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1. Ceaneatics, a form of interaction between nonallelic genes in which one
combination of such genes has a dominant effect over other combinations.

2. MeagidnasMedical
a. the stoppage of asecretion or discharge,

b. ascumthar forms on aurine specimen upon standing.

[Drigin: 1915-20; < Gk emistasis stopping, stoppage. See Epl—, STASIS ]
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Law of Independent Assortment
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Biological Epistasis

 Bateson (1909) “a masking effect whereby a
variant or allele at one locus prevents the variant at
another locus from manifesting its effect...”

* Phenotypic differences among individuals with
various genotypes at one locus depend on their
genotypes at other loci

— Does NOT depend on allele frequency



Epistasis In the labrador retriever
dog
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Recessive Epistasis
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Statistical Epistasis

Deviation of multilocus genotypic values from the additive
combination of the single locus components

— Close to statistical concept of interaction

— Depends on allele frequencies

— Population specific

— May be scale dependent

Different ways the epistatic values/variance components
can be calculated:

— Hierarchical ANOVA (Sham, 1998)

— Method of Contrasts (Cockerham, 1954)

— Using partial derivatives of the population mean (Kojima, 1959;
Tiwari & Elston, 1997)



No Epistasis

> Effect at locus B independent of effect at Locus A

Trait
Value
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Epistasis Two Locl

> Locus A modifies the effect at locus B

Trait
Value
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Genetic Variance — One Locus

AA Aa aa
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Partitioning the Variance One Locus
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1— 4o
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0 1 2 0 1 2
Additive Model Dominant Model

> Additive Genetic Variance is variance explained by regression

> Dominance variance is residual variance not explained by
reqression




| east Squares Regression One Locus

* Represent genotypes of each individual by
Indicator variables:

Additive Additive and Dom
Coefficient Coefficient
Genotype X, X, Z,
aa 1 1 1,
Aa 0 0 1y
AA 1 1 1)

Y=u+talX +dZ +¢

> Fit by least squares (or maximum likelihood)

> Can provide tests of significance

> Partitions data into variance components




Genetic Variance — Two Loci

AA Aa aa
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Components of Variance for a
Two Locus Model

Additive genetic variance Locus 1
Additive genetic variance Locus 2
Dominance genetic variance Locus 1
Dominance genetic variance Locus 2

Additive x Additive genetic variance
Additive x Dominance genetic variance
Dominance x Additive genetic variance

Dominance X Dominance genetic variance/

> “Epistatic” Variance




Dominance Variance A

Additive Variance A
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Dominance Variance B

Additive Variance B

Additive x Dominant Dominant x Additive Dominant x Dominant

Additive x Additive




| east Squares Regression Two Loci

Y=u+aX,+aX,+d 2+ dyl, + 1, Wey + lagWaa + 1gWaa ¥ TaaWaa T €

aa’ " aa

— —
1ifAA 1 if BB
x, == 0ifAa x, == 0ifBb
Y if Aa Y if Bb
z, = zZ, =
! -%% otherwise g -% otherwise
Woe = X1 XX, Woa = X1 X Z; Wae = Z1 X X, Wi = Z; X 2,

> Can also formulate using logistic regression for dichotomous traits




Why model Epistasis in GWAS?

> Epistasis is important in model organisms

c.f. Studies in Guinea fowl, yeast, drosophila

> Single locus tests will not always detect epistasis !!!

> Modeling epistasis may improve power to detect loci (?)

> Epistasis is ignored in human studies

-Main effects hard enough to find!

-Multiple testing problem: e.g. 100,000 markers gives a cutoff of p = 1 x 1011 Il
-Computational problems

-Storage problems
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Two-Stage Two-Locus Models
iIn Genome-Wide Association

David M. Evans'’, Jonathan Marchini®, Andrew P. Morris', Lon R. Cardon’

1 Wellmme Trust Centre for Human Genetices, University of Oxford, Oxford, United Kingdam, 2 Depariment of Statictices, University of Oxfiord, Gefiord, United #ngdom

Studies in model organisms suggest that epistasis may play an important role in the etiology of complex diseases and
traits in humans. With the era of large-sale genome-wide association studies fast approaching, it is important to
quantify whether it will be possible to detect interacting lod using realistic sample sizes in humans and to what extent
undetected epistasis will adversely affect power to detect association when singke-locus approaches are employed. We
therefore nvestigated the power to detect association for an extensive range of two-locus quantitative trait models
that incorporated varying degrees of epistasis. We compared the power to detect association using a single-locus
model that ignored interaction effects, a full two-locus model that allowed for interactions, and, most im portant, two
two-stage strategies whereby a subset of loci nitially identified using single-locus tests were analyzed using the full
two-locus model. Despite the penalty introduced by multiple testing, fitting the full two-locus model performed better
than single-locus tests for many of the situations considered, particularly when compared with attem pts to detect both
individual loci Using a two-stage strategy reduced the computational burden assodated with performing an
exhaustive two-locus search across the genome but was not as powerful as the exhaustive search when lod interacted.
Two-stage approaches also increased the risk of miesing interacting loci that contributed little effect at the margins.
Based on our extensive simulations, our results suggest that an exhaustive search nvolving all pairwise combnations
of markers across the genome might provide a useful complement to singlelocus scans in identifying interacting loci
that contribute to moderate proportions of the phenotypic variance.



Epistasis in GWAS?

> What are the consequences of fitting two locus models when

epistasis Is absent?

-“If it isn’t there, what happens if we go looking for it?”

> What are the consequences of fitting two locus models when

epistasis is present?

-“If it IS there, what happens if we go looking for it?”

> What are the consequences of fitting single locus models when

epistasis Is present?

-“If it's there, what happens when we ignore it?”



METHOD

> Simulate quantitative variable

-BOTH loci combined are responsible for 10%, 5%, 2% or 1% of total variance

-500, 1000 or 2000 individuals

-Assume 100,000 markers across the genome

-Perfect LD between marker and trait locus

-Comprehensive range of allele frequencies at both loci

-50 different models incorporating varying degrees of epistasis



MA M1 M2 M3 M5 M7 M10 M11
1% Y 000 000 000 000 000 000 000
YaYoYa 000 000 000 000 000 001 001
Y2Y 0 001 010 011 101 111 010 011

M12 M13 M14 M15 M16 M17 M18
000 000 000 000 000 000 000
001 001 001 001 010 010 010
100 101 110 111 000 001 010
M19 M21 M23 M26 M27 M28 M29
000 000 000 000 000 000 000
010 010 010 011 011 011 011
011 101 111 010 011 100 101
M30 M40 M41 M42 M43 M45 M56
000 000 000 000 000 000 000
011 101 101 101 101 101 111
110 000 001 010 011 101 000
M57 M58 M59 M61 M68 M69 M70
000 000 000 000 001 001 001
111 111 111 111 000 000 000
001 010 011 101 100 101 110
M78 M84 M85 M86 M94 M97 M98
001 001 001 001 001 001 001
001 010 010 010 011 100 100
110 100 101 110 110 001 010

M99 M101 M106 M108 M113 M114 M170 M186
001 001 001 001 001 001 010 010
100 100 101 101 110 110 101 111
011 101 010 100 001 010 010 010

Evans et al. (2006)
PLOS Genet
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Simulating Genetic Data

> Allele frequencies

-Allele frequencies at each locus will determine frequency of genotypes

Pas = 0.64
p,=0.8
= p,,=0.32
p,=0.2
P,. = 0.04

> Genetic Model

-Need to specify trait means for each genotype combination

Complimentary Gene Action

Locus A

-A random normal deviate can then be placed on these means to simulate
the action of the environment

> Each combination of parameters will result in a unique
variance profile




Simulating Genetic Data

Complimentary Gene Action

Trait
Mean

Additive o
Variance — osi gmsmeieia
LOCUS 2 05| OSSN
0.2 == o8
O.(:I). 0.55
Locus A § 9 5 5
s 4 g 5 % §
Additive
Variance Dominance
Locus 1 Variance
Locus 2
Doml_nance Epistatic
Variance Variance
Locus 1 Components

(Variance components shown for complimentary gene action model)



METHOD

> Quantify power to detect association

-10,000 simulations for each combination of parameters

> Single locus test of association

-Power to detect BOTH loci
-Power to detect EITHER locus

> Two locus test of association

-Power to detect BOTH loci

-Different from power to detect the epistatic variance component explicitly

> All models fit via maximum likelihood

-Significance assessed by minus two log-likelihood chi-square



Epistasis Isn’t There...

Power to Detect EITHER Locus Power to Detect BOTH Loci
Two Locus Test Single Locus Test

Single Locus Test
1

Power 05

0.3
0.7

: 0.4 0.1 0.7
010203, » Allele Frequency
.0 0.7

quenc " Locus B
Allele Frequency — °° 09 ocus
Locus A

0.1 0.2
0304 0.5 o6 0.7 og X
: ¢ 0.9

(Simulations represent 500 individuals, 10% genetic variance, Additive Model)

> The power to detect EITHER locus is greater using the single locus
test when epistasis is NOT present

> The power to detect BOTH loci is actually less using single locus
tests even when epistasis is NOT present




Epistasis IS There...

> The power to detect BOTH loci is always better using the two locus

test when epistasis is present

Two Locus Test

Power

Allele Frequency
Locus B

Allele Frequency
Locus A

Power

Power to Detect BOTH Loci
SINGLE Locus Tests

1 Allele Frequency
Locus B
Allele Frequency
Locus A

(Simulations represent 500 individuals, 10% genetic variance, Dominant x Dominant Complimentary Gene Action Model)




Power To Detect EITHER Locus

> When the model is EXTREME, the power of the two locus test is often
better than the power to detect EITHER locus using single locus tests

Power to detect EITHER locus
Model Two Locus Test SINGLE Locus Tests

Dominant x Dominant Epistasis

1

Trait Power o. Power o

Mean 02

0

AA

Locus A

Locus B

Allele Frequency
Locus A

(500 individuals, 10% genetic variance)



Power to Detect EITHER Locus

> When the model is less extreme, the power to detect EITHER locus
using the single locus tests is often better than the two locus test

Power to detect EITHER locus
Model Two Locus Test SINGLE Locus Tests

Dominant x Dominant Complimentary )
Gene Action Model

PR L

Power os Power

0.7
Locus B

~ AF

0.1
0203 04 5 0.1
0.6 g7 -
Locus A 08 09 Locus B

Allele Frequency
Locus A

(500 individuals, 10% genetic variance)



> The power to detect BOTH loci is always better fitting the two locus
model regardless of the underlying model

> There are situations where fitting the full two-locus model will reveal
effects which are not identified using single-locus methodology

> Multiple testing doesn’t kill you as much as you think!!!




Exhaustive or Two Stage Strategy?

> |ldea: Two Stage Strategies

-Test a subset of 190.000C, comparisons

-Which comparisons are chosen depends on their performance in the single locus
tests

> PLUS: Reduce cost due to multiple testing

> MINUS: Throw away some comparisons which would be significant
In the two locus test, yet are not significant in the single locus tests




Two-stage Models

> Strateqy One

-Only markers which pass first stage threshold in the single locus analysis are tested

-All pair-wise combinations of these markers are tested

©

©

pval
.05

©

Marker 1
Marker 2
Marker 3 | ©
Marker 4 @
Marker 5
Marker 6
Marker 7 @
Marker 8
Marker 9
Marker 10| @

-Three comparisons:

-Marker 2 vs Marker 6
-Marker 2 vs Marker 9

-Marker 6 vs Marker 9



Two Stage Procedure: Strategy One

p; < 01 Power

p, < 001  Power A',

~ Allele Frequency 10203 04 g5 o Ll ». Allele Frequency

Locus 2 Locus 2
Allele Frequency Allele Frequency

Locus 1 Locus 1

(Dominant x Dominant Complimentary Gene Action Model, 500 individuals, 10% genetic variance)

> AS the first stage threshold becomes more stringent, the power to
detect both loci DECREASES for the majority of the parameter
space




Why Does Strategy One Perform Poorly?

> For BOTH loci to be included in the second stage, Strategy One

requires BOTH single locus tests to meet some threshold

> This threshold will not be met when the single locus variance is close

to zero

> Therefore Strategy One will tend to fail whenever EITHER single

locus component iIs close to zero

Variance
Locus One

| SO
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Variance Epistatic
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0.95
0.65

AF
7z Locus 1

(Dominant x Dominant Complimentary Gene Action Model)



Two-stage Models

> Strateqy Two

-Markers which pass first stage threshold are tested with ALL other markers

©

©

pval

©

.05

Marker 1
Marker 2
Marker 3 | ©
Marker 4 @
Marker 5
Marker 6
Marker 7 @
Marker 8
Marker 9
Marker 10| @

-24 comparisons:

-Marker 2 vs Markers 1, 3,4, 5,6, 7, 8, 9, 10
-Marker 6 vs Marker 1, 3,4, 5,6, 7, 8,9, 10

-Marker 9 vs Marker 1, 3,4, 5, 7, 8, 10



Two-Stage Procedure: Strategy Two

p, <.001 Power s

P, < 1 Power ol-i

p; < .01 Power

p; < .0001 Power os

(Dominant x Dominant Complimentary Gene Action Model, 500 individuals, 10% genetic variance)

> As the first stage threshold becomes more stringent, there is no
Increase in power

> There is a decrease in power at more stringent levels




> Because of the need to condition on the first stage results beinq
significant, there is no increased power in the second stage

> Since loci are included in the second stage if the variance is in
EITHER single locus component, the strategy fails when the majority
of variance is in the epistatic variance component or the first stage

threshold is too severe

Extreme Models
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> Many simple looking models contain regions of their parameter space
where loci would not be able to be identified using single locus
analyses or two stage analyses

> An exhaustive search involving all pair-wise combinations of markers
across the genome is superior to performing a two stage strateqy




Conclusions

An exhaustive search involving all pair-wise combinations of markers
across the genome is superior to performing a two stage strateqgy

Many simple looking models contain sizeable regions of their
parameter space where loci would not be able to be identified using
single locus analyses

Despite the increased penalty due to multiple testing, it is possible to
detect interacting loci which contribute to moderate proportions of the
phenotypic variance with realistic sample sizes

Is it worth incorporating epistasis in GWA?




Using PLINK to test for Epistasis

> Two tests of epistasis are implimented in PLINK

> Testing for additive x additive epistasis:

Y=utalX, ta,X,+i, w, te

aa’ " ada

plink.epi.cc
plink --file mydata --epistasis <:
plink.epi.cc.summary

> “Fast epistasis™:

plink --file mydata --fast-epistasis

> Possible to control output using the flags:

--epil 0.0001

--epi2 0.0001



Practical

> Copy the files epistasis.ped and epistasis.map from
H:/davide/LEUVEN2008

> Run single locus tests of association in this dataset

plink --file epistasis --assoc

> RuUn a scan for epistasis using the --fast-epistasis option

plink --file epistasis --fast-epistasis

> What are the two top interactions from this analysis?

> Are these loci flagged in the single locus analysis?




Practical

> Two locus results:

CHR1 SNP1 CHR2 SNP2 STAT P
22 rs2014410 22 rs9607957 15.68 7.485e-005
22 rs2076672 22 rs2076109 15.72 7.348e-005

> Single locus results:

CHR SNP CHISQ P OR

22 rs2014410 0.02691 0.8697 1.01
22 rs9607957 3.333 0.06791 0.7318
22 rs2076672 3.071 0.07969 1.122

22 rs2076109 0.5072 0.4763 0.9587
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