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I.I.
 
�Motivation for using extended pedigrees�Motivation for using extended pedigrees

--
 

Briefly introduce the NTFD, Stealth, & Briefly introduce the NTFD, Stealth, & 
Cascade modelsCascade models

II.II.
 

Simulation using GeneEvolveSimulation using GeneEvolve
--

 
Practical looking at changes in genetic Practical looking at changes in genetic 
variance across timevariance across time

III.III.
 

Use GeneEvolve to Use GeneEvolve to simulate extended twin family simulate extended twin family 
data & run in data & run in MxMx

--
 

Practical getting sensitivity analysis of CTD & Practical getting sensitivity analysis of CTD & 
NTFDNTFD

Outline





 
��Understand in general terms the reason for Understand in general terms the reason for 
extended twin family designsextended twin family designs



 
Learn how to use GeneEvolveLearn how to use GeneEvolve



 
Understand how to derive biases & sampling Understand how to derive biases & sampling 
distributions from simulationdistributions from simulation

Goals





 
��Fully understand the logic, path diagrams, and Fully understand the logic, path diagrams, and 
scripting of extended twin family modelsscripting of extended twin family models

NON-Goal





 
SEM is great becauseSEM is great because……


 

Directs focus to effect sizes, not Directs focus to effect sizes, not ““significancesignificance””


 

Forces consideration of causes and consequencesForces consideration of causes and consequences


 

Explicit disclosure of assumptionsExplicit disclosure of assumptions



 
Potential weaknessPotential weakness……


 

Parameter reification: Parameter reification: ““Using the CTD we found that 50% of Using the CTD we found that 50% of 
variation is due to A and 20% to C.variation is due to A and 20% to C.””

Structural Equation Modeling 
(SEM) in BG





 
SEM is great becauseSEM is great because……


 

Directs focus to effect sizes, not Directs focus to effect sizes, not ““significancesignificance””


 

Forces consideration of causes and consequencesForces consideration of causes and consequences


 

Explicit disclosure of assumptionsExplicit disclosure of assumptions



 
Potential weaknessPotential weakness……


 

Parameter reification: Parameter reification: ““Using the CTD we found that 50% of Using the CTD we found that 50% of 
variation is due to A and 20% to C.variation is due to A and 20% to C.””

Structural Equation Modeling 
(SEM) in BG

Not necessarily. Only true under assumptions that 
may often be unmet (e.g., D=0) and usually go 
untested. To the degree assumptions wrong, 
estimates are biased. 
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Classical Twin Design (CTD)
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Classical Twin Design (CTD)


 
Assumption                biased up         biased downAssumption                biased up         biased down
Either D or C is zero                     A                     Either D or C is zero                     A                     C & DC & D
No assortative mating                   C                       No assortative mating                   C                       DD
No ANo A--C covariance                       C                           DC covariance                       C                           D

 
& A& A



Why can’t we estimate A, C & D at same 
time using twins only?

• Solve the following two equations for A, C, 
& D:

CVmz =     A +      D + C
CVdz = 1/2A + 1/4D + C



Why does simply setting D or C to zero bias 
C & D down and A up?

• Information to estimate A comes from the ratio 
CVmz : 2*CVdz. The closer this ratio is to unity, 
the higher A is.

• If D & C both exist at the same time, D drives 
the ratio up, C drives it down. To the degree 
these effects ‘cancel each other out,’ it looks 
like A at the expense of D & C.



Adding parents gets us around 
these assumptions



 
Assumption                biased up         biased downAssumption                biased up         biased down
Either D or C is zeroEither D or C is zero
No assortative matingNo assortative mating
No ANo A--C covarianceC covariance
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We don’t have to 
make these

x x



With parents, we can break “C” up into:
S = env. factors shared only between sibs

F = familial env factors passed from parents to offspringF

S
C
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Parents also allow differentiation of C into S & F

PT1

Ca
Dd

E
e c

A

PT2

C a
D d

E
ec

A1/.25

1



Nuclear Twin Family Design (NTFD)



 

Assumptions:Assumptions:


 

Only can estimate 3 of 4: A, D, S, and F (bias is variable)Only can estimate 3 of 4: A, D, S, and F (bias is variable)


 

Assortative mating due to primary phenotypic assortment (bias isAssortative mating due to primary phenotypic assortment (bias is

 

variable)variable)

Note: m estimated 
and f fixed to 1
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Stealth



 
Include twins and their sibs, parents, spouses, and Include twins and their sibs, parents, spouses, and 
offspringoffspring……


 

Gives 17 unique covariances (MZ, DZ, Sib, PGives 17 unique covariances (MZ, DZ, Sib, P--O, Spousal, O, Spousal, 
MZ MZ avuncavunc, DZ , DZ avuncavunc, MZ , MZ couscous, DZ , DZ couscous, GP, GP--GO, and 7 inGO, and 7 in--

 laws) laws) 


 

88 covariances with sex effects88 covariances with sex effects



can be estimated simultaneously 
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Additional obs. covs with Stealth allow 
estimation of A, S, D, & F

d

(Remember: we’re not just estimating more effects. More 
importantly, we’re reducing the bias in estimated effects!) 

FS DA



Stealth

PMa

S
a

Dd

E
e s

A
q

x

w

f
F

PFa

S
a

D d

E
es

A
q

x

w

f

F

m
m

PT1

S
a

Dd

E
e s

A

f

F

PMa

S
a

Dd

E
e s

A
q

x

w

f

F

PT2

S
a

D d

E
es

A

f

F

PFa

S
a

D d

E
es

A
q

x

w

f

F

m
m

PCh

S
a

D d

E
es

A

f

F

m
m

m
m

PCh

S
a

Dd

E
e s

A

f

F

1/.25

1

µ

µ

µ



Stealth



 
Assumption                 biased up         biased downAssumption                 biased up         biased down
Primary assortative mating     A, D, or F                  A, D,Primary assortative mating     A, D, or F                  A, D,

 
or For F



 
Primary AM: mates choose each other based on Primary AM: mates choose each other based on 
phenotypic similarityphenotypic similarity



 
Social Social homogamyhomogamy: mates choose each other due to : mates choose each other due to 
environmental similarity (e.g., religion)environmental similarity (e.g., religion)



 
Convergence: mates become more similar over Convergence: mates become more similar over 
timetime
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Cascade
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Modeling complexity

• The good: Tend to be less biased
• The bad: Easy to make scripting or theoretical 

mistakes. Are we really modeling what we think 
we are?? How to know?



Part II: Simulating complex 
models





 
Independent check of models:Independent check of models:


 

Model validationModel validation: Check that your models work as they are : Check that your models work as they are 
supposed to and check the statistical properties of estimatessupposed to and check the statistical properties of estimates



 

Sensitivity analysisSensitivity analysis: Check the effect on parameter estimates : Check the effect on parameter estimates 
when assumptions are violated (e.g., different modes of when assumptions are violated (e.g., different modes of 
assortative mating, genetic action, etc.) assortative mating, genetic action, etc.) 



 
Method for predicting complex dynamics in Method for predicting complex dynamics in 
population geneticspopulation genetics

Simulation provides knowledge about 
processes that are difficult/impossible to 

figure out analytically



Simulation program: GeneEvolve





 
Implemented in R, openImplemented in R, open--source, user modifiablesource, user modifiable



 
User specifies 31 basic parameters up front (and User specifies 31 basic parameters up front (and 
17 advanced ones); no need to alter script after 17 advanced ones); no need to alter script after 
that.that.

GeneEvolve 0.73

Download:  www.matthewckeller.com



User specifies:User specifies:


 
population size, # generations for population to population size, # generations for population to 
evolve, threshold effects, mechanisms of evolve, threshold effects, mechanisms of 
assortative mating, vertical transmission, etc.assortative mating, vertical transmission, etc.



 
3 types of genetic effects3 types of genetic effects



 
5 types of environmental effects5 types of environmental effects



 
13 types of moderator/covariate effects13 types of moderator/covariate effects

How GeneEvolve works:





 
Parameters of interest for present simulationsParameters of interest for present simulations


 
A = additive genetic effectsA = additive genetic effects



 
D = dominance genetic effectsD = dominance genetic effects



 
U = unique environmental effectsU = unique environmental effects



 
F = familial environmental effectsF = familial environmental effects



 
S = sibling environmental effectsS = sibling environmental effects



 
AM = correlation between spousesAM = correlation between spouses



 
am.model = am.model = ““II””: primary phenotypic : primary phenotypic 

““IIII””: social : social homogamyhomogamy

How GeneEvolve works:





 
At adulthood, ~ x% find mates s.t. correlation b/w At adulthood, ~ x% find mates s.t. correlation b/w 
mating phenotypes = AM:mating phenotypes = AM:



 
Pairs have children :Pairs have children :


 

Rate Rate determined by userdetermined by user--specified population growthspecified population growth



 
Process iterated Process iterated nn times (Markov Chain)times (Markov Chain)

How GeneEvolve works (cont):





 
After After n n iterations, population splits into two:iterations, population splits into two:


 

Parents of spousesParents of spouses


 

Parents of  twinsParents of  twins


 
Parents of twins have offspring (MZ/DZ twins & Parents of twins have offspring (MZ/DZ twins & 
their sibs)their sibs)



 
Twins mate with spousal population & have Twins mate with spousal population & have 
offspringoffspring

How GeneEvolve works (cont):





 
3 generations (grandparents, parents, & offspring) 3 generations (grandparents, parents, & offspring) 
of phenotypic data written out, one row per family, of phenotypic data written out, one row per family, 
potentially across repeated measurespotentially across repeated measures



 
This data can be entered into structural models for This data can be entered into structural models for 
model validation and sensitivity analysismodel validation and sensitivity analysis



 
A summary PDF at end showsA summary PDF at end shows: : 


 

Basic simulation statisticsBasic simulation statistics


 

Changes in variance components across timeChanges in variance components across time


 

Correlations between 10 relative typesCorrelations between 10 relative types

What you get:





 
Many parameters change dynamically Many parameters change dynamically 
(evolutionarily) as functions of other parameters in (evolutionarily) as functions of other parameters in 
models that include assortative mating and vertical models that include assortative mating and vertical 
transmission. Predicting changes in such transmission. Predicting changes in such 
parameters is impractical and approaches parameters is impractical and approaches 
impossible in models where many things impossible in models where many things 
simultaneously going on.simultaneously going on.

Why go through the trouble to simulate 
a population’s evolution rather than to 
simulate in one step (or analytically)?



Getting StartedGetting Started


 

Copy F:/matt/GE folder into your home directory Copy F:/matt/GE folder into your home directory 


 

Start R. Then File Start R. Then File --> Open Script > Open Script --> home:GE/GE> home:GE/GE--73.R73.R
Running GeneEvolveRunning GeneEvolve
1.1.

 

Create a reality where A=.3, D=.2, F=.1, S=.1, U=.3 & Create a reality where A=.3, D=.2, F=.1, S=.1, U=.3 & 
AM = .2 (all other parameters = 0). After it runs (~1.5 AM = .2 (all other parameters = 0). After it runs (~1.5 
min), open the resulting PDF. What happens to the A min), open the resulting PDF. What happens to the A 
variation across 10 generations? D? F? S? Why?variation across 10 generations? D? F? S? Why?

2.2.

 

Do the same thing but change the mode of mating to Do the same thing but change the mode of mating to 
social social homogamyhomogamy

 
(am.model <(am.model <--

 
““IIII””). What happens?). What happens?

3.3.

 

Run another model you find interesting & see what Run another model you find interesting & see what 
happenshappens

GeneEvolve Practical



Why does variance of A increase in 
presence of AM?



Part III: Model validation and sensitivity 
analysis of extended twin family models



Using complex models without independent 
validation (e.g., simulation) is like…

QuickTime™ and a
 decompressor

are needed to see this picture.



Process of model validation

1.1.
 
Simulate a dataset that has parameters that your Simulate a dataset that has parameters that your 
model can estimate.model can estimate.

2.2.
 
Run your model on the simulated datasetRun your model on the simulated dataset

3.3.
 
Obtain and store parameter estimatesObtain and store parameter estimates

4.4.
 
Repeat steps 1Repeat steps 1--3 many (e.g., 1000) times 3 many (e.g., 1000) times 



Results of model validation



 
If the mean parameter estimate = the simulated If the mean parameter estimate = the simulated 
parameter estimate, the estimate is parameter estimate, the estimate is unbiased. unbiased. If If 
your model has no mistakes, parameters should your model has no mistakes, parameters should 
generally be unbiased (there are exceptions)generally be unbiased (there are exceptions)



 
The standard deviation of an estimates corresponds The standard deviation of an estimates corresponds 
to its to its standard errorstandard error and its distribution to its and its distribution to its 
sampling distributionsampling distribution



 
You can also easily study the You can also easily study the multivariate multivariate 
sampling distribution and statisticssampling distribution and statistics. E.g., how . E.g., how 
correlated parameters are.correlated parameters are.



Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

A                    S                      U
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Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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e.g., A=.34, D=.17,U=.49



Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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e.g., A=.34, D=.17,U=.49

Repeat 1

e.g., A=.31, D=.19,U=.50



Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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Repeat 2
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e.g., A=.25, D=.26,U=.48



Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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e.g., A=.34, D=.17,U=.49

Repeat 1
Repeat 2
Repeat 3
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e.g., A=.25, D=.26,U=.48
e.g., A=.29, D=.21,U=.51



Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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Repeat 2
Repeat 3
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.
Repeat 1000

Mean 
estimate ~ 
true estimate: 
Unbiased! 



Graphical representation: model validation

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates
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Repeat 1
Repeat 2
Repeat 3
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Repeat 1000Boxplots give 

idea about 
variance and 
shape of 
sampling 
distributions 



Graphical representation: model validation 
& multivariate distributions

Simulate 
parameters & 
get simulated 
dataset
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Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates

e.g., A=.34, D=.17,U=.49



Graphical representation: model validation 
& multivariate distributions

Simulate 
parameters & 
get simulated 
dataset
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parameters & 
get simulated 
dataset

Run Mx, get 
estimates

e.g., A=.34, D=.17,U=.49

Repeat 1

e.g., A=.31, D=.19,U=.50



Graphical representation: model validation 
& multivariate distributions

Simulate 
parameters & 
get simulated 
dataset

A                    

D                    

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates

Repeat 1
Repeat 2
Repeat 3

.

.

.
Repeat 20



Graphical representation: model validation 
& multivariate distributions

Simulate 
parameters & 
get simulated 
dataset

A                    

D                    

Simulate 
parameters & 
get simulated 
dataset

Run Mx, get 
estimates

Repeat 1
Repeat 2
Repeat 3

.

.

.
Repeat 1000

A & D estimates 
negatively correlated -
suggesting they use 
overlapping 
information to be 
estimated



Process of sensitivity analysis

1.1.
 
Simulate a dataset that has one or more parameters Simulate a dataset that has one or more parameters 
that your model that your model cannotcannot estimate.estimate.

2.2.
 
Run your model on the simulated datasetRun your model on the simulated dataset

3.3.
 
Obtain and store parameter estimatesObtain and store parameter estimates

4.4.
 
Repeat steps 1Repeat steps 1--3 many (e.g., 1000) times 3 many (e.g., 1000) times 



Results of sensitivity analysis



 
Because we are simulating Because we are simulating violations of violations of 
assumptionsassumptions, we expect parameters to be biased, we expect parameters to be biased. . 
The question becomes: The question becomes: howhow biased? I.e., how big biased? I.e., how big 
of a deal are these violations? We should be able of a deal are these violations? We should be able 
to quantify the answers to these questions.to quantify the answers to these questions.



Graphical representation: model 
sensitivitySimulate 

parameters that 
include a 
violation (here, 
both D & S exist 
simultaneously) 
& get simulated 
dataset

Run Mx, get 
estimates

A              D             S            U
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Run GeneEvolveRun GeneEvolve
1.1.

 

Create a reality where A=.4, D=.1, S=.2, U=.3 & AM = 0. DatasetsCreate a reality where A=.4, D=.1, S=.2, U=.3 & AM = 0. Datasets
 MZM, MZF, DZM, DZF, DZOS are made automatically.MZM, MZF, DZM, DZF, DZOS are made automatically.

Run Run MxMx
1.1.

 

Run the script Run the script ““GE.Twin_ASE.mxGE.Twin_ASE.mx””. This is an ASE script where D . This is an ASE script where D 
is fixed to 0is fixed to 0

2.2.

 

Run the script Run the script ““NTF.mxNTF.mx””
 

This is a nuclear twin family script where This is a nuclear twin family script where 
A, D, and S are simultaneously estimated. A, D, and S are simultaneously estimated. 

3.3.

 

Once you have estimates of A, D, and S from both scripts, come uOnce you have estimates of A, D, and S from both scripts, come up p 
and write them into the Excel spreadsheet. They are found in theand write them into the Excel spreadsheet. They are found in the

 7th, 8th, and 9th elements of the P matrix in 7th, 8th, and 9th elements of the P matrix in ““GE.Twin_ASE.mxGE.Twin_ASE.mx””
 and ??? In the ??? matrix in and ??? In the ??? matrix in ““NTF.mxNTF.mx””

Sensitivity analysis practical



If there’s time… 
Model validation and sensitivity 

results for 4 models



Reality: A=.5, D=.2



Reality: A=.5, S=.2



Reality: A=.4, D=.15, S=.15



Reality: A=.35, D=.15, F=.2, S=.15, T=.15, AM=.3



Reality: A=.45, D=.15, F=.25, AM=.3 (Soc Hom)



Reality: A=.4, A*A=.15, S=.15



Reality: A=.4, A*Age=.15, S=.15



A,D, & F estimates are highly correlated in 
Stealth & Cascade models



Simulation is not a panacea


 
Simulation can be said to provide Simulation can be said to provide ““knowledge knowledge 
without understanding.without understanding.””

 
It is a helpful tool for It is a helpful tool for 

understanding, but doesnunderstanding, but doesn’’t provide understanding t provide understanding 
in and of itself.in and of itself.



 
Simulations themselves rely on assumptions about Simulations themselves rely on assumptions about 
how processes work. If these are wrong, our how processes work. If these are wrong, our 
simulation results may not reflect reality.simulation results may not reflect reality.





 
Sex limitation possible only for A at the momentSex limitation possible only for A at the moment



 
No multivariate except for longitudinalNo multivariate except for longitudinal

GeneEvolve Limitations

Download:  www.matthewckeller.com





 
All models require assumptions. Generally, more All models require assumptions. Generally, more 
assumptions = more biased estimatesassumptions = more biased estimates



 
Extended twin family designs require fewer Extended twin family designs require fewer 
assumptions and tend to be less biasedassumptions and tend to be less biased



 
Simulation is a powerful tool for checking Simulation is a powerful tool for checking comlexcomlex

 models (and not just extended twin family models)models (and not just extended twin family models)

Conclusions



Why does variance of A increase in 
presence of AM?
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Answer: When two spouses are 
phenotypically similar, they also 
tend to have similar A effects.

Offspring A is a weighted sum of 
parental A.

Therefore, variance of A 
increases for same reason that 
the variance of any sum 
increases when components are 
correlated.

For similar reasons, variance of 
the other transmitted parameter, 
F, also increases.
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