1)\mathbf{P}(H_1)} \\ &= \frac{Q\pi_0}{Q\pi_0 + (1 - \beta)(1 - \pi_0)} \end{split}$$
 Alpha level:

Rate of false positives

$$P(H_0 \mid p \le \alpha) = \frac{P(p \le \alpha \mid H_0)P(H_0)}{P(p \le \alpha \mid H_0)P(H_0) + P(p \le \alpha \mid H_1)P(H_1)}$$
$$= \frac{\alpha \pi_0}{\alpha \pi_0 + (1 - \beta)(1 - \pi_0)}$$
Proportion of tests that follow the null distribution

$$P(H_0 \mid p \le \alpha) = \frac{P(p \le \alpha \mid H_0)P(H_0)}{P(p \le \alpha \mid H_0)P(H_0) + P(p \le \alpha \mid H_1)P(H_1)}$$
$$= \frac{\alpha \pi_0}{\alpha \pi_0 + (1 - \beta)(1 - \pi_0)}$$
Power to detect association

$$\begin{split} \mathbf{P}(H_0 \mid p \leq \alpha) &= \frac{\mathbf{P}(p \leq \alpha \mid H_0)\mathbf{P}(H_0)}{\mathbf{P}(p \leq \alpha \mid H_0)\mathbf{P}(H_0) + \mathbf{P}(p \leq \alpha \mid H_1)P(H_1)} \\ &= \frac{\alpha \pi_0}{\alpha \pi_0 + (1 - \beta)(1 - \pi_0)} \end{split}$$

A Bayesian perspective

Re-expressing the equation in term of α :

$$\alpha = \frac{P(H_0 \mid p \le \alpha)}{1 - P(H_0 \mid p \le \alpha)} \frac{1 - \pi_0}{\pi_0} \frac{1 - \beta}{1}$$

A Bayesian perspective

Re-expressing the equation in term of α :

Implications

- Justification of traditional choice α =0.05
 - False positive rate ~ α , when $\pi_0 \sim \frac{1}{2}$ and 1- $\beta \rightarrow 1$

Implications

- Justification of traditional choice α =0.05
 - False positive rate ~ α , when $\pi_0 \sim \frac{1}{2}$ and $1-\beta \rightarrow 1$
- Maintenance of low false positive rate requires α to be set proportional to
 - 1-β
 - $-(1-\pi_0)/\pi_0$

(power)

(proportion of tests that follow the null)

Implications

- Justification of traditional choice α =0.05
 - False positive rate ~ α , when $\pi_0 \sim \frac{1}{2}$ and $1-\beta \rightarrow 1$
- Maintenance of low false positive rate requires α to be set proportional to
 - $1-\beta$ - $(1-\pi_0)/\pi_0$

(power)

(proportion of tests that follow the null)

- Multiple testing usually reflects lack of strong hypotheses and therefore associated with high π_0
 - Bonferroni adjustment effectively sets $\alpha \propto 1/m$, which is equivalent to assuming $\pi_0 = m/(m+1)$. But is this reasonable?

Fixed significance level

- Use fixed value of π_0 based on a guesstimate of the proportion of SNPs in the genome that have an effect, e.g. $1-\pi_0 = 25/10^7 = 2.5 \times 10^{-6}$
- Power = 0.8
- False positive rate = 0.05
- Then $\alpha \sim 10^{-7}$ (regardless of m)

Adaptive significance level

- Use the availability of multiple tests to our advantage, because the empirical distribution of p-values can inform us about the suitable significance level
- Suppose that out of 500,000 SNPs, 100 are observed to be significant at α =0.00001. Since the expected number of significant SNPs occurring by chance is 5, the false positive rate given by setting α =0.00001 is 5/100
- Therefore a desired false positive rate can be obtained by setting α appropriately, according to the observed distribution of p-values (False Discovery Rate method)

Hodgepodge anyone?

- Multiple testing

 Where it comes from
 Why is it a problem
- False discovery
 - Theory & practice
Benjamini-Hochberg FDR method

Benjamini & Hochberg (1995) Procedure:

- 1. Set FDR (e.g. to 0.05)
- 2. Rank the tests in ascending order of p-value, giving $p_1 \leq p_2 \leq \ldots \leq p_r \leq \ldots \leq p_m$
- 3. Then find the test with the highest rank, r, for which the p-value, p_r , is less than or equal to (r/m) × FDR
- 4. Declare the tests of rank 1, 2, ..., r as significant

A minor modification is to replace m by $m\pi_0$

B & H FDR method

FDR=0.05

Rank	P-value	(Rank/m)×FDR	Reject H ₀ ?
1	.008	.005	1
2	.009	.010	1
3	.165	.015	0
4	.205	.020	0
5	.396	.025	0
6	.450	.030	0
7	.641	.035	0
8	.781	.040	0
9	.901	.045	0
10	.953	.050	0

Storey 2002 procedure:

Under the null P-values look like:

 H_{h}

Distribution of P-values under the null

P-values

Storey 2002 procedure:

Under the alternative P-values look like:

Distribution of P-values under alternative

Storey 2002 procedure:

Under the alternative P-values look like:

Distribution of P-values under alternative

P-value

Storey 2002 procedure:

Combined distribution of P-values look like:

Distribution of P-values under combined distributions

Storey 2002 procedure:

Combined distribution of P-values look like:

 H_{r}

Distribution of P-values under combined distributions

Storey 2002 procedure:

Combined distribution of P-values look like:

Storey 2002 procedure:

Combined distribution of P-values look like:

Storey 2002 procedure:

Combined distribution of P-values look like:

P-value

The number of tests above p = .5 is 47651out of 100000

Storey 2002 procedure:

Combined distribution of P-values look like:

Storey 2002 procedure:

Combined distribution of P-values look like:

"Parametric FDR" methods

Mixture model: some test statistics follow the null distribution, while others follow a **specified** alternative distribution

Special cases:

- Central and non-central chi-square distributions (Everitt & Bullmore, 1999)
- Central and non-central normal distributions (Cox & Wong, 2004)
- Uniform and beta distributions (Allison et al, 2002)
- From fitted model, calculates the posterior probability of each test belonging to the null distribution (i.e. of being a false discovery if declared significant)

Pitfalls of the FDR method

- Assumption: p-values are distributed as U[0,1] under H₀
 - If untrue (e.g. biased genotyping, population substructure) then this could lead to an excess of small p-values and hence misleading FDR results
- Requires a large number of tests to work
- The accuracy of the FDR is not easy to determine
- Requires a distribution (detectable number) of tests under the alternative

- Q-Q plots stand for quantile-quantile plots
- A quantile is the value of a distribution at a given percentage
- The 100-quantiles are called percentile
- The 20-quantiles are called vigiciles
- The 12-quantiles are called duo-deciles
- The 10-quantiles are called decile
- The 9-quantiles are called noniles
- The 5-quantiles are called quintiles
- The 4-quantiles are called quartiles
- The 3-quantiles are called tertiles or terciles

Null QQ plot

Null QQ plot

Five True GWS Effects Fifteen Extra Effects QQ plot

Expected -log10(P-value)