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Objectives

 Population Stratification — What & Why?

* Dealing with PS 1n association studies
— Revisiting Genomic Control (small studies)
— EIGENSTRAT
— PLINK practical
— Other methods



What is population stratification/structure (PS)?

* This just in! Human beings don’t mate at random

— Physical barriers
— Political barriers
— Socio-cultural barriers
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| — Isolation by distance

* None of these barriers are absolute, and in fact by
primate standards we are remarkably homogeneous

— Most human variation 1s ‘within population’

* Between population variation still exists, even
though the vast majority of human variation 1s
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Human Genetic Diversity Panel,
[1lumina 650Y SNP chip (Liet al. 2008, Science 319: 1100)
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Human Genetic Diversity Panel, Europeans only
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Why is hidden PS a problem for association
studies?

e Reduced Power

— Lower chance of detecting true effects

* Confounding

— Higher chance of spurious association finding

Population Stratification — Wha



Requirements of stratification

* Both conditions necessary for stratification

=

| —Variation in disease rates across groups
—Variation 1n allele frequencies
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Visualization of stratification conditions

e Suppose that a disease 1s more common 1n one
subgroup than in another...

e ...then the cases will tend to be over-sampled from that
group, relative to controls.
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...and this can lead to false positive
associations

* Any allele that 1s more common in Group 2 will
appear to be associated with the disease.

e This will happen 1f Group 1 & 2 are “hidden” — 1f they
are known then they can be accounted for.

* Discrete groups are not required — admixture
yields same problem.
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Dealing with PS 1n association studies

Dealing with PS in ass



Family-based association studies

* Transmission conditional on known parental
(‘founder’) genotypes
— E.g. TDT
— Recent review: Tiwari et al. (2008, Hum. Hered. 66: 67)

e Pros

— Cast-1ron PS protection

e Cons
— 50% more genotyping needed (if using trios)
— Not all trios are informative

— Families more difficult to collect
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Genomic Control (GC)

e Devlin and Roeder (1999) used theoretical arguments to propose that with
population structure, the distribution of Chi-square tests is inflated by a
constant multiplicative factor A.

To estimate A, add a separate “GC” set of neutral loci to genotype, and
calculate chi-square tests for association in these

Now perform an adjusted test of association that takes account of any
mismatching of cases/controls:

Xoe = Xraw'M

Dealing with PS in associatio




Genomic Control (GC)

« Correct y? test statistic by inflation factor A
* Pros

— Easy to use

— Doesn’t need many SNPs
— Can handle highly mismatched Case/Control design

e Cons

— Less powertful than other methods when many SNPs
available

— Can’t handle ‘lactase-type’ false positives
— A-scaling assumption breaks down for large A

TNVISIBLE ROLLE
COASTER
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Genomic Control variants

GC, .4 (Devlin & Roeder 1999, Biometrics 55: 997)
— A =median(y’;.)/0.455

GC_ . (Reich & Goldstein 2001, Gen Epi 20: 4)

— A =mean(y’;c)

mean

— Upper 95% CI of A used as conservative measure

GCF (Devlin et al. 2004, Nat Genet 36: 1129)
— Test ¥%g../A as F-statistic

— Recent work (Dadd, Weale & Lewis, submitted) confirms GCF as the
best choice

More variants on the theme

— Use Q-Q plot to remove GC-SNP outliers (Clayton et al. 2005, Nat
Genet 37: 1243)

— Ancestry Informative Markers (Review: Barnholtz-Sloan et al. 2008,
Cancer Epi Bio Prev 17: 471)

— Frequency matching (Reich & Goldstein 2001, Gen Epi1 20: 4)

Dealing with PS in association s



Other methods

« Structured Association
— E.g. strat (Pritchard et al. 2000, Am J Hum Genet 67: 170)
— Fits explicit model of discrete ancestral sub-populations
— Breaks down for small datasets, too computationally costly for large
datasets
* Mixed modelling

— Fits error structure based on matrix of estimated pairwise relatedness
among all individuals (e.g. Yu et al. 2006, Nat Genet 38: 203)

— Requires many SNPs to estimate relatedness well
— Can’t handle binary phenotypes (e.g. Ca/Co) well

« Still an active area of methodological development
— Delta-centralization (Gorrochurn et al. 2006, Gen Ep1 30: 277)
— Logistic Regression (Setakis et al. 2006, Genome Res 16: 290)
— Stratification Score (Epstein et al. 2007, Am J Hum Genet 80: 921)
— Review: Barnholtz-Sloan et al. (2008, Cancer Epi Bio Prev 17: 471)

Dealing with PS in association st



Genomic Control fails if stratification affects
certain SNPs more than the average

LCT  Height

‘ 3 ; Eﬂbﬁﬁss_;gkzmus ‘
Campbell et al. (2005, Nat Genet 37: 868) w
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An example: height associates with lactase
persistence SNP 1n US-European sample

LCT-13910 genotype counts®

Hardy-Weinberg P

Assoclation P
OR (95% c.i.)®

Total
Tall
Short
Total
Tall
Short
Total
Tall
Short

2,179
1,123
1,056
392:918:869
161:474:489
231:444:380
5.6 x 1077
0.03

False Positive



The EIGENSTRAT solution




PCA for SNP data (“EIGENSTRAT”)
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PCA properties

» Each axis 1s a linear equation, defining individual
“scores” or SNP “loadings”

L7+=D X5 + - b;X;; + -- + b X

1M ] n‘xnm

* Axes can be created in either projection

e Max N© axes = min(n-1,m-1)

* Each axis is at right angles to all others
(“orthogonal”)

* Eigenvectors define the axes, and eigenvalues define
the “variance explained” by each axis
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PC axis types

« PCA dissects and ranks the correlation structure of
multivariate data

 Stratification 1s one way that correlations in SNPs
can be set up

— Stratification

— Systematic genotyping artefacts
— Local LD
— (Theoretical) Many high-effect causal SNPs in a case-
control study
 Inspection of PC axis properties can determine
which type of effect 1s at work for each axis
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Original EIGENSTRAT procedure

1) Code all SNP data {0,1,2}, where 1=het
2) Normalize by subtracting mean and dividing by

Jp(-p)

3) Recode missing genotype as 0
4) Apply PCA to matrix of coded SNP data
5) Extract scores for 15t 10 PC axes

6) Calculate modified Armitage Trend statistic using
15t 10 PC scores as covariates

Price et al. (2006, Nat Genet 38: 904)
Patterson et al. (2006, PLoS Genet 2: €190)
Earlier more general structure: Zhang et al. (2003, Gen Epi 24: 44)

EIGENSTRAT




Identifying PC axis types
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PC individual “scores”

PC1 PC2
o i % M
]l g il g .
gt
= —Fll:—lnl.-ll: —Tz nn — o e np RI.E%FF”-I——_.J -I_L T T2 .
PC3 _ PC4
I e e |
.8 Tt G2y . ;5 Tt : ok
_ PC5 PC6
[ra} Iy L L | % ) N
: ‘\Hmm Y ol H Iy,
e s s [E R — i = ==t 085 (R (i
PC7 _ ~ PC8
= k|l & |
- | o I
|— ‘F | L]
< 2 o W
o’ o . [T
— 085 i — B 0.8 i i T
W PCY ) PC 10
Z . 2 Hhil |
L 3 il 2 -
(D 5 _MNNMWWI “”’M“M E% o] "“
LIJ B W e — P%Lh_‘ﬁﬂ = -nJ-h—l:l.uq_ Ty (i




SNP “loadings™, PC1
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PC1 SNP loading distribution
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Whole genome contributes
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SNP “loadings™, PC1

Whole genome contributes
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PC1 SNP loading Q-Q plot




SNP “loadings”, PC2

Only part of the genome contributes
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PC2 driven by known ~4Mb 1nversion poly on Chr8
Characteristic LD pattern revealed by SNP loadings

abs SMNP loading
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PC axis types revealed by SNP loading Q-Q plots
in Illumina 1Control dataset
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Extended EIGENSTRAT procedure corrects for
local LD

1) Known high-LD regions excluded

2)  SNPs thinned using LD criterion
- r’<0.2
—  Window size = 1500 contiguous SNPs
—  Step size = 150

3) Each SNP regressed on the previous 5 SNPs, and the
residual entered into the PCA analysis

4) Iterative removal of outlier SNPs and/or outlier individuals

5) Nomination of axes to use as covariates based on Tracy
Widom statistics

6) Enter significant PC axes as covariates in a logistic or linear
regression:

Phenotype = g(const. + p*covariates + y*SNP j genotype) + €
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Guidance on use of EIGENSTRAT
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Phase-change 1n ability to detect structure:
F., = 1/Nnm
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Figure 6. The BBP Phase Change

We ran a series of simulations, varying the sample size m and number of markers n but keeping the product at mn = 2%. Thus the predicted phase
change threshold is For = 27'°. We vary F. and plot the log p-value of the Tracy-Widom statistic. (We clipped —log,, p at 20.) Note that below the
threshold there is no statistical significance, while above threshold, we tend to get enormous significance.

doi:10.1371/journal. pgen.0020190.g006
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Patterson et al. (2006, PLoS Genet 2: €190)
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Number of SNPs needed for EIGENSTRAT to work

Supplementary Table 2: Simulations using M SNPs NZIOOO, FST:O.OI, 0=0.0001 :
M False positive rate Correlation of top axis ‘lactase-type’ SNPs
100 0.0826 68.4%
200 0.0079 80.9%
500 0.0016 00.8%
1.000 0.0007 94 8%
2.000 0.0002 97.4%
5.000 0.0001 99.0%
10,000 0.0001 99.5%
20.000 0.0001 99.7%
50,000 0.0001 99.9%
100.000 0.0001 99.9%

Price et al. (2006, Nat Genet 38: 904)




Take-home messages

« EIGENSTRAT work very well with >2000 SNPs

— Clinal/admixture model seems to work well 1n practice

— Other more computationally demanding methods don’t
achieve huge power increases

 Genomic Control works well with <200 SNPs

— Still has a place in smaller studies (GWAS replication,
candidate gene)

— Also copes with mismatched Case/Control designs (e.g.
centralized control resources)



PLINK Practical




Genomic control

X No stratification
E
I planennNNENENONE N x
Test locus Unlinked “null’” markers

e thttllthby <

Stratification — adjust test statistic




Structured association
LD observed under stratification

Unlinked “null’” markers

EENEENEEENEENEEENEEN NEEENEEENENEEENEEEEREN
Subpopulation A Subpopulation B



Identity-by-state (IBS) sharing

Pair from same population

[Individual 1 A/C  G/T A/G A/A  G/G
| | | | | |

[Individual 2 C/C [/ A/ZG C/C G/G

IBS 1 1 2 0 2

Pair from different population
Individual 3 A/C  G/G A/A A/A  G/G

I I
[Individual 4 C/C T/T G/G C/C A/G

IBS 1 O 0 O 1




Empirical assessment of ancestry

| Lo Han Chinese v
i L Japanese .

Complete linkage IBS-based

hierarchical clustering Multidimensional scaling plot: ~10K random SNPs



Population stratification: LD pruning

Perform LD-based
pruning

Window size in SNPs

Number of SNPs to shift the window
VIF threshold

Spawns two files: plink.prune.in (SNPs to be kept)
and plink.prune.out (SNPs to be removed)

PLINK tutorial, October 2006; Shaun Purcell, shaun@pngu.mgh.harvard.edu



Population stratification: Genome-file

Generates
plink.genome

Extracts only the LD-pruned SNPs
from the previous command

The genome file that is created is the basis for all
subsequent population based comparisons

PLINK tutorial, October 2006; Shaun Purcell, shaun@pngu.mgh.harvard.edu



Population stratification: IBS clustering

Perform IBS-based
cluster analysis for 2 clusters

In this case, we are reading the
genome file we generated

Clustering can be constrained in a number of other ways

cluster size, phenotype, external matching criteria, patterns of
missing data, test of absolute similarity between individuals

PLINK tutorial, October 2006; Shaun Purcell, shaun@pngu.mgh.harvard.edu



Population stratification: MDS plotting

Telling plink to run cluster
analysis

Calculating 4 mds axes of variation,

similar to PCA

We will now use R to visualize the MDS plots. Including the
--K 2 command supplies thle c]!_tljstering solution in the mds
plot file

PLINK tutorial, October 2006; Shaun Purcell, shaun@pngu.mgh.harvard.edu



the results in R

=W Edit Misc Packages Windows Help
Source R code... — . .

—

e NN =l
Display file(s)... ! E
Load Workspace. ..
Save Warkspace...

05, The R Foundation for Statistical Computing
2005-04-18), ISEN 3-900051-07-0

Load History...
Save Histary... re and comes with ABSOLUTELY NO WARRANTY.

to redistribute it under certain conditions.
pr 'licence ()" for distribution details.

Change dir...

Print...

Save to File. .. Cive projomgWith many :_:antrlbutars.
r=()"'" for more Rormation and
Exit how to cite R or R pds ges in publications.

Type '"demo() "' for some demos, '"help()' for on-11T™s
'"help.starc ()" for a HTML browser interface to help. CHANGE DIR
Type 'di()' to guitc ER. -

[Previously saved workspace restored]

- This is the menu item
you must change to
change where the
simulated data will be
placed

Note you must have the
R console highlighted

|R 2.1.0 - A Language and Environment

ﬁSta.rtl J I3 Y:\Z00s\Power | practical "R RGui |“ @ Ll 4 4030 PM




Windows  Help

Packages

Warning messages:

1: Inm plot.window(...] "zols™ is not a graphical parasmeter

2: In plot.=xv(xXv, LY¥PS, «..] "ools™ is not & graphical par

J3: In axis(side = side, at = at, labhels = lahels, wrd
zols'™ is not a graphical parameter

4: In axis(side = side, at = at, lahels = lahels, sl
Fools™ i=s not a graphical parameter

5 Tin BT -k Fzpols™ is not a graphical parameter

& Iihh Eieled ok "ools™ is not a graphical parsoneter

> plot (dataifcCi,dataicz)

> ?par

> plot(dataicl,dataifCz2,cols=dataisioL+1)

Marning messages: Choose directory

Picture of the dialog box

saunster

Either type the path
name or browse to
where you saved
plink.mds

| [Browse ]

1: In plot.window(...] "cols"™ is not a grap
2: In plot.¥y(Xvy, tvype, .-...1] "rols™ i=s not Change working directory tg
3! In axis(=ide = =ide, at = at, labels = lak
"ools™ is not a graphical parsmeter
4; In axis(side = =side, at at, lakels = lak The Folder where yvou saved plink, mds|
fzols'™ is not a graphical parameter
B B (o ) (P "zols™ is not a graphical pal
T BIEIET.. ) "ools"T is not a graphical

plot (dataiCl,data$Cz, col=dataisSOL+1)
plot (dataiCl,datas$Cz2, col=dataisSOoL+2)
plot (dataicl,data$C2,col=dataf30L4+3)




Running the R script

Edit Misc Packages Windows Help

Source .
Mew script

Open script...
Display file{s)...

Load Workspace. ..
Sawe Workspace...

05, The R Foundation for StIW
2005-04-18), ISBM 3-900051-07-0

ical Computing

Load History...
Sawve History... re and comes with ABSOLUTELY HC WARRANTY.

to redistribute it under certain conditions.
Change dir... or 'licence()' for distribution details.
Print... R i R R
Save to File. .. tiwve project with many contributors.

rs()"' for more information and

Exit how to cite R or R packages in puklications. SOU CE I l CODE. ..

Type 'demo()' for =some demos, '"help()' for on-line help, or

;;;;p:zf.??té;'qigt :-H'IHL browser interface to help. ThiS iS Where We
[Previously saved workspace restored] |Oad the R program
" that simulates data

R 2.1.0 - A Language and Environment

& Start| | 3 v:\2006\Power | & 2006powerpractical || IR RGui « Wi B 4 4:38 PM




Screenshot of source code selection

File Edit Misc Packages wWindows Help

|

B2 I W =

This is the file
rprog.R for the
source code

My Network File name: Irprog

Ll L
¥
EH
N

Files of type: |Ries "R)

R 2.1.0 - A Language and Environment
ﬁ‘Startl J £ Y:\2006\Power | 2006powerpractical ” IR RGui | « MIAN @ 4 4:41 PM
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