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Historical gene mapping

Glazier et al, Science (2002).



Reasons for Failure

Inadequate Marker Coverage (Candidate gene studies)

Too optimistic about sample size

Linkage not powerful enough!



Reasons for Failure?

Complex 
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Common
environment
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Weiss & Terwilliger (2000) Nat Genet



Enabling Genome-wide 
Association Studies

HAPlotype MAP

High throughput genotyping

Large cohorts



Wellcome
 

Trust Case Control 
Consortium
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Study Design
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Case to Control Ratio

Most efficient ratio is 1:1

Sometimes difficult to recruit cases, in this situation power can still be 
increased by ascertaining controls

In the hypothetical situation of an infinite number of controls, only half 
the number of cases would be required 

Most increase in power occurs when the number of controls is 3 - 5 
times the number of cases



Other Strategies to Increase 
Power

Minimize phenotypic heterogeneity

Early age of onset

Family cases 

Quantitative traits- Extreme cases

BUT must be careful…

Additive Model
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Phenotypic Misclassification
Misclassification in psychiatric genetics

Random misclassification should not affect type I error but will decrease 
power 

Misclassifying cases is not the same as misclassifying controls. The 
effect of each depends on the prevalence of disease 

For example, for diseases where prevalence less than 10% much 
more important to ensure cases are truly affected than controls are 
really unaffected

Use of historic controls (but note stratification; batch effects; platform 
differences)
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Quantitative Traits

Little power lost by analyzing families 
relative to singletons

Visscher et al. (2008) EJHG

It may be efficient to genotype only 
some individuals in larger pedigrees

Pedigrees allow error checking, within 
family tests, parent-of-origin analyses, 
joint linkage and association etc



Genotyping Platform



Selecting Markers: Strategies

Function Focus
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Some Commercial Alternatives…

Affymetrix SNP array 5.0 (500K)

Affymetrix SNP array 6.0 (1.8M)

Illumina 317K -> Illumina 370K

Illumina 550K -> Illumina 610K

Illumina 1M

Illumina Human Exon 510S

Illumina Human NS_12 Beadchip (15K)



How many SNPs to tag the genome? 

Ideal tag sets

500,000 tags SNPs to tag all common variation in CEU at r2 > 0.8

Diminishing returns as coverage increases (e.g 250K tags 85% of 
genome)

Linear relationship for “singleton” SNPs

Barrett & Cardon (2006) Nat Genet



Anderson et al. (2008) Nature Genetics

How Do The Chips Do?

Some of the difference in coverage can be recovered through imputation

If sample size limited, but funding not, use chip with best coverage

If cost limited but sample size not use Illumina 300K? (Cost efficiency)



Most SNPs are Rare

Rare SNPs are not tagged well by common SNPs!

Hapmap and SNP chips biased towards common variants



Evans et al. (2008) EJHG

What about nsSNP chips?

Little to add to genome-wide chips in 
terms of identifying common variants

May help identify rare variants of 
intermediate penetrance

Non-synonymous SNPs produce 
changes in amino acid sequence

Most common nsSNPs tagged by 
existing genome-wide products



“Cleaning”  Data



Genotypes are not raw data

Trade off between stringency and call rate (no universal value)

Raw intensities of ALL putative associations should be checked!



SNP Quality Control

Missing Data Rate (SNPs, Individuals, cases vs controls)

Hardy Weinberg Equilibrium

Allele frequency 

Mendelian Inconsistencies



het. Nhet

Nhet  Nhom

Sample Heterozygosity



Sample Gender



Association Analysis



Genotypic tests

•
 

SNP marker data can be 
represented in 2x3 table.

•
 

Test of association

where

•
 

X2

 

has χ2

 

distribution with 2 
degrees of freedom under null 
hypothesis.

Cases Controls Total
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•
 

Sensitive to 
genotyping error 

•
 

Often not as powerful 
as trend test



Allele-based tests

•
 

Each individual contributes two 
counts to 2x2 table.

•
 

Test of association

where

•
 

X2

 

has χ2

 

distribution with 1 
degrees of freedom under null 
hypothesis.

•
 

Assumes cases and 
controls in HWE 

•
 

Assumes multiplicative 
disease model
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Logistic regression framework

•
 

Model case/control status within a logistic regression framework.
•

 
Let πi

 

denote the probability that individual i is a case, given their
 genotype Gi

 

.
•

 
Logit

 
link function

where    
 i
i

ii 1
Gi





exp
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Indicator variables

•
 

Represent genotypes of each individual by 
indicator variables:

Additive 
model

Genotype model

Genotype Z(M)i Z(Mm)i Z(MM)i

mm 0 0 0
Mm 1 1 0
MM 2 0 1



Likelihood calculations

•
 

Log-likelihood of case-control data given 
marker genotypes

where yi

 

= 1 if individual i is a case, and yi

 

= 0 
if individual i is a control.

•
 

Maximise log-likelihood over β
 

parameters, 
denoted           .

•
 

Models fitted using PLINK.
•

 
Additive model equivalent to Armitage

 
test for 

trend

        
i

iiii 1y1y lnlnβ,Gy

 β̂,Gy



Model comparison

•
 

Compare models via deviance, having a χ2

 distribution with degrees of freedom given 
by the difference in the number of model 
parameters.

Models Deviance df
Additive vs

 
null 1

Genotype vs
 

null 2    00MmMM2  ˆ,Gyˆ,ˆ,ˆ,Gy 

    00M2  ˆ,Gyˆ,ˆ,Gy 



Covariates

•
 

It is straightforward to incorporate covariates in the 
logistic regression model:
•

 
age, gender, and other environmental risk factors.

•
 

genotypes at unlinked markers to control for population 
stratification.

•
 

Generalisation of link function, e.g. for additive 
model:

where Xij

 

is the response of individual i to the jth
covariate, and γj

 

is the corresponding covariate 
regression coefficient.

 
j ijjiMM0i XZ )(



Controlling for 
Population Stratification



Population structure

Marchini, Nat Genet (2004)



Genomic control

Test locus Unlinked ‘null’ markers

 2E

2 No stratification

 2E

2

Stratification  adjust test statistic

‘λ’
 

is inflation factor (=1 if no inflation)



QQ plots

McCarthy et al. (2008) Nature Genetics



Population structure -
 



BD 1.15
CAD 1.08
HT 1.09
CD 1.26
RA 1.06
T1D 1.07
T2D 1.10

Genomic control - 
genome-wide 
inflation of median 
test statistic



Crohn’s
 

collection center

Center 3: 
 

= 1.77

All others: 
 

= 1.09

Center
1

No. of samples
524

2 271
3 439
4 465
5 301



Crohn’s
 

Multidimensional Scaling



Principal Components Analysis
•

 

Principal Components Analysis is a data reduction technique where 
many variables are reduced to a few “principal components”:
–

 

Each component describes as much variability as possible
–

 

Components are orthogonal and describe consecutively smaller 
proportions of the variance

–

 

First few components reflect population ancestry

•

 

Genotypes and phenotypes are adjusted by amounts attributable to

 
ancestry along each component by computing residuals of linear 
regressions

•

 

Association statistics are computed using ancestry adjusted genotypes 
and phenotypes



Geographic Interpretation
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Europe
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Imputation
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Imputation



Interpretation and 
Prioritizing SNPs



Asymptotic P values

•

 

“The probability of observing the test result or a more extreme value 
than the test result under the null hypothesis”

•

 

The p value is NOT the probability that the null hypothesis is true

•

 

The probability that the null/alternate hypothesis is true is a function of 
the evidence contained in the data (p value), the power of the test, and 
the prior probability that the association is true/false

•

 

The p value is a fluid measure of the strength of evidence against the 
null hypothesis that was designed to be interpreted in conjunction with 
other (pre-existing) evidence



Interpreting p values

STRONGER 
EVIDENCE

WEAKER EVIDENCE

Genotyping error 
unlikely

“Suspicious”
 

SNP

Stratification unlikely Stratification possible
Low p value Borderline p value

Powerful Study Weak Study
High MAF Low MAF

Candidate Gene Intergenic
 

region
Previous Association No previous evidence



Criticisms of p values

•
 

Doesn’t formally incorporate prior information

•
 

Discards information on the power of the test

•
 

Does not take into account the size of the 
observed effect

•
 

Ranking SNPs
 

by p value is problematic!!!



Multiple Testing
• Multiple Testing Problem: The probability of observing a “significant” result 

purely by chance increases with the number of statistical tests performed

• For testing 500,000 SNPs
• 5,000 expected to be significant at α

 

< .01
• 500 expected to be significant at α

 

< .001
• …
• 0.05 expected to be significant at α

 

< 10-7

• One solution is to maintain αFWER

 

= .05

• Bonferroni

 

correction for m tests
• Set significance level to α

 

= .05/m

• “Genome-wide Significance” suggested at around α

 

= 5 x 10-7



Problems with Bonferroni
 Adjustments

•
 

Bonferroni
 

adjustments are conservative when statistical 
tests are not independent

•
 

Bonferroni
 

adjustments control the error rate associated 
with the omnibus null hypothesis

•
 

The interpretation of a finding depends on how many 
statistical tests were performed

•
 

What tests should be included?

•
 

Bonferroni
 

adjustments decrease power



Permutation Testing

•
 

The distribution of the test statistic under the null 
hypothesis can be derived by shuffling case-

 control status relative to the genotypes, and 
performing the test of association many times

•
 

Permutation breaks down the relationship between 
genotype and phenotype but maintains the pattern 
of linkage disequilibrium in the data

•
 

Appropriate for rare genotypes, small studies, non-
 normal phenotypes etc.



Replication

•
 

Replicating the genotype-phenotype association is 
the “gold standard”

 
for “proving”

 
an association is 

genuine

•
 

Most loci underlying complex diseases will not be 
of large effect

•
 

It is unlikely that a single study will unequivocally 
establish an association without the need for 
replication



Guidelines for Replication

Replication studies should be of 
sufficient size to demonstrate the 
effect

Replication studies should 
conducted in independent 
datasets

Replication should involve the 
same phenotype

Replication should be conducted 
in a similar population

The same SNP should be tested

The replicated signal should be 
in the same direction

Joint analysis should lead to a 
lower p value than the original 
report

Well designed negative studies 
are valuable



Meta-analysis



Meta-analysis



Meta-analysis

•
 

Aims to combine statistical evidence from 
different studies

•
 

Aims to provide a better estimate of the 
underlying effect size

•
 

In the context of GWA used to identify 
polymorphisms that contribute to variation but are 
located lower down the distribution



Meta-analysis

•
 

Larger studies carry more weight

•
 

Fixed versus Random Effects

•
 

Assessment of Heterogeneity



Example: Meta-analysis of 
Height

Weedon et al. (2008) Nat Genet

A- 1914 Cases (WTCCC T2D)
B- 4892 Cases (DGI)
C- 6788 Cases (WTCCC HT)
D- 8668 Cases (WTCCC CAD)
E- 12228 Cases (EPIC)
F- 13665 Cases (WTCCC UKBS)



A: 1,900

C: 7,200

E: 12,600 F: 14,000

D: 9,100

B: 5,000

Weedon et al. (2008) Nat Genet

Some real hits sit in the bottom of the distribution

Some hits initially look interesting but then go away



http://www.hstalks.com

Statistical Methods for the Analysis of 
Genome-wide Association Studies
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