Population Stratification

Benjamin Neale Leuven August 2008

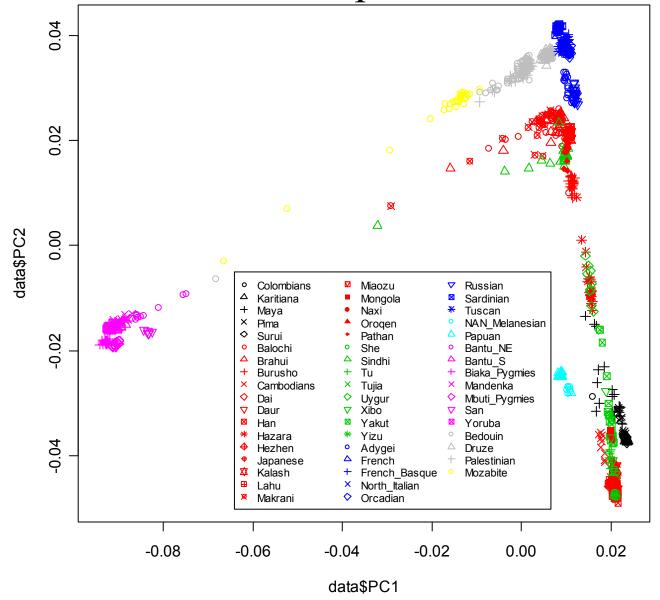
Objectives

- Population Stratification What & Why?
- Dealing with PS in association studies
 - Revisiting Genomic Control (small studies)
 - EIGENSTRAT
 - PLINK practical
 - Other methods

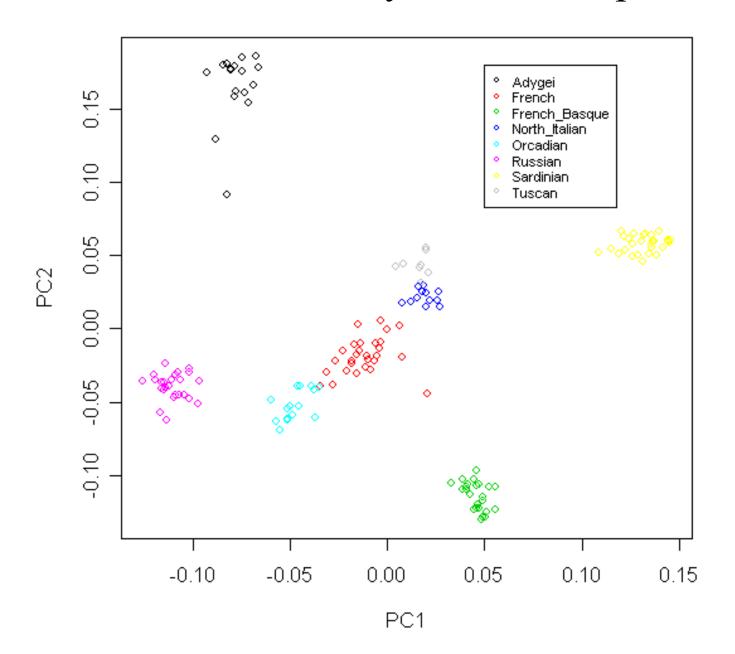
What is population stratification/structure (PS)?

- This just in! Human beings don't mate at random
 - Physical barriers
 - Political barriers
 - Socio-cultural barriers
 - Isolation by distance
- None of these barriers are absolute, and in fact by primate standards we are remarkably homogeneous
 - Most human variation is 'within population'
 - Reflects recent common ancestry (Out of Africa)
- Between population variation still exists, even though the vast majority of human variation is shared

Human Genetic Diversity Panel, Illumina 650Y SNP chip (Li et al. 2008, Science 319: 1100)



Human Genetic Diversity Panel, Europeans only



Why is **hidden** PS a problem for association studies?

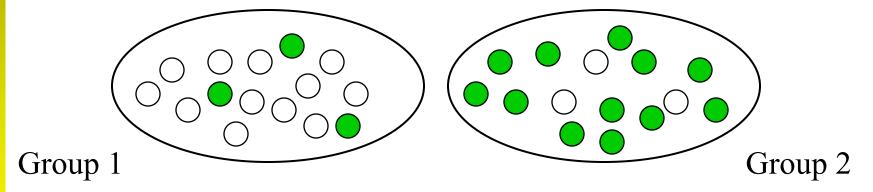
- Reduced Power
 - Lower chance of detecting true effects
- Confounding
 - Higher chance of spurious association finding

Requirements of stratification

- Both conditions necessary for stratification
 - -Variation in disease rates across groups
 - -Variation in allele frequencies

Visualization of stratification conditions

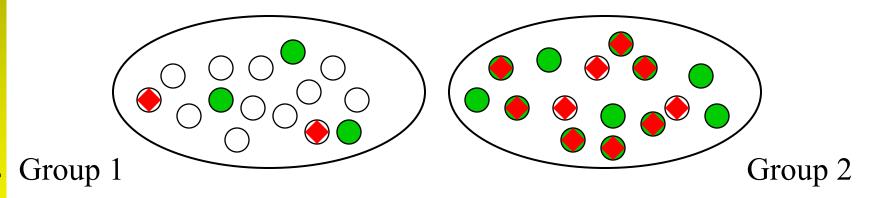
• Suppose that a disease is more common in one subgroup than in another...



• ...then the cases will tend to be over-sampled from that group, relative to controls.

...and this can lead to false positive associations

• Any allele that is more common in Group 2 will appear to be associated with the disease.



- This will happen if Group 1 & 2 are "hidden" if they are known then they can be accounted for.
- Discrete groups are not required admixture yields same problem.

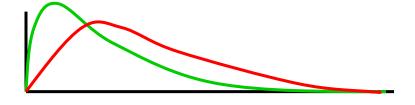
Dealing with PS in association studies

Family-based association studies

- Transmission conditional on known parental ('founder') genotypes
 - E.g. TDT
 - Recent review: Tiwari et al. (2008, Hum. Hered. 66: 67)
- Pros
 - Cast-iron PS protection
- Cons
 - 50% more genotyping needed (if using trios)
 - Not all trios are informative
 - Families more difficult to collect

Genomic Control (GC)

• Devlin and Roeder (1999) used theoretical arguments to propose that with population structure, the distribution of Chi-square tests is inflated by a constant multiplicative factor λ .



- To estimate λ , add a separate "GC" set of neutral loci to genotype, and calculate chi-square tests for association in these
- Now perform an adjusted test of association that takes account of any mismatching of cases/controls:

$$\chi^2_{GC} = \chi^2_{Raw}/\lambda$$

Genomic Control (GC)

- Correct χ^2 test statistic by inflation factor λ
- Pros
 - Easy to use
 - Doesn't need many SNPs
 - Can handle highly mismatched Case/Control design
- Cons
 - Less powerful than other methods when many SNPs available
 - Can't handle 'lactase-type' false positives
 - λ -scaling assumption breaks down for large λ

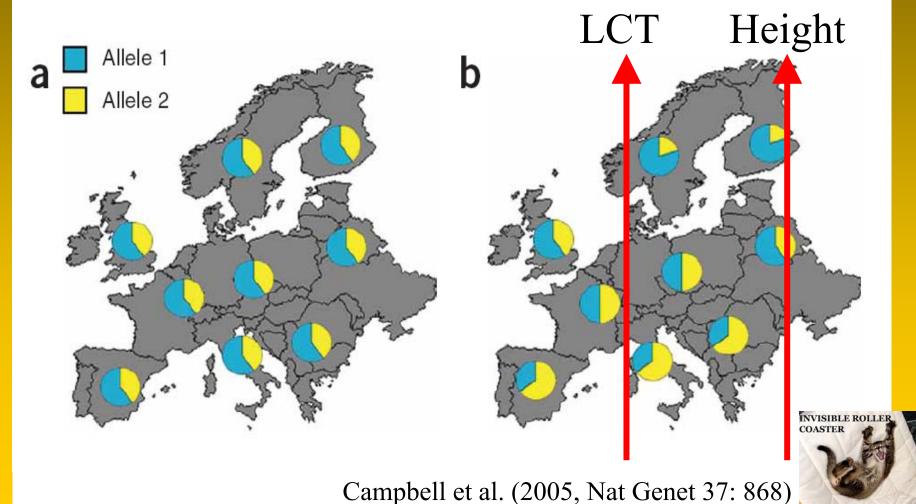
Genomic Control variants

- GC_{med} (Devlin & Roeder 1999, Biometrics 55: 997)
 - $\lambda = \text{median}(\chi^2_{GC})/0.455$
- GC_{mean} (Reich & Goldstein 2001, Gen Epi 20: 4)
 - $-\lambda = mean(\chi^2_{GC})$
 - Upper 95% CI of λ used as conservative measure
- GCF (Devlin et al. 2004, Nat Genet 36: 1129)
 - Test $\chi^2_{\text{Raw}}/\lambda$ as F-statistic
 - Recent work (Dadd, Weale & Lewis, submitted) confirms GCF as the best choice
- More variants on the theme
 - Use Q-Q plot to remove GC-SNP outliers (Clayton et al. 2005, Nat Genet 37: 1243)
 - Ancestry Informative Markers (Review: Barnholtz-Sloan et al. 2008, Cancer Epi Bio Prev 17: 471)
 - Frequency matching (Reich & Goldstein 2001, Gen Epi 20: 4)

Other methods

- Structured Association
 - E.g. strat (Pritchard et al. 2000, Am J Hum Genet 67: 170)
 - Fits explicit model of discrete ancestral sub-populations
 - Breaks down for small datasets, too computationally costly for large datasets
- Mixed modelling
 - Fits error structure based on matrix of estimated pairwise relatedness among all individuals (e.g. Yu et al. 2006, Nat Genet 38: 203)
 - Requires many SNPs to estimate relatedness well
 - Can't handle binary phenotypes (e.g. Ca/Co) well
- Still an active area of methodological development
 - Delta-centralization (Gorrochurn et al. 2006, Gen Epi 30: 277)
 - Logistic Regression (Setakis et al. 2006, Genome Res 16: 290)
 - Stratification Score (Epstein et al. 2007, Am J Hum Genet 80: 921)
 - Review: Barnholtz-Sloan et al. (2008, Cancer Epi Bio Prev 17: 471)

Genomic Control fails if stratification affects certain SNPs more than the average



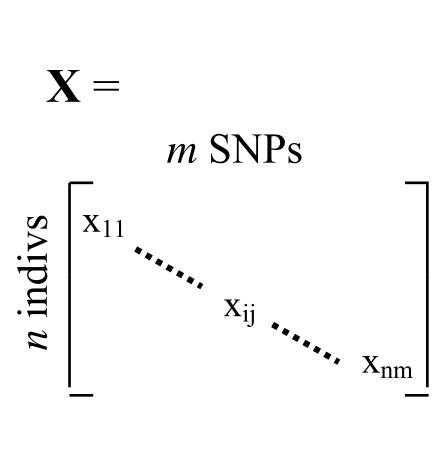
An example: height associates with lactase persistence SNP in US-European sample

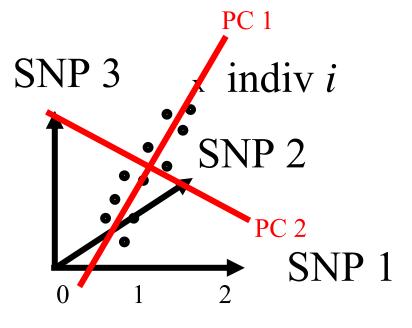
N	Total	2,179
	Tall	1,123
	Short	1,056
LCT-13910 genotype counts ^c	Total	392:918:869
	Tall	161:474:489
	Short	231:444:380
Hardy-Weinberg <i>P</i>	Total	5.6×10^{-7}
	Tall	0.03
	Short	2.5×10^{-5}
Association P		3.6×10^{-7}
OR (95% c.i.) ^d		1.37 (1.22–1.54)

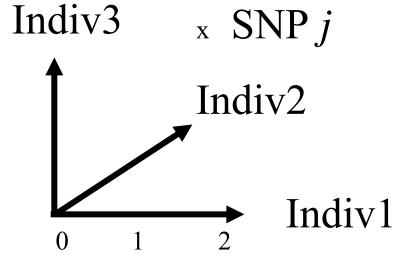
False Positive

The EIGENSTRAT solution

PCA for SNP data ("EIGENSTRAT")







PCA properties

• Each axis is a linear equation, defining individual "scores" or SNP "loadings"

$$Z_{i} = a_{1}x_{i1} + \dots + a_{j}x_{ij} + \dots + a_{m}x_{nm}$$

$$Z'_{j} = b_{1}x_{1j} + \dots + b_{i}x_{ij} + \dots + b_{n}x_{nm}$$

- Axes can be created in either projection
- Max N^O axes = min(n-1,m-1)
- Each axis is at right angles to all others ("orthogonal")
- Eigenvectors define the axes, and eigenvalues define the "variance explained" by each axis

PC axis types

- PCA dissects and ranks the correlation structure of multivariate data
- Stratification is *one* way that correlations in SNPs can be set up
 - Stratification
 - Systematic genotyping artefacts
 - Local LD
 - (Theoretical) Many high-effect causal SNPs in a casecontrol study
- Inspection of PC axis properties can determine which type of effect is at work for each axis

EIGENSTRAT

Original EIGENSTRAT procedure

- 1) Code all SNP data $\{0,1,2\}$, where 1=het
- 2) Normalize by subtracting mean and dividing by

$$\sqrt{p(1-p)}$$

- 3) Recode missing genotype as 0
- 4) Apply PCA to matrix of coded SNP data
- 5) Extract scores for 1st 10 PC axes
- 6) Calculate modified Armitage Trend statistic using 1st 10 PC scores as covariates

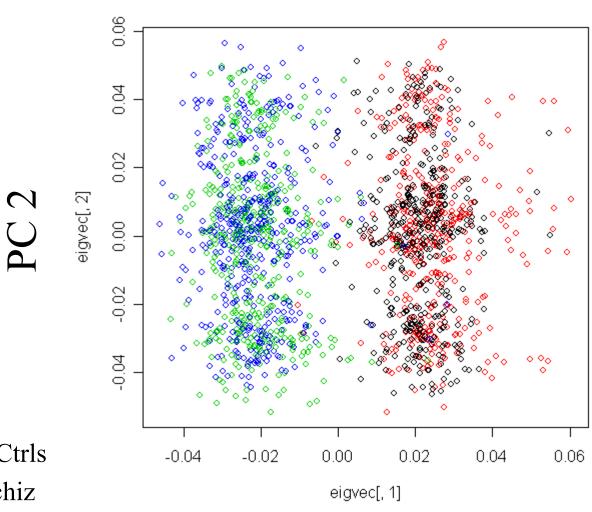
Price et al. (2006, Nat Genet 38: 904)

Patterson et al. (2006, PLoS Genet 2: e190)

Earlier more general structure: Zhang et al. (2003, Gen Epi 24: 44)

Identifying PC axis types

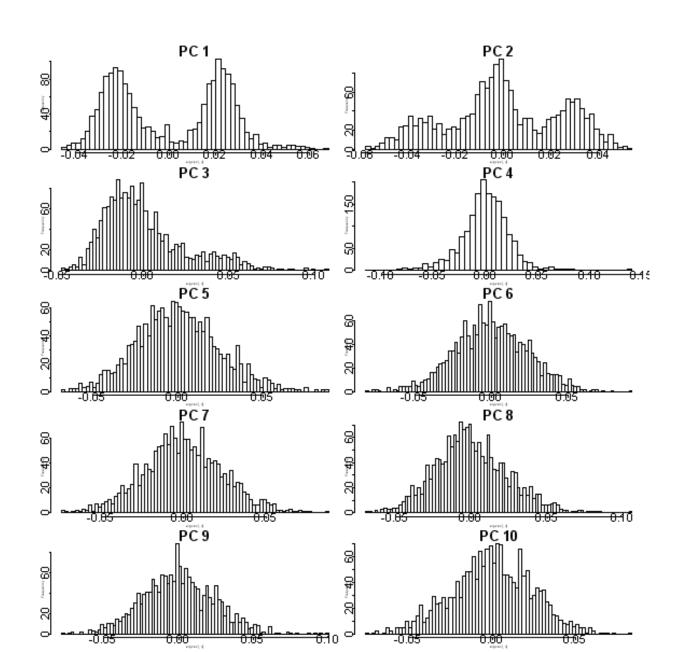
EIGENSTRAT applied to genomewide SNP data typed in two populations



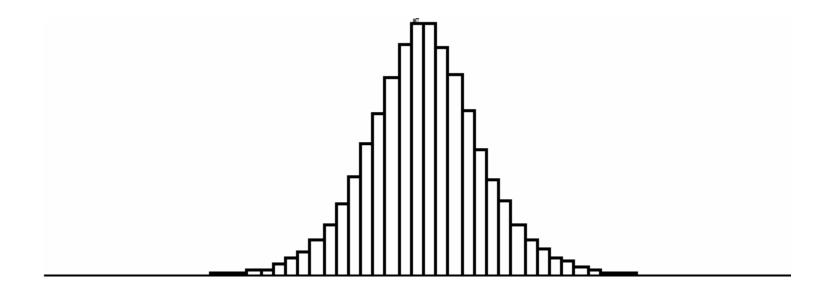
Black = Munich Ctrls
Red = Munich Schiz
Green = Aberdeen Ctrls
Blue = Aberdeen Schiz

PC 1

PC individual "scores"

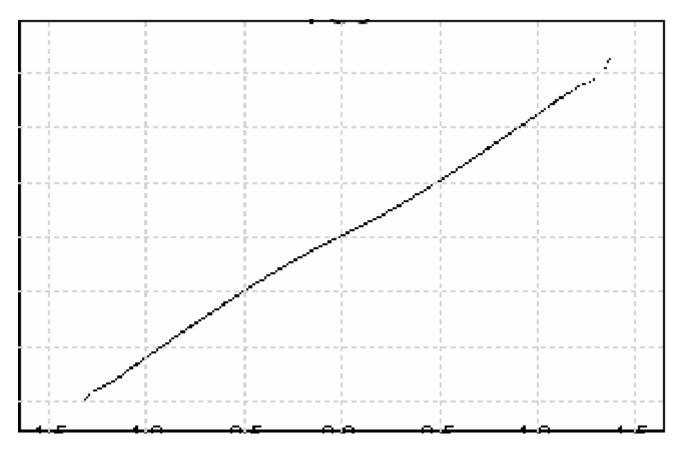


SNP "loadings", PC1



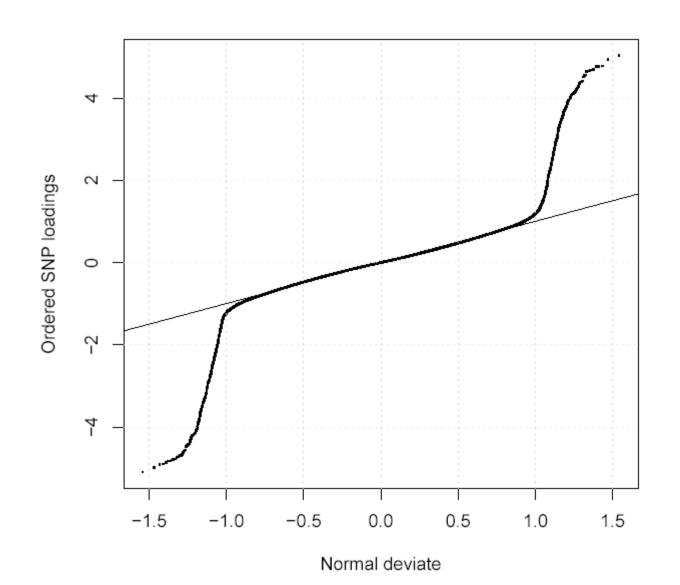
PC1 SNP loading distribution
Whole genome contributes

SNP "loadings", PC1 Whole genome contributes

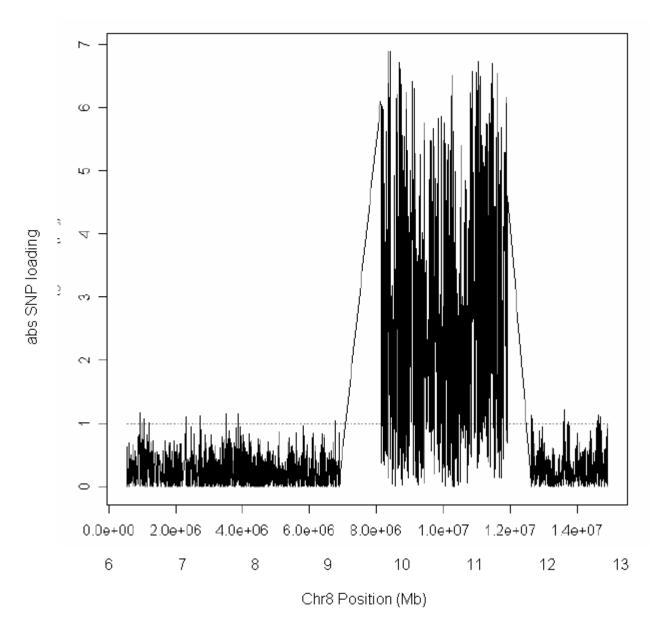


PC1 SNP loading Q-Q plot

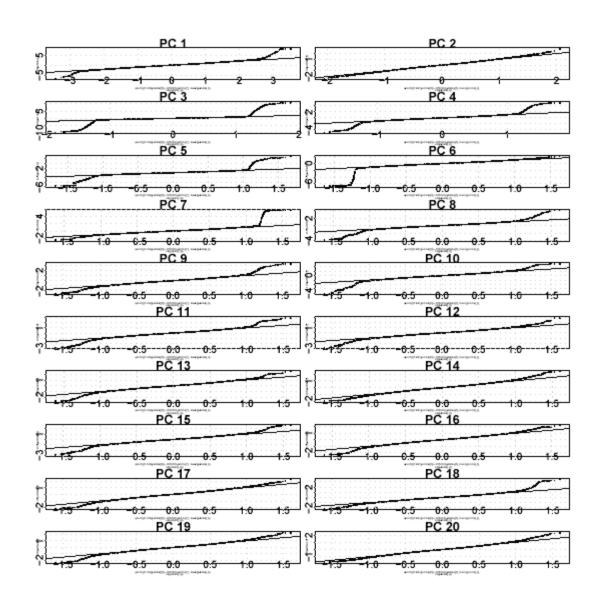
SNP "loadings", PC2
Only *part* of the genome contributes



PC2 driven by known ~4Mb inversion poly on Chr8 Characteristic LD pattern revealed by SNP loadings



PC axis types revealed by SNP loading Q-Q plots in Illumina iControl dataset

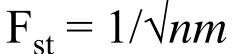


Extended EIGENSTRAT procedure corrects for local LD

- 1) Known high-LD regions excluded
- 2) SNPs thinned using LD criterion
 - r²<0.2
 - Window size = 1500 contiguous SNPs
 - Step size = 150
- 3) Each SNP regressed on the previous 5 SNPs, and the residual entered into the PCA analysis
- 4) Iterative removal of outlier SNPs and/or outlier individuals
- 5) Nomination of axes to use as covariates based on Tracy Widom statistics
- 6) Enter significant PC axes as covariates in a logistic or linear regression:
 - Phenotype = $g(\text{const.} + \beta * \text{covariates} + \gamma * \text{SNP } j \text{ genotype}) + \epsilon$

Guidance on use of EIGENSTRAT

Phase-change in ability to detect structure: E = 1/2/m



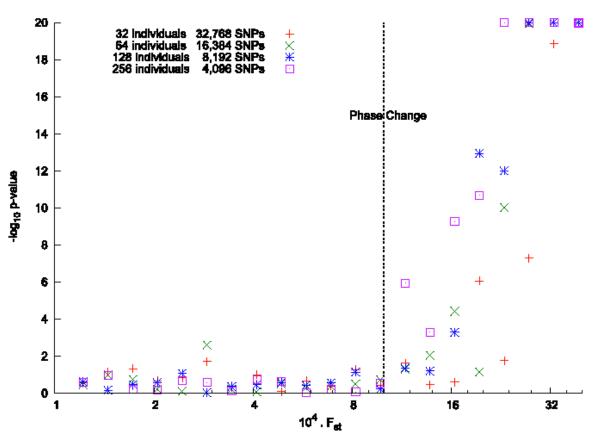


Figure 6. The BBP Phase Change

We ran a series of simulations, varying the sample size m and number of markers n but keeping the product at $mn = 2^{20}$. Thus the predicted phase change threshold is $F_{ST} = 2^{-10}$. We vary F_S and plot the log p-value of the Tracy–Widom statistic. (We clipped $-\log_{10} p$ at 20.) Note that below the threshold there is no statistical significance, while above threshold, we tend to get enormous significance. doi:10.1371/journal.pgen.0020190.g006

Number of SNPs needed for EIGENSTRAT to work

Supplementary Table 2: Simulations using M SNPs

 $N=1000, F_{ST}=0.01, \alpha=0.0001,$

l'lactase-type' SNPs

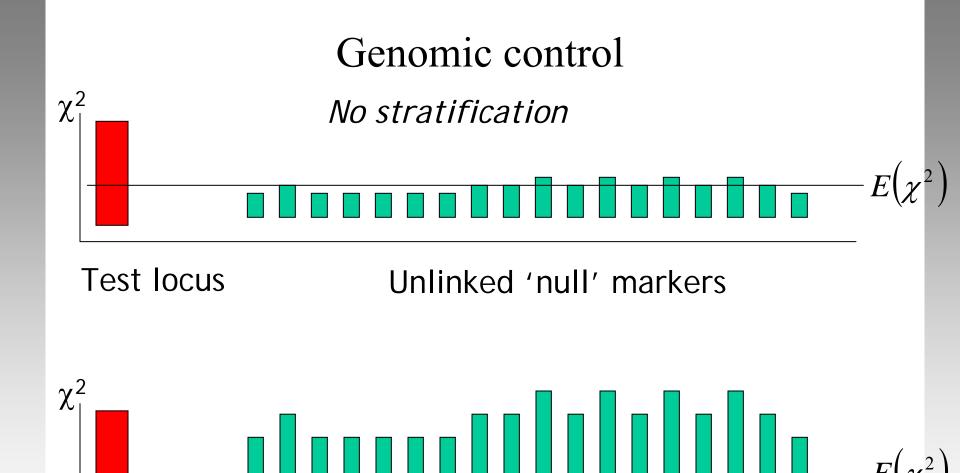
M	False positive rate	Correlation of top axis
100	0.0826	68.4%
200	0.0079	80.9%
500	0.0016	90.8%
1,000	0.0007	94.8%
2,000	0.0002	97.4%
5,000	0.0001	99.0%
10,000	0.0001	99.5%
20,000	0.0001	99.7%
50,000	0.0001	99.9%
100,000	0.0001	99.9%

Price et al. (2006, Nat Genet 38: 904)

Take-home messages

- EIGENSTRAT work very well with >2000 SNPs
 - Clinal/admixture model seems to work well in practice
 - Other more computationally demanding methods don't achieve huge power increases
- Genomic Control works well with <200 SNPs
 - Still has a place in smaller studies (GWAS replication, candidate gene)
 - Also copes with mismatched Case/Control designs (e.g. centralized control resources)

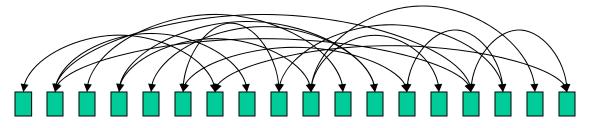
PLINK Practical



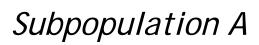
Stratification → adjust test statistic

Structured association

LD observed under stratification



Unlinked 'null' markers



Subpopulation B

Identity-by-state (IBS) sharing

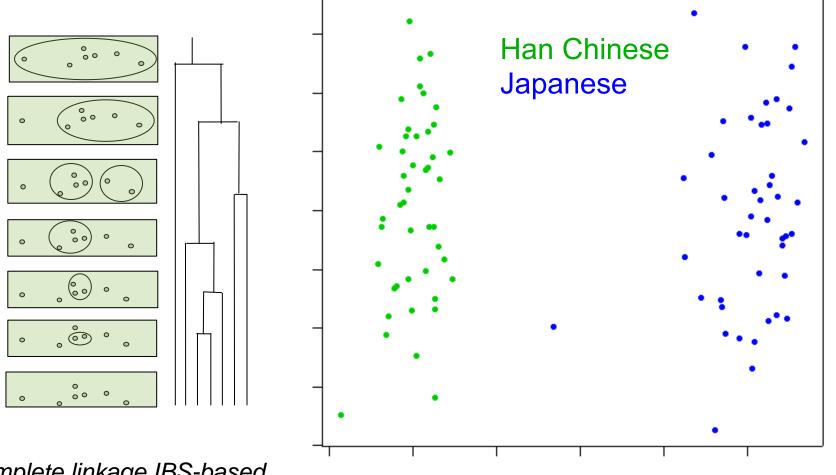
Pair from same population

Individual 1	A/C	G/ T	A/G	A/A	G/G
Individual 2	C/ C	T/\mathbf{T}	A/G	C/C	G/G
IBS	1	1	2	0	2

Pair from different population

Individual 3	A/C	G/G	A/A	A/A	G/ G
Individual 4	C/C	T/T	G/G	C/C	A/G
IBS	1	0	0	0	1

Empirical assessment of ancestry



Complete linkage IBS-based hierarchical clustering

Multidimensional scaling plot: ~10K random SNPs

Population stratification: LD pruning

Perform LD-based pruning

plink --bfile example --indep 50 5 2

Window size in SNPs Number of SNPs to shift the window VIF threshold

Spawns two files: plink.prune.in (SNPs to be kept) and plink.prune.out (SNPs to be removed)

Population stratification: Genome-file

Generates plink.genome

plink --bfile example --genome --extract
plink.prune.in

Extracts only the LD-pruned SNPs from the previous command

The genome file that is created is the basis for all subsequent population based comparisons

Population stratification: IBS clustering

Perform IBS-based cluster analysis for 2 clusters

plink --bfile example --cluster --K 2 --extract
plink.prune.in --read-genome plink.genome

In this case, we are reading the genome file we generated

Clustering can be constrained in a number of other ways cluster size, phenotype, external matching criteria, patterns of missing data, test of absolute similarity between individuals

Population stratification: MDS plotting

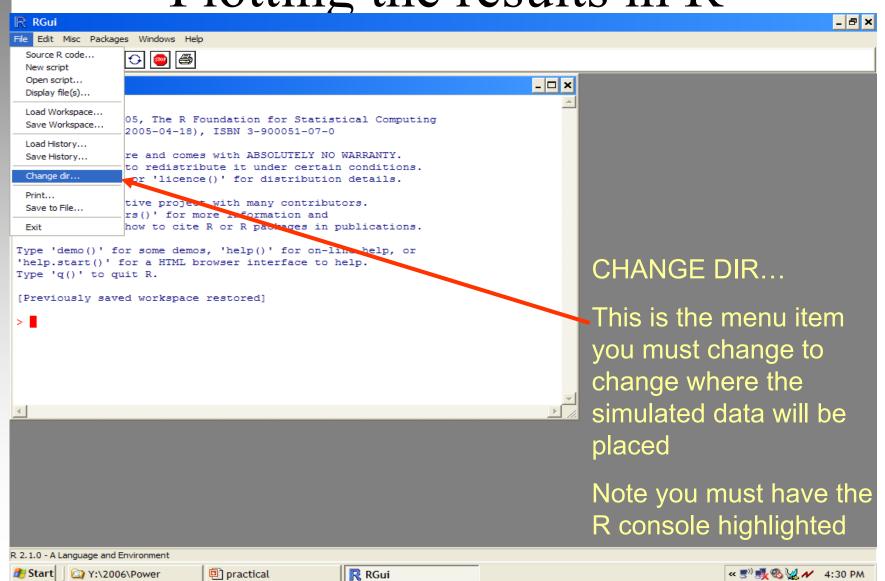
Telling plink to run cluster analysis

plink --bfile example --cluster --mds-plot 4 --K 2 -extract plink.prune.in --read-genome plink.genome

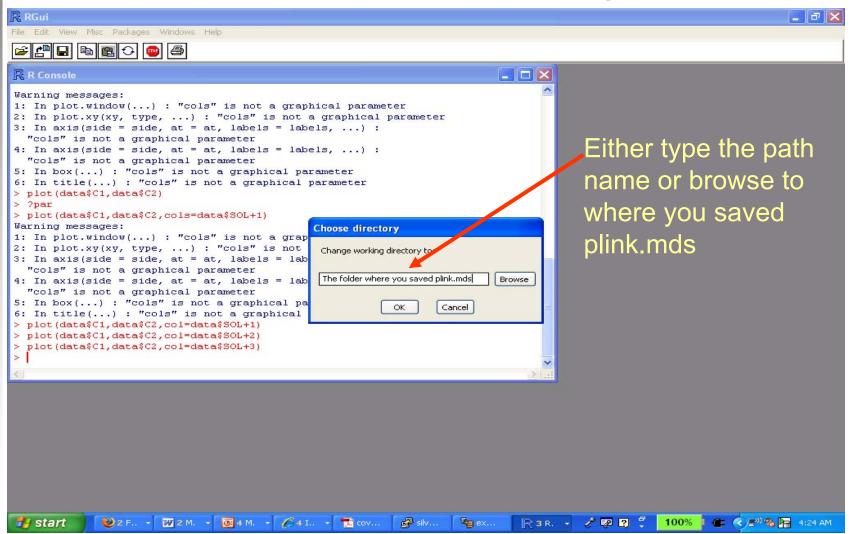
Calculating 4 mds axes of variation, similar to PCA

We will now use R to visualize the MDS plots. Including the --K 2 command supplies the clustering solution in the mds plot file

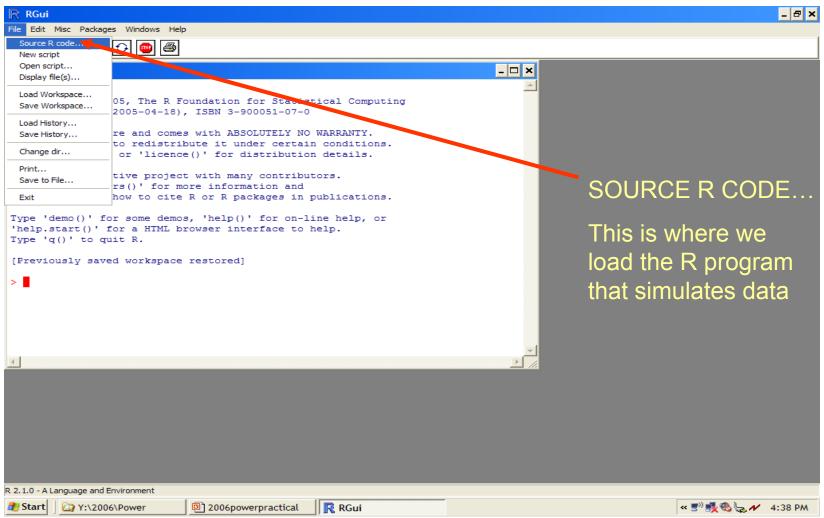
Plotting the results in R



Picture of the dialog box



Running the R script



Screenshot of source code selection

