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Historical gene mapping
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Glazier et al, Science (2002).

Number of complex trait genes



Reasons for Failure

> Linkage not powerful enough!

> |nadequate Marker Coverage (Candidate gene studies)

> Too optimistic about sample size




Reasons for Failure?
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Enabling Genome-wide
Association Studies

> HAPIlotype MAP

> High throughput genotyping

> Large cohorts

REGISTRY



Wellcome Trust Case Control
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ng bowel condition which can
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this late-onset disease, which is linked
with the growing obesity epidemic

) SEVEN OF THE MOST
'OMILLIONS OF SUFFERERS

FULL STORY, PAGE 2



Successes. ..
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Case- Control Studies
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Case to Control Ratio

Most efficient ratio is 1:1

Sometimes difficult to recruit cases, In this situation power can still be
Increased by ascertaining controls

In the hypothetical situation of an infinite number of controls, only half
the number of cases would be required

Most increase in power occurs when the number of controls is 3 -5
times the number of cases




Other Strategies to Increase
Power

> Minimize phenotypic heterogeneity

> Early age of onset

Additive Model
o ~
> Family cases - \ —
o \\\
> Quantitative traits- Extreme cases

(500 individuals taken from top and bottom; a = 5 x 107)

> BUT must be careful...




Phenotypic Misclassification

> Misclassification in psychiatric genetics

> Random misclassification should not affect type | error but will decrease
power

> Misclassifying cases is not the same as misclassifying controls. The
effect of each depends on the prevalence of disease

> For example, for diseases where prevalence less than 10% much
more important to ensure cases are truly affected than controls are
really unaffected

> Use of historic controls (but note stratification: batch effects: platform
differences)




TDT vs Case Control
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Quantitative Traits
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Figure 1 Relative power of GWAS for sibships versus unrelated

individuals, for the same cost of genotyping. p is the phenotypic

correlation between siblings.

Visscher et al. (2008) EJHG

> Little power lost by analyzing families
relative to singletons

> |t may be efficient to genotype only
some individuals in larger pedigrees

> Pedigrees allow error checking, within
family tests, parent-of-origin analyses,
joint linkage and association etc




Genotyping Platform
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Some Commercial Alternatives...

/ Affymetrix SNP array 5.0 (500K) \
Affymetrix SNP array 6.0 (1.8M)
lllumina 317K -> lllumina 370K

umina 550K -> lllumina 610K

\ umina 1M /

[ umina Human Exon 510S }

L lllumina Human NS 12 Beadchip (15K)}




How many SNPs to tag the genome?

> |deal tag sets

CEU JPT+CHB YRI
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> 500,000 tags SNPs to tag all common variation in CEU at r2 > (0.8

> Diminishing returns as coverage increases (e.q 250K tags 85% of
genome)

> Linear relationship for “singleton” SNPs




How Do The Chips Do?

Table 1. Estimates of Genomic Coverage for Currently
Available Genome-wide SNP Platforms Alone and after

Imputation
Percentage of Percentage of
Genomic Coverage  Genomic Coverage
atr’ = 0.8 atrf =1
D> Affymetrix SNP Array 5.0 65 43
> Affymetrix SNP Array 5.0 73 54
plus imputed SNPs
Affymetrix SNP Array 6.0 80 59
Illumina HumanHap 300 7 42
Illumina HumanHap 300 81 50
plus imputed SNPs
t Illumina HumanHap 550 87 57
Illumina HumanHap 1M 01 68

Estimates evaluated with Phase II HapMap data from the CEU population.
Coverage estimates for Illumina HumanHap 1M and Affymetrix SNP-array-
6.0 are likely to be biased downward because the genotypes at approxi-
mately 10% of the SNPs on each platform are not currently publicly avail-
able for the CEU HapMap individuals. Where imputations are included, all
SNPs passing imputation-filter thresholds and with an * = 0.8 between
known and imputed genotypes are included along with the SNPs on the
genome-wide SNP chip.

Anderson et al. (2008) Nature Genetics
> Some of the difference in coverage can be recovered through imputation

> If sample size limited, but funding not, use chip with best coverage

> |If cost limited but sample size not use lllumina 300K? (Cost efficiency)




Most SNPs are Rare
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> Hapmap and SNP chips biased towards common variants

> Rare SNPs are not tagged well by common SNPs!




What about nsSNP chips?
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Figure 2 Relationship between MAF, heterozygote GRR, and
power to detect associalion assuming a multiplicative disease muodel,
Results are shown for 2000, 5000, and 10000 case-control pairs
assuming a disease prevalence of 1% and a type | error rate of
#=3.6x 1075 The figure illustrates that it is possible to detect rare
variants of intermediate penetrance using current sample sizes of 2000
case—control pairs. To detect rare alleles of smaller effect, far larger
sample sizes will need to be employed.

Evans et al. (2008) EJHG

Non-synonymous SNPs produce
changes in amino acid seguence

Most common nsSNPs tagged by

existing genome-wide products

Little to add to genome-wide chips in
terms of identifying common variants

May help identify rare variants of
iIntermediate penetrance




“Cleaning” Data



Genotypes are not raw data
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> Trade off between stringency and call rate (no universal value)

> Raw intensities of ALL putative associations should be checked!




SNP Quality Control

> Missing Data Rate (SNPs, Individuals, cases vs controls)

> Hardy Weinberg Equilibrium

> Allele frequency

> Mendelian Inconsistencies




Sample Heterozygosity
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% Missing data
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Association Analysis



Genotypic tests

 SNP marker data can be
represented 1n 2x3 table.

 Test of association

Cases Controls Total

2 = Z Z (nij—_E[n_ij])z

i=0,1,2 j=A,U E|.nijJ

where
n;n,

E[nij] =

« X? has y? distribution with 2
degrees of freedom under null
hypothesis.

n,

MM oA oy 1.
Mm DA My 1.
mm Mo Moy 1.
Total n., n n.

e Sensitive to
genotyping error

e Often not as powerful
as trend test



Allele-based tests

* Each individual contributes two Cases  Controls  Total
counts to 2x2. ta.ble. M n, , N n,
* Test of association m Ny Noy n,
Total n., ng n
2 _ Z (nij __E[nu])z
1=0,1;=A,U E|_niJJ
where in * Assumes cases and
_ i :
Eln, ] - controls in HWE

« X2 has y? distribution with 1

degrees of freedom under null Coae
hypothesis. * Assumes multiplicative

disease model



Logistic regression framework

Model case/control status within a logistic regression framework.

Let . denote the probability that individual 1 is a case, given their
genotype G..
Logit link function

where n. =Pr(iis case [G,,B)= —F [n,]
1+ exp [ni]
( B, null model
7, =1 By + BuZ additive model



Indicator variables

* Represent genotypes of each individual by
indicator variables:

Additive Genotype model
model
Genotype L Z (vim)i Z v
mm 0 0 0
Mm 1 1 0
MM 2 0 1




[Likelihood calculations

Log-likelihood of case-control data given
marker genotypes

(ylG.B)= 2yl ]+ 1=y )infl -

where y, = 1 1f individual 1 1s a case, and y, = 0
if individual 1 1s a control.

Maximise log-likelithood over  parameters,
denoted g(y‘(;,ﬁ)

Models fitted using PLINK.

Additive model equivalent to Armitage test for
trend



Model comparison

« Compare models via deviance, having a y?
distribution with degrees of freedom given
by the difference in the number of model

parameters.

Models Deviance df

Additive vs null 2 _f(y G,B, [30)— E(y G, [30)_ 1

Genotype vs null 2 _E(y G, Briss Paps [30)— f(y G, st)J 2




Covariates

* It 1s straightforward to incorporate covariates in the
logistic regression model:

 age, gender, and other environmental risk factors.

 genotypes at unlinked markers to control for population
stratification.

* Generalisation of link function, e.g. for additive

model:
Mi = Bo +BaZowy + ijinj

where X;; 1s the response of individual 1 to the jth

covariate, and vy 1s the corresponding covariate
regression coefficient.



Controlling for
Population Stratification



Population structure

Population 1 Cases Population 2

I ]
- —

Controls

Genotype [[laallAa [llAA

Marchini, Nat Genet (2004)



Genomic control

X No stratification
E 2
I planennNNENENONE N ()
Test locus Unlinked “null’” markers

| IETAT 1101 (e

Stratification — adjust test statistic

‘A’ is inflation factor (=1 if no inflation)



QQ plots

Box 2 | Visualization of genome-wide association data
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McCarthy et al. (2008) Nature Genetics
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Genomic control - 7»
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Inflation of median
test statistic
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Crohn’s collection center

Center No. of samples
1 524
2 271
3 439
4 465
5 301

Center3: A =1.77
All others: A = 1.09



Crohn’s Multidimensional Scaling
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Principal Components Analysis

Principal Components Analysis is a data reduction technique where
many variables are reduced to a few “principal components”:

— Each component describes as much variability as possible

— Components are orthogonal and describe consecutively smaller
proportions of the variance

— First few components reflect population ancestry

Genotypes and phenotypes are adjusted by amounts attributable to
ancestry along each component by computing residuals of linear
regressions

Association statistics are computed using ancestry adjusted genotypes
and phenotypes



Geographic Interpretation
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Figure 2 The top two axes of variation of European American samples. We
hypothesize that the first axis reflects genetic variation between northwest
and southeast Europe, with a fraction of the samples showing southeast
European ancestry (first axis < 0; see text). It follows that the second axis
separates two southeast European subpopulations.



Imputation



Imputation
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Interpretation and
Prioritizing SNPs



Asymptotic P values

“The probability of observing the test result or a more extreme value
than the test result under the null hypothesis”

The p value 1s NOT the probability that the null hypothesis is true

The probability that the null/alternate hypothesis is true 1s a function of
the evidence contained in the data (p value), the power of the test, and
the prior probability that the association is true/false

The p value is a fluid measure of the strength of evidence against the
null hypothesis that was designed to be interpreted in conjunction with
other (pre-existing) evidence



Interpreting p values

STRONGER WEAKER EVIDENCE
EVIDENCE
Genotyping error “Suspicious” SNP
unlikely

Stratification unlikely

Stratification possible

Low p value

Borderline p value

Powerful Study

Weak Study

High MAF

Low MAF

Candidate Gene

Intergenic region

Previous Association

No previous evidence




Criticisms of p values

Doesn’t formally incorporate prior information
Discards information on the power of the test

Does not take into account the size of the
observed effect

Ranking SNPs by p value 1s problematic!!!



Multiple Testing

Multiple Testing Problem: The probability of observing a “significant” result
purely by chance increases with the number of statistical tests performed

For testing 500,000 SNPs
5,000 expected to be significant at o < .01
500 expected to be significant at o <.001
0.05 expected to be significant at o0 < 107

One solution is to maintain Opygg = .05

Bonferroni correction for m tests

Set significance level to a = .05/m

“Genome-wide Significance” suggested at around o =5 x 10’



Problems with Bonferroni
Adjustments

Bonferroni adjustments are conservative when statistical
tests are not independent

Bonferroni adjustments control the error rate associated
with the omnibus null hypothesis

The interpretation of a finding depends on how many
statistical tests were performed

What tests should be included?

Bonferroni adjustments decrease power



Permutation Testing

* The distribution of the test statistic under the null
hypothesis can be derived by shuffling case-
control status relative to the genotypes, and
performing the test of association many times

* Permutation breaks down the relationship between
genotype and phenotype but maintains the pattern
of linkage disequilibrium in the data

* Appropriate for rare genotypes, small studies, non-
normal phenotypes etc.



Replication

* Replicating the genotype-phenotype association 1s
the “gold standard” for “proving” an association 1s
genuine

* Most loc1 underlying complex diseases will not be
of large effect

It i1s unlikely that a single study will unequivocally
establish an association without the need for
replication



Guidelines for Replication

Replication studies should be of The same SNP should be tested

sufficient size to demonstrate the

effect

Replication studies should
conducted in independent
datasets

Replication should involve the
same phenotype

Replication should be conducted
In a similar population

The replicated signal should be
In the same direction

Joint analysis should lead to a
lower p value than the original
report

Well designed negative studies
are valuable



Meta-analysis



Meta-analysis




Meta-analysis

 Aims to combine statistical evidence from
different studies

* Aims to provide a better estimate of the
underlying effect size

* In the context of GWA used to identify
polymorphisms that contribute to variation but are
located lower down the distribution




Meta-analysis

» Larger studies carry more weight
* Fixed versus Random Effects

» Assessment of Heterogeneity



Example: Meta-analysis of
Height

B- 4892 Cases (DGI)

C- 6788 Cases (WTCCC HT)

D- 8668 Cases (WTCCC CAD)
E- 12228 Cases (EPIC)

] .~ F-13665 Cases (WTCCC UKBS)

Expesied Loglé P

Weedon et al. (2008) Nat Genet
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> Some real hits sit in the bottom of the distribution

> Some hits initially look interesting but then go away




Statistical Methods for the Analysis of
Genome-wide Association Studies
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PROFESS0R ROGER KORNBERG, NOBEL LAUREATE
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