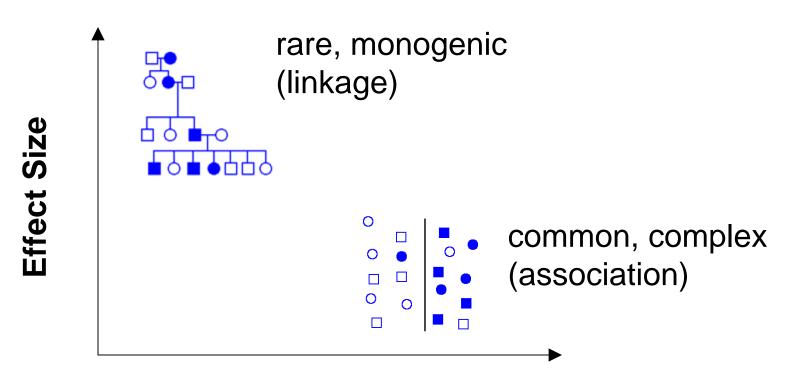
Design and Analysis of Genomewide Association Studies

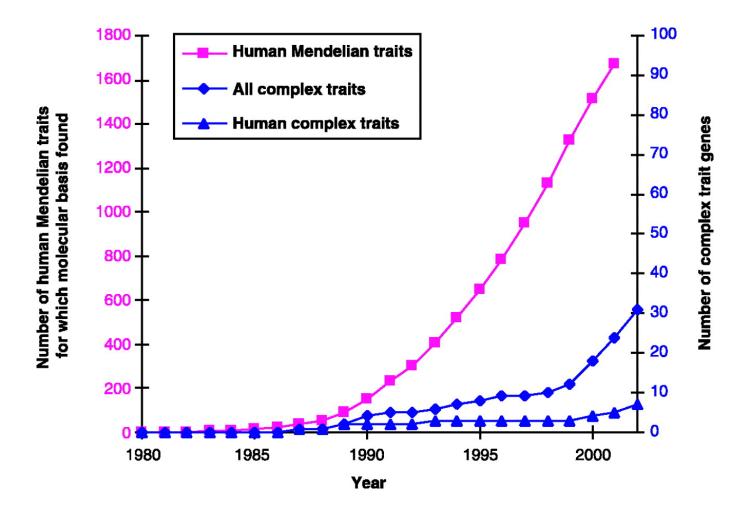
David Evans

Methods of gene hunting



Frequency

Historical gene mapping



Glazier et al, Science (2002).

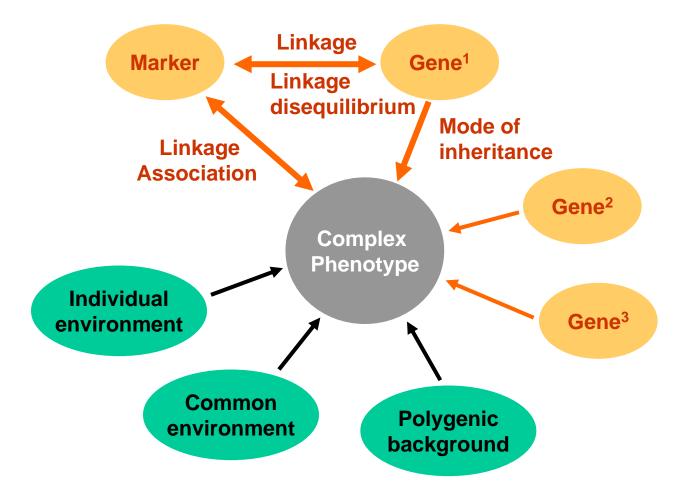
Reasons for Failure

Linkage not powerful enough!

Inadequate Marker Coverage (Candidate gene studies)

► <u>Too optimistic about sample size</u>

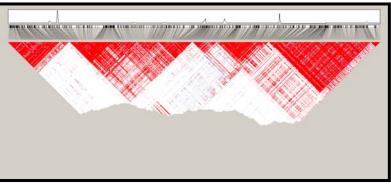
Reasons for Failure?



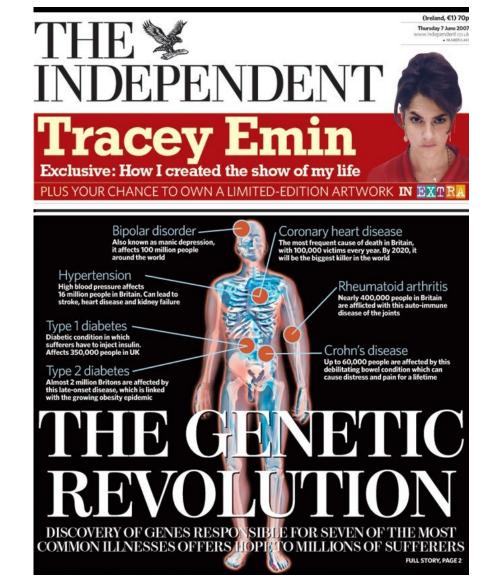
Enabling Genome-wide Association Studies

► <u>HAPlotype MAP</u>

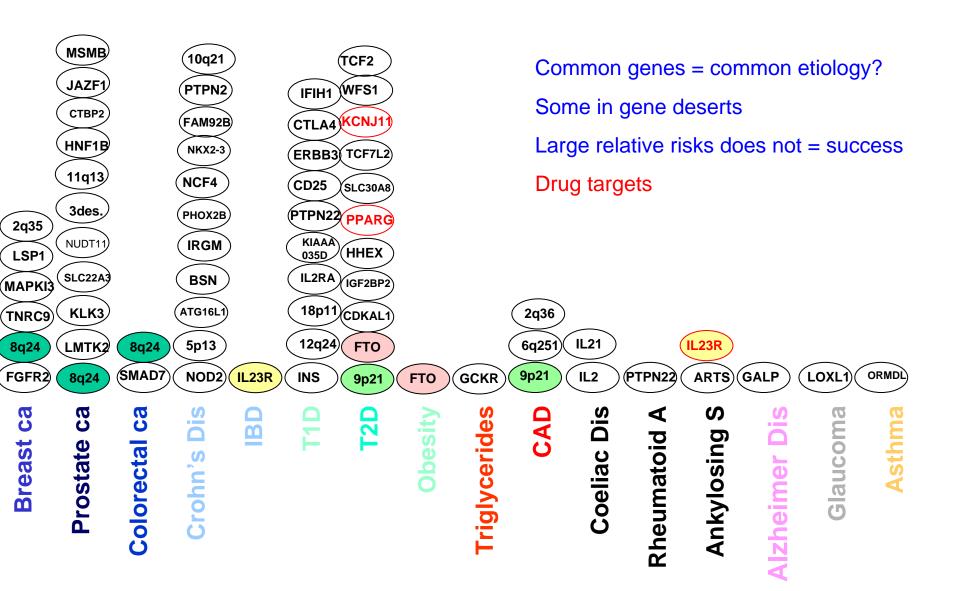
High throughput genotyping



Wellcome Trust Case Control Consortium



Successes...



Study Design

🚰 Statistical Genetics Group - Microsoft Intern	et Explorer	
<u>File Edit View Favorites Tools H</u> elp		10 A
(=> Back • => -> 📀 👔 🚮 🛛 🔞 Search 🛞 R	iavorites 🞯 Media 🚳 🔀 - 🖨 🔯 - 📄 👹	
Address 🙋 http://pngu.mgh.harvard.edu/~purcell/g	pc/cc2.html	▼ 🖉 Go Links ≫
Genetic Power Cal	culator	
Case - control for discrete traits		
High risk allele frequency (Å) Prevalence Genotype relative risk Åa Genotype relative risk ÅÅ	: (0 - 1) : (0.0001 - 0.9999) : (>1) : (>1) : (>1)	
D-prime Marker allele frequency (B)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Number of cases Control : case ratio	: (0 - 10000000) : (>0) (1 = equal number of cases and controls)	

(0.0000001 - 0.5)

(0 - 1)

Created by <u>Shaun Purcell</u> 6.12.2001

(1 - type II error rate)

Reset

Process

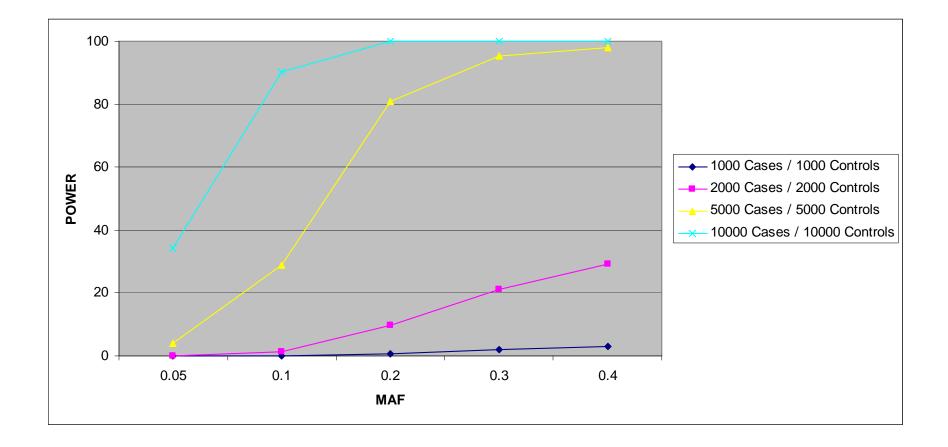
User-defined type I error rate : 0.05

User-defined power: determine N : 0.80

ļ							
🛃 Done						🤣 Internet	
🙀 Start 🛛 🛃 🏉 🖏 🖉 🔍 papers	europe 📴 Fri_am_M	Cholesky 🗐 depanx	. TDT_Phas 🗐 assoc-2005	📴 tdt_power 🛛 🗃 Evans_pw	🗐 Power an 🔀 Adobe Ac	Statistic	🗐 👀 EN

-

Case- Control Studies



(*Multiplicative model*; $r^2 = 1$; $RR_{Aa} = 1.2$; $\alpha = 5 \times 10^{-7}$)

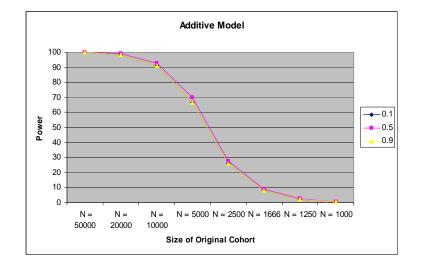
Case to Control Ratio

- ► Most efficient ratio is 1:1
- Sometimes difficult to recruit cases, in this situation power can still be increased by ascertaining controls
- In the hypothetical situation of an infinite number of controls, only half the number of cases would be required
- Most increase in power occurs when the number of controls is 3 5 times the number of cases

Other Strategies to Increase Power

- Minimize phenotypic heterogeneity
- Early age of onset

► Family cases



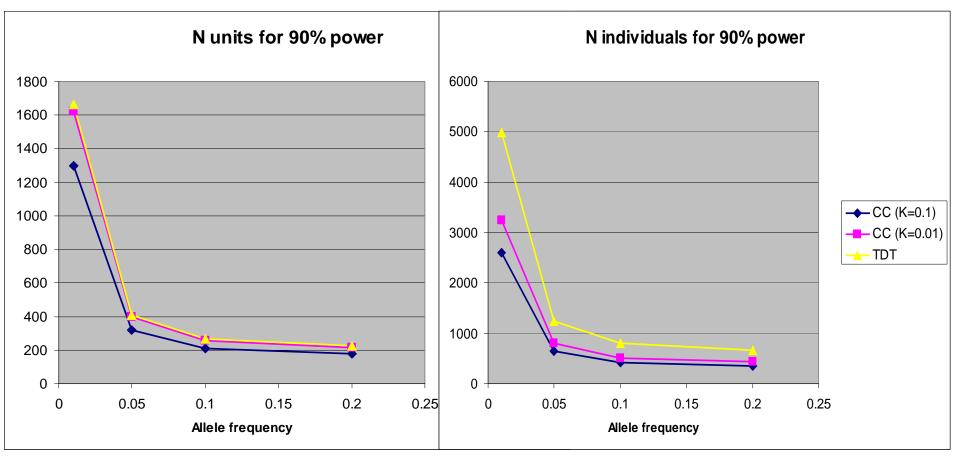
(500 individuals taken from top and bottom; $\alpha = 5 \times 10^{-7}$)

► BUT must be careful...

Phenotypic Misclassification

- Misclassification in psychiatric genetics
- Random misclassification should not affect type I error but will decrease power
- Misclassifying cases is not the same as misclassifying controls. The effect of each depends on the prevalence of disease
- For example, for diseases where prevalence less than 10% much more important to ensure cases are truly affected than controls are really unaffected
- Use of historic controls (but note stratification; batch effects; platform differences)

TDT vs Case Control



p = 0.1; RAA = RAa = 2

Number of units similar for each => 2/3 Number of individuals for TDT

Prevalence affects CC power but not TDT power

Quantitative Traits

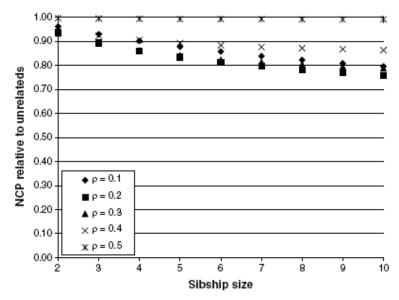


Figure 1 Relative power of GWAS for sibships *versus* unrelated individuals, for the same cost of genotyping. ρ is the phenotypic correlation between siblings.

Visscher et al. (2008) EJHG

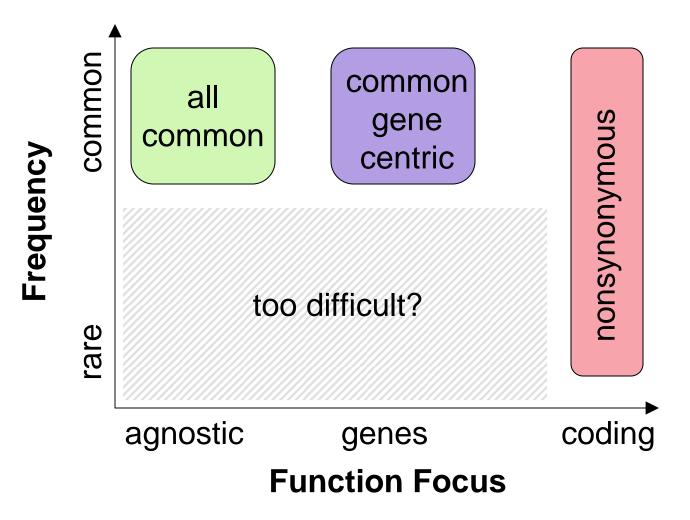
Little power lost by analyzing families relative to singletons

It may be efficient to genotype only some individuals in larger pedigrees

Pedigrees allow error checking, within family tests, parent-of-origin analyses, joint linkage and association etc

Genotyping Platform

Selecting Markers: Strategies



Some Commercial Alternatives...

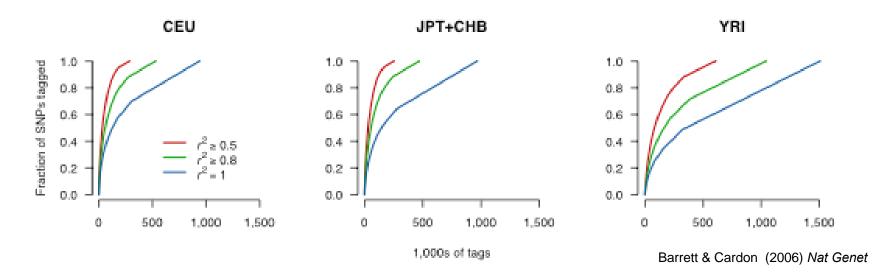
```
Affymetrix SNP array 5.0 (500K)
Affymetrix SNP array 6.0 (1.8M)
Illumina 317K -> Illumina 370K
Illumina 550K -> Illumina 610K
Illumina 1M
```

Illumina Human Exon 510S

Illumina Human NS_12 Beadchip (15K)

How many SNPs to tag the genome?

► Ideal tag sets



▶ 500,000 tags SNPs to tag all common variation in CEU at $r^2 > 0.8$

- Diminishing returns as coverage increases (e.g 250K tags 85% of genome)
- ► Linear relationship for "singleton" SNPs

How Do The Chips Do?

Table 1. Estimates of Genomic Coverage for Currently

	Percentage of Genomic Coverage at $r^2 \ge 0.8$	Percentage of Genomic Coverage at $r^2 = 1$
Affymetrix SNP Array 5.0	65	43
Affymetrix SNP Array 5.0 plus imputed SNPs	73	54
Affymetrix SNP Array 6.0	80	59
Illumina HumanHap 300	77	42
Illumina HumanHap 300 plus imputed SNPs	81	50
Illumina HumanHap 550	87	57
Illumina HumanHap 1M	91	68

Estimates evaluated with Phase II HapMap data from the CEU population. Coverage estimates for Illumina HumanHap 1M and Affymetrix SNP-array-6.0 are likely to be biased downward because the genotypes at approximately 10% of the SNPs on each platform are not currently publicly available for the CEU HapMap individuals. Where imputations are included, all SNPs passing imputation-filter thresholds and with an $r^2 \geq 0.8$ between known and imputed genotypes are included along with the SNPs on the genome-wide SNP chip.

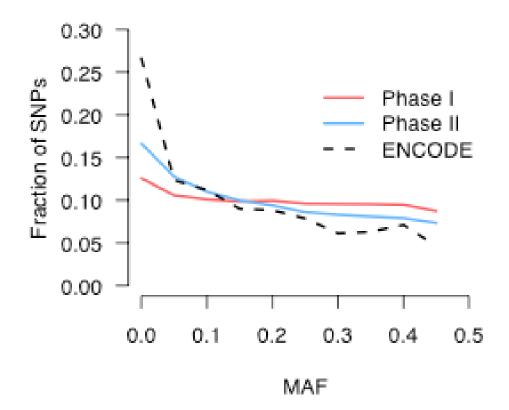
Anderson et al. (2008) Nature Genetics

Some of the difference in coverage can be recovered through imputation

If sample size limited, but funding not, use chip with best coverage

If cost limited but sample size not use Illumina 300K? (Cost efficiency)

Most SNPs are Rare



Hapmap and SNP chips biased towards common variants

Rare SNPs are not tagged well by common SNPs!

What about nsSNP chips?

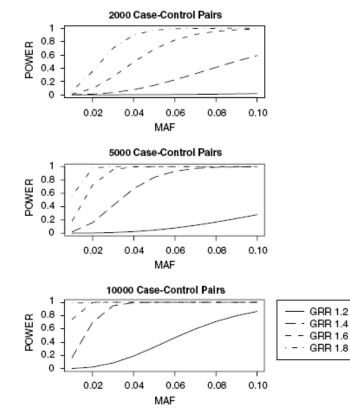


Figure 2 Relationship between MAF, heterozygote GRR, and power to detect association assuming a multiplicative disease model. Results are shown for 2000, 5000, and 10 000 case–control pairs assuming a disease prevalence of 1% and a type I error rate of $\alpha = 3.6 \times 10^{-6}$. The figure illustrates that it is possible to detect rare variants of intermediate penetrance using current sample sizes of 2000 case–control pairs. To detect rare alleles of smaller effect, far larger sample sizes will need to be employed.

Non-synonymous SNPs produce changes in amino acid sequence

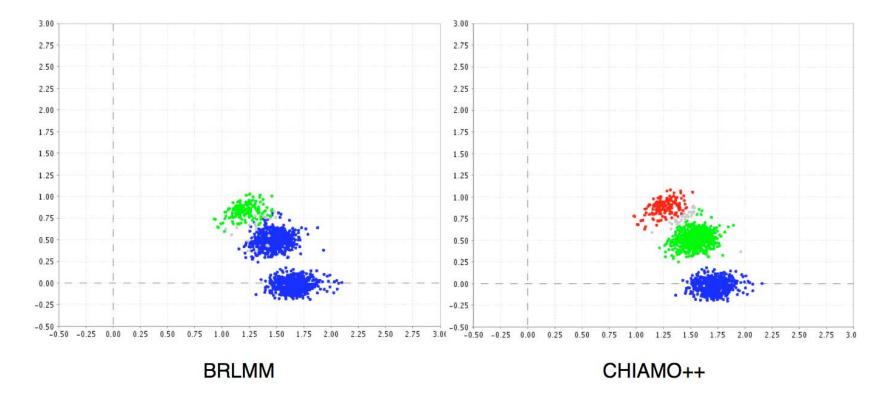
Most common nsSNPs tagged by existing genome-wide products

Little to add to genome-wide chips in terms of identifying common variants

May help identify rare variants of intermediate penetrance

"Cleaning" Data

Genotypes are not raw data



Trade off between stringency and call rate (no universal value)

Raw intensities of ALL putative associations should be checked!

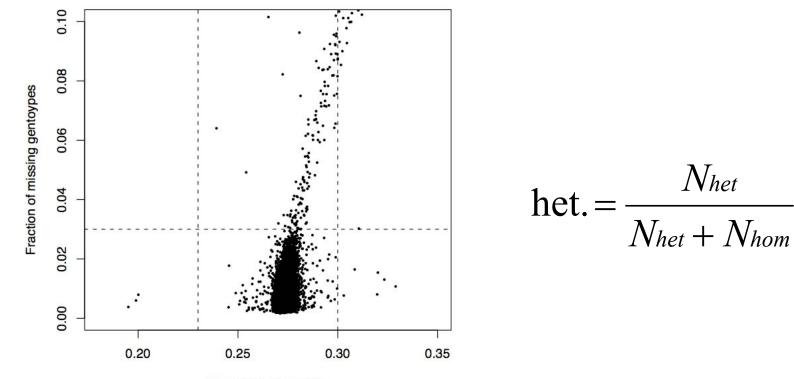
SNP Quality Control

- Missing Data Rate (SNPs, Individuals, cases vs controls)
- Hardy Weinberg Equilibrium

► <u>Allele frequency</u>

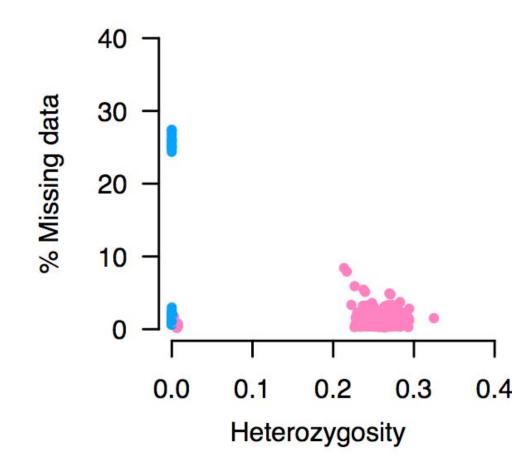
Mendelian Inconsistencies

Sample Heterozygosity



Mean heterozygosity

Sample Gender



Association Analysis

Genotypic tests

- SNP marker data can be represented in 2x3 table.
- Test of association

$$X^{2} = \sum_{i=0,1,2} \sum_{j=A,U} \frac{\left(n_{ij} - E[n_{ij}]\right)^{2}}{E[n_{ij}]}$$

where

$$\mathbf{E}[\mathbf{n}_{ij}] = \frac{\mathbf{n}_{i} \cdot \mathbf{n}_{j}}{\mathbf{n}_{i}}$$

• X^2 has χ^2 distribution with 2 degrees of freedom under null hypothesis.

	Cases	Controls	Total
MM	n _{2A}	n_{2U}	n ₂ .
Mm	n _{1A}	n_{1U}	$n_{1.}$
mm	n _{0A}	n_{0U}	n ₀ .
Total	n _{.A}	$n_{\cdot U}$	n

- Sensitive to genotyping error
- Often not as powerful as trend test

Allele-based tests

- Each individual contributes two counts to 2x2 table.
- Test of association

$$X^{2} = \sum_{i=0,1} \sum_{j=A,U} \frac{(n_{ij} - E[n_{ij}])^{2}}{E[n_{ij}]}$$

where

$$\mathbf{E}[\mathbf{n}_{ij}] = \frac{\mathbf{n}_{i} \cdot \mathbf{n}_{.j}}{\mathbf{n}_{.j}}$$

• X^2 has χ^2 distribution with 1 degrees of freedom under null hypothesis.

Cases	Controls	Total
n _{1A}	n _{1U}	n_{1} .
n _{0A}	n_{0U}	n ₀ .
$n_{\cdot A}$	n. _U	n
	n _{1A} n _{0A}	$\begin{array}{c} n_{1A} & n_{1U} \\ n_{0A} & n_{0U} \end{array}$

• Assumes cases and controls in HWE

• Assumes multiplicative disease model

Logistic regression framework

- Model case/control status within a logistic regression framework.
- Let π_i denote the probability that individual i is a case, given their genotype G_i .
- Logit link function

where
$$\pi_i = \Pr(i \text{ is case } | G_i, \beta) = \frac{\exp[\eta_i]}{1 + \exp[\eta_i]}$$

$$\eta_{i} = \begin{cases} \beta_{0} & \text{null model} \\ \beta_{0} + \beta_{M} Z_{(M)i} & \text{additive model} \\ \beta_{0} + \beta_{Mm} Z_{(Mm)i} + \beta_{MM} Z_{(MM)i} & \text{genotype-based model} \end{cases}$$

Indicator variables

• Represent genotypes of each individual by indicator variables:

	Additive model	Genotype model
Genotype	Z _{(M)i}	$Z_{(Mm)i}$ $Z_{(MM)i}$
mm	0	0 0
Mm	1	1 0
MM	2	0 1

Likelihood calculations

• Log-likelihood of case-control data given marker genotypes

$$\ell(\mathbf{y}|\mathbf{G},\boldsymbol{\beta}) = \sum_{i} \mathbf{y}_{i} \ln[\pi_{i}] + (1 - \mathbf{y}_{i}) \ln[1 - \pi_{i}]$$

where $y_i = 1$ if individual i is a case, and $y_i = 0$ if individual i is a control.

- Maximise log-likelihood over β parameters, denoted $\ell(y|G, \hat{\beta})$
- Models fitted using PLINK.
- Additive model equivalent to Armitage test for trend

Model comparison

• Compare models via deviance, having a χ^2 distribution with degrees of freedom given by the difference in the number of model parameters.

Models	Deviance	df
Additive vs null	$\left 2 \left[\ell \left(\mathbf{y} \middle \mathbf{G}, \hat{\boldsymbol{\beta}}_{\mathrm{M}}, \hat{\boldsymbol{\beta}}_{\mathrm{0}} \right) - \ell \left(\mathbf{y} \middle \mathbf{G}, \hat{\boldsymbol{\beta}}_{\mathrm{0}} \right) \right] \right $	1
Genotype vs null	$2\left[\ell\left(\mathbf{y} \mathbf{G},\hat{\boldsymbol{\beta}}_{\mathrm{MM}},\hat{\boldsymbol{\beta}}_{\mathrm{Mm}},\hat{\boldsymbol{\beta}}_{0}\right)-\ell\left(\mathbf{y} \mathbf{G},\hat{\boldsymbol{\beta}}_{0}\right)\right]$	2

Covariates

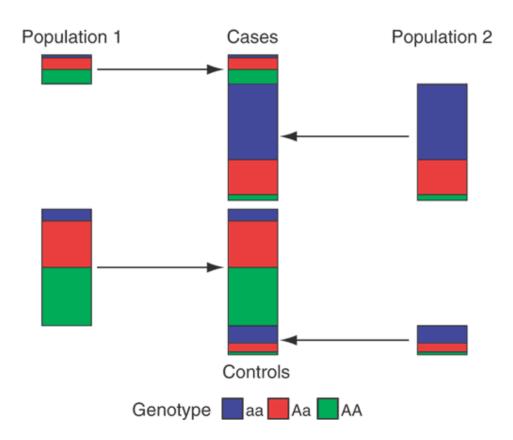
- It is straightforward to incorporate covariates in the logistic regression model:
 - age, gender, and other environmental risk factors.
 - genotypes at unlinked markers to control for population stratification.
- Generalisation of link function, e.g. for additive model:

$$\eta_{i} = \beta_{0} + \beta_{M} Z_{(M)i} + \sum_{j} \gamma_{j} X_{ij}$$

where X_{ij} is the response of individual i to the jth covariate, and γ_i is the corresponding covariate regression coefficient.

Controlling for Population Stratification

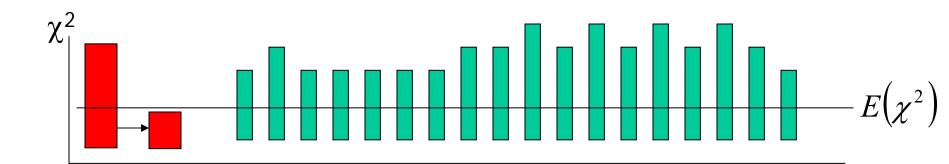
Population structure



Marchini, Nat Genet (2004)

Genomic control

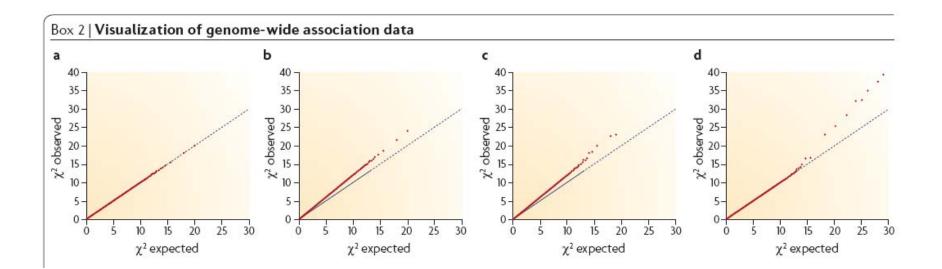
Test locus Unlinked 'null' markers



Stratification \rightarrow adjust test statistic

' λ ' is inflation factor (=1 if no inflation)

QQ plots



McCarthy et al. (2008) Nature Genetics

Population structure - λ

T2D

1.10

	BD	1.15
Genomic control - λ	CAD	1.08
	HT	1.09
genome-wide	CD	1.26
inflation of median test statistic	RA	1.06
	T1D	1.07

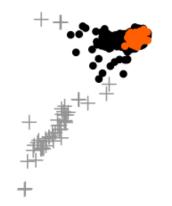
Crohn's collection center

Center	No. of samples
1	524
2	271
3	439
4	465
5	301

Center 3: $\lambda = 1.77$

All others: $\lambda = 1.09$

Crohn's Multidimensional Scaling



+

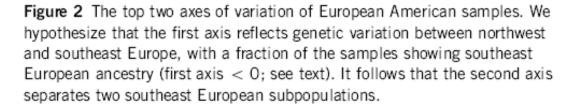
- WTCCC
- + Excluded samples
- YRI
- CEU
- CHB+JPT

Principal Components Analysis

- Principal Components Analysis is a data reduction technique where many variables are reduced to a few "principal components":
 - Each component describes as much variability as possible
 - Components are orthogonal and describe consecutively smaller proportions of the variance
 - First few components reflect population ancestry
- Genotypes and phenotypes are adjusted by amounts attributable to ancestry along each component by computing residuals of linear regressions
- Association statistics are computed using ancestry adjusted genotypes and phenotypes

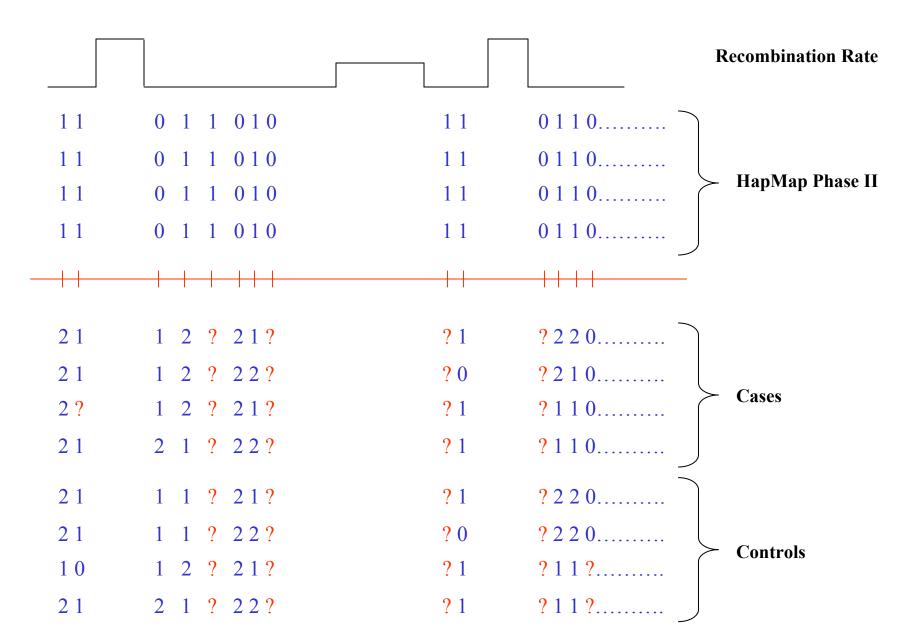
Geographic Interpretation

0.25 0.2 North-west South-east 0.15 Europe Europe 0.1 Second axis 0.05 -0.05-0.1-0.15 -0.2 --0.12 -0.16 -0.14 -0.08 -0.06 -0.04 -0.02 -0.1 0 0.02 0.04 0.06 First axis

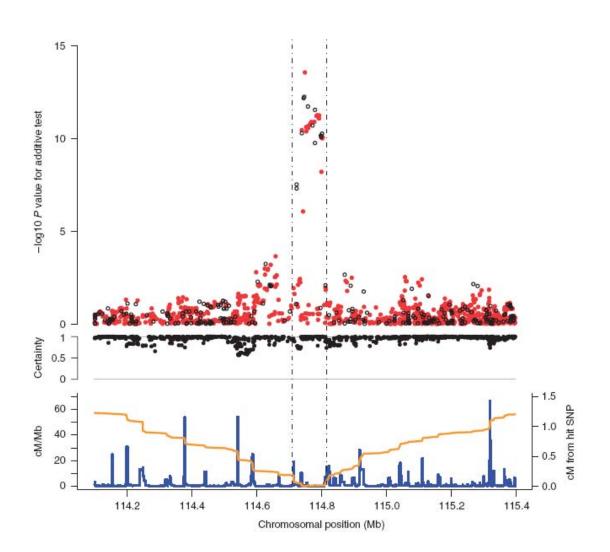


Imputation

Imputation



Imputation



Interpretation and Prioritizing SNPs

Asymptotic P values

- "The probability of observing the test result or a more extreme value than the test result under the null hypothesis"
- The p value is NOT the probability that the null hypothesis is true
- The probability that the null/alternate hypothesis is true is a function of the evidence contained in the data (p value), the power of the test, and the prior probability that the association is true/false
- The p value is a fluid measure of the strength of evidence against the null hypothesis that was designed to be interpreted in conjunction with other (pre-existing) evidence

Interpreting p values

STRONGER EVIDENCE	WEAKER EVIDENCE	
Genotyping error unlikely	"Suspicious" SNP	
Stratification unlikely	Stratification possible	
Low p value	Borderline p value	
Powerful Study	Weak Study	
High MAF	Low MAF	
Candidate Gene	Intergenic region	
Previous Association	No previous evidence	

Criticisms of p values

- Doesn't formally incorporate prior information
- Discards information on the power of the test
- Does not take into account the size of the observed effect
- Ranking SNPs by p value is problematic!!!

Multiple Testing

- Multiple Testing Problem: The probability of observing a "significant" result purely by chance increases with the number of statistical tests performed
- For testing 500,000 SNPs
- 5,000 expected to be significant at $\alpha < .01$
- 500 expected to be significant at $\alpha < .001$
- ...
- 0.05 expected to be significant at $\alpha < 10^{-7}$
- One solution is to maintain $\alpha_{FWER} = .05$
- Bonferroni correction for m tests
- Set significance level to $\alpha = .05/m$
- "Genome-wide Significance" suggested at around $\alpha = 5 \times 10^{-7}$

Problems with Bonferroni Adjustments

- Bonferroni adjustments are conservative when statistical tests are not independent
- Bonferroni adjustments control the error rate associated with the omnibus null hypothesis
- The interpretation of a finding depends on how many statistical tests were performed
- What tests should be included?
- Bonferroni adjustments decrease power

Permutation Testing

- The distribution of the test statistic under the null hypothesis can be derived by shuffling case-control status relative to the genotypes, and performing the test of association many times
- Permutation breaks down the relationship between genotype and phenotype but maintains the pattern of linkage disequilibrium in the data
- Appropriate for rare genotypes, small studies, nonnormal phenotypes etc.

Replication

- Replicating the genotype-phenotype association is the "gold standard" for "proving" an association is genuine
- Most loci underlying complex diseases will not be of large effect
- It is unlikely that a single study will unequivocally establish an association without the need for replication

Guidelines for Replication

Replication studies should be of sufficient size to demonstrate the effect

Replication studies should conducted in independent datasets

Replication should involve the same phenotype

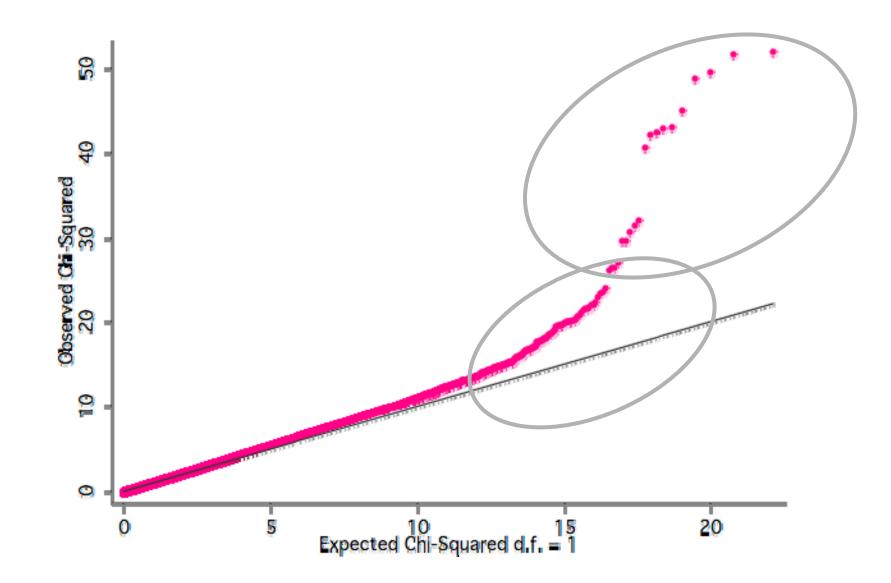
Replication should be conducted in a similar population

The same SNP should be tested

The replicated signal should be in the same direction

Joint analysis should lead to a lower p value than the original report

Well designed negative studies are valuable



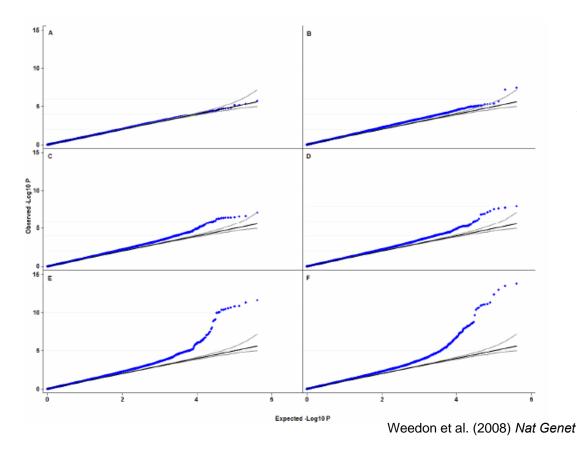
- Aims to combine statistical evidence from different studies
- Aims to provide a better estimate of the underlying effect size
- In the context of GWA used to identify polymorphisms that contribute to variation but are located lower down the distribution

• Larger studies carry more weight

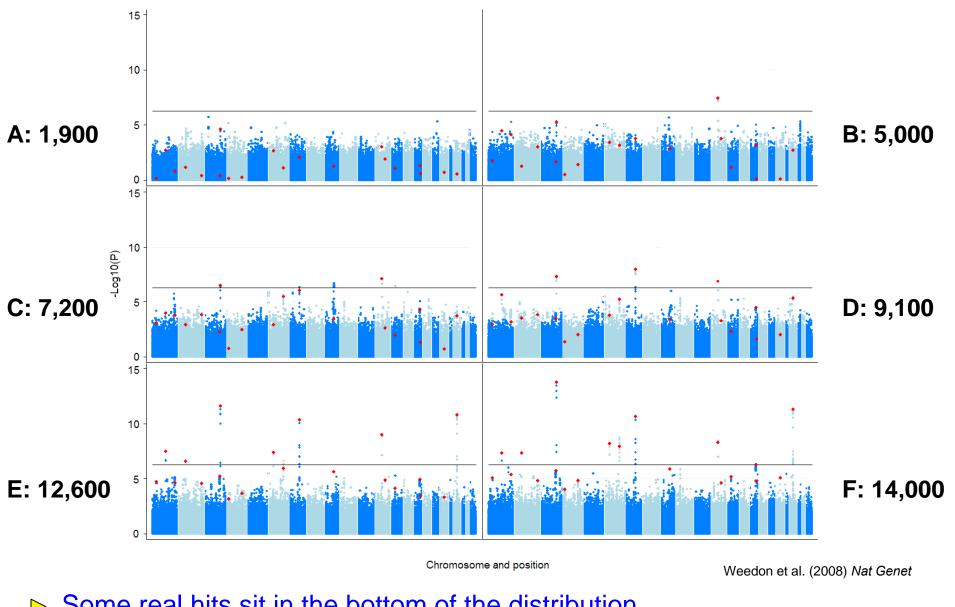
• Fixed versus Random Effects

• Assessment of Heterogeneity

Example: Meta-analysis of Height



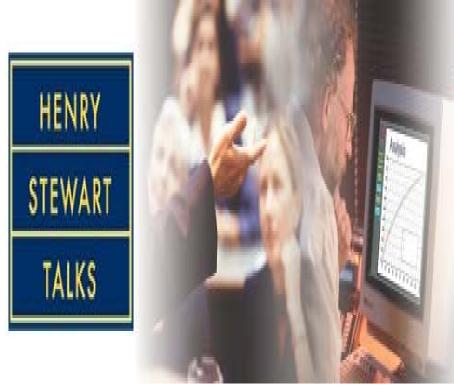
- A-1914 Cases (WTCCC T2D)
- B-4892 Cases (DGI)
- C- 6788 Cases (WTCCC HT)
- D-8668 Cases (WTCCC CAD)
- E-12228 Cases (EPIC)
- F-13665 Cases (WTCCC UKBS)



Some real hits sit in the bottom of the distribution

▷ Some hits initially look interesting but then go away

Statistical Methods for the Analysis of Genome-wide Association Studies



"This is an outstanding collection. Alongside journals and books no self-respecting library in institutions hosting research in Biomedicine and the Life Sciences should be without access to these talks."

> PROFESSOR ROGER KORNBERG, NOBEL LAUREATE STANFORD UNIVERSITY SCHOOL OF MEDICINE

Go to: http://www.hstalks.com