Welcome

 Log on using the username and password you received at registration

• Copy the folder:

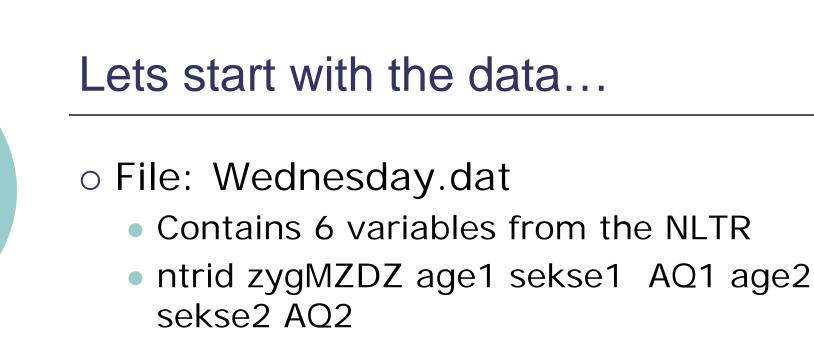
F:/sarah/mon-morning To your H drive

Open Mx and increase memory

o Go to preference

- Host options
- Back the backend memory larger

File Edit Search MxProject Output PathDiagram Preference W Compared and the search MxProject Output PathDiagram Preference W Compared and the search of th	M Mx
Run Options 🔀 Backend Memory in KB 9999	
Backend Memory in KB 9999	<mark>) / /</mark> 🕒
Backend Memory in KB 9999	
Backend Memory in KB 9999	
Host Name or IP Address 🗹 Local Host	
Login Name Password	
OK XCancel ? Help	


Intro to Mx

Sarah Medland – Leuven 2008

This morning

- Fitting a mean and regression with continuous data
- Modelling Ordinal data
- Fitting the regression model with ordinal data

ntrid	zygMZDZ	age1	sekse1	AQ1	age2	sekse2	AQ2
2	1	18.12	1	91	18.12	1	95
3	2	18.37	0	90	18.37	1	89
5	2	18.34	0	-1	-4	-4	-1
10	1	18.12	1	-1	18.12	1	-1
15	2	18.52	1	-1	18.5	1	-1
16	2	18.04	1	100	18.04	1	110

Lets start with the data...

ntrid	zygMZDZ	age1	sekse1	AQ1
2	1	18.12	1	91
3	2	18.37	0	90
5	2	18.34	0	-1
10	1	18.12	1	-1
15	2	18.52	1	-1
16	2	18.04	1	100

age2	sekse2	AQ2
18.12	1	95
18.37	1	89
-4	-4	-1
18.12	1	-1
18.5	1	-1
18.04	1	110

If this was a pedigree data file...

ntrid	zygMZDZ	age1	sekse1	AQ1	age2	sekse2	AQ2
2	1	18.12	1	91	18.12	1	95
3	2	18.37	0	90	18.37	1	89
5	2	18.34	0	-1	-4	-4	-1
10	1	18.12	1	-1	18.12	1	-1
15	2	18.52	1	-1	18.5	1	-1
 16	2	18.04	1	100	18.04	1	110

Famid	Ind	Father	Mother	Zyg	Sex	Age Tra	ait
2	1	0	0	0	1	Х	Х
2	2	0	0	0	2	Х	Х
2	3	1	2	MZ	1	18.12	91
2	4	1	2	MZ	1	18.12	95

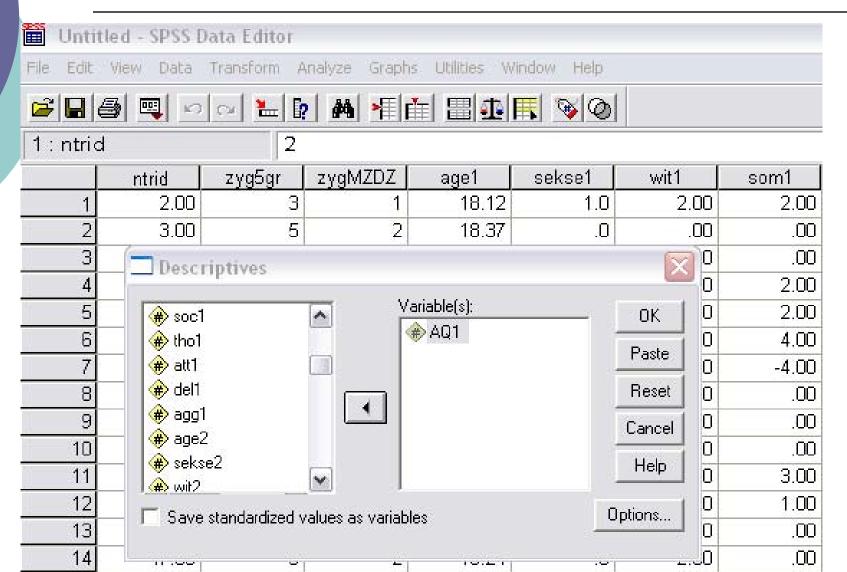
How can we make this data file?

Assume we have data with 3 variables:

	Family	Individual	Trait
1	1.00	1.00	24.00
2	1.00	2.00	42.00
3	2.00	1.00	21.00
4	2.00	2.00	4.00
5	3.00	1.00	2.00
6	3.00	2.00	1.00
7	4.00	1.00	3.00
8	4.00	2.00	12.00

	Family	Trait.1.00	Trait.2.00
1	1.00	24.00	42.00
2	2.00	21.00	4.00
3	3.00	2.00	1.00
4	4.00	3.00	12.00

How do we make this data?


SPSS
 SORT CASES BY Family Individual .
 CASESTOVARS
 /ID = Family
 /INDEX = Individual
 /GROUPBY = VARIABLE .

Means...

In spss sas etc we calculate the mean

 In Mx and other ML programs we estimate the mean

Spss...

Spss...

Descriptives

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
AQ1	179	75.00	130.00	102.3408	10.41288
Valid N (listwise)	179				

```
#define nvar 1
                            ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                   ! Number of variables per family
missing=-1
                                   ! Missing values
Rectanqular file=wednesday.dat
                                ! read raw data
lahels
ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
select AQ1 ;
Begin matrices;
   M Full 1 nvar free
                         tmean.
                                           Means.mx
   V Full nvar nvar free ! variance
End matrices:
Begin Algebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
hne
```

```
#define nvar 1
                            ! n dependent variables per individual
G1: Singleton (non-pair) data
Data
                                                             mily
Defining some frequently

Rect

Labe changed parameters
mis:
ntr
select AQ1 ;
Begin matrices;
   M Full 1 nvar free
                         t nean
   U Full nuar nuar free 🛛 📍 uariance
End matrices:
Beqin Alqebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
end
```

```
#define nvar 1
                               ! n dependent variables per individual
G1: Singleton (non-pair) data
Data
                                                                 milu
         ding comments !
mis
Rectanyuiar riie-weunesuay.uac
                                             raw uata
lahels
ntrid zygMZDZ age1 sekse1  AQ1 age2 sekse2 AQ2
select AQ1 ;
Begin matrices;
    M Full 1 nvar free
                              • * mean
   V Full nvar nvar free ! variance
End matrices:
Beqin Alqebra;
    S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
Covariances V : ! variance/covariance model
end
```

```
#define nvar 1
                              ! n dependent variables per individual
G1: Singleton (non-pair) data 🔨
Data Ninput vars=8 NGroups=1
                                      ! Number of variables per family
missinq=-1
                                     ! Missing values
Rec Providing a title
Labé
ntrid zyqMZDZ aqe1 sekse1 AQ1 aqe2 sekse2 AQ2
select AQ1 ;
Begin matrices;
    M Full 1 nvar free !mean
   V Full nuar nuar free ! variance
End matrices:
Beqin Alqebra;
    S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
Covariances V : ! variance/covariance model
end
```

```
#define nvar 1
                           ! n dependent variables per individual
G1: Singleton (non-pair) data
Data_Ninput vars=8 NGroups=1
                                  ! Number of variables per family
missing=-1
                                  ! Missing values
Lab Directly after the title tell Mx
ntr
   what kind of group it is
sel

    Data

Beg:
End

    Calculation

Beg:

    Constraint

Fnd
! start values
Start 100 M 1
Start 106 U 1 1
Means M : ! means model
Covariances V :
                    ! variance/covariance model
hne
```

```
#define nvar 1
                             ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8_NGroups=1
                                    ! Number of variables per family
missing=-1
                                    ! Missing values
How many variables are in
ntr
   the data file
sel
Begin matrices;
   M Full 1 nvar free
                         •mean
   V Full nvar nvar free ! variance
End matrices:
Begin Algebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
Covariances V : • variance/covariance model
end
```

```
#define nvar 1
                             ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1_
                                    ! Number of variables per family
missinq=-1
                                    ! Missing values
How many groups in the
ntr
   script
sel
Begin matrices;
   M Full 1 nvar free
                    tmean !
   V Full nvar nvar free ! variance
End matrices:
Begin Algebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
Covariances V : ! variance/covariance model
end
```

```
#define nvar 1
                             ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                    ! Number of variables per family
missing=-1
                                     ! Missing values
Rect
Missing code – default is a .
select AQ1 ;
Begin matrices;
   M Full 1 nvar free
                          • nean
   U Full nuar nuar free ! variance
End matrices:
Begin Algebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
Covariances V : ! variance/covariance model
end
```

```
#define nvar 1
                          ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                 ! Number of variables per family
missing=-1
                                 ! Missing values
Rectangular_file=wednesday.dat
                                 📍 read raw data
Lahels
Provide the name of the data
<sup>B</sup> file
Rectangular file = continuous
Ε
 Ordinal file =ordinal/binary
Start
    100
Start 106 U 1 1
Means M ; • means model
Covariances V :
                   ! variance/covariance model
hna
```

```
#define nvar 1
                            ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                   ! Number of variables per family
missing=-1
                                   ! Missing values
Rectangular file=wednesday.dat
                                ! read raw data
lahels
ntrid zyqMZDZ aqe1 sekse1  AQ1 aqe2 sekse2 AQ2
select AQ1 ;
List of the variables
         nvar nvar free
                              variance
End matrices:
Begin Algebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • means model
hne
```

```
#define nvar 1
                            ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                   ! Number of variables per family
missing=-1
                                   ! Missing values
Rectangular file=wednesday.dat
                                ! read raw data
lahels
ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
select AQ1 ;
Begin ma<u>trices:</u>
   Tell Mx what to analyse
   MFU
End matr
Begin Algebra;
   S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • • means model
hne
```

```
#define nvar 1
                           ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                 ! Number of variables per family
missing=-1
                                 ! Missing values
Rectangular file=wednesday.dat
                              ! read raw data
Lahels
ntrid zyqMZDZ aqe1 sekse1  AQ1 aqe2 sekse2 AQ2
select AQ1 ;
Begin matrices;
   M Full 1 nvar free
                       tean !
   V Full nvar nvar free
                      t variance
End matrices; ←
Begin Alg<del>ebes</del>.
End Algeb Tell Mx what matrices you
start 100 Want to use
ררר Start 106
Means M ; • • means model
hne
```

Matrices: the building blocks

	Many types		F Diag 3 3 Free	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$? 0 0	?	0
			G Sdiag 3 3 Free	$\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	0 ?		
A Zero 2 3 Fre		0 0 0		230	?	?	0
B Unit 2 3 Free	000 e 000	$\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	H Stand 3 3 Free	$ 0 1 2 \\ 1 0 3 $	1 ?	? 1	
b onit 2 5 Free	0 0 0	1 1 1 1 1 1 1 1		230	?	?	1
C Iden 3 3 Fre	e 000 000	$\begin{smallmatrix}1&0&0\\0&1&0\end{smallmatrix}$	I Symm 3 3 Free	124 235	? ?		
	0 0 0	$0 \ 1 \ 0 \ 1 \ 0 \ 1$		4 5 6	?		
			J Lower 3 3 Free	$\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 3 & 0 \end{array}$? ?		
				456	?		
			K Full 2 4 Free	1234 5678	? ?		?? ??

Matrices: the building blocks

- Many types
- Denoted by a single letter
 - Elements defined by letter and 3 numbers
 A 1 2 1 = A matrix group 1 row 2 column 1
- All constants and estimated parameters must be placed in a matrix & Mx must be told what type of matrix it is
- Letters can be reused in subsequent groups

```
#define nvar 1
                          ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                ! Number of variables per family
missing=-1
                                ! Missing values
Rectangular file=wednesday.dat
                                📍 read raw data
Lahels
ntrid zyqMZDZ aqe1 sekse1  AQ1 aqe2 sekse2 AQ2
select AQ1 ;
Begin matrices;
   M Full 1 nvar free
                       •mean
   V Full nvar nvar free
                      t variance
End matrices; ←
Reain Alaohes-
M & V matrices are both full 1 1
st M = [?] V = [?]
Means M ; • means model
hne
```

```
#define nvar 1
```

```
G1: Singleton (non-pair) data
Data Ninput_vars=8 NGroups=1
missing=-1
```

- ! Number of variables per family
- ! Missing values

```
Rectangular file=wednesday.dat
Labels
```

! read raw data

Tell Mx what algebra you want to do S will contain the square root of the estimate of V

'enu matrices;

Begin Algebra;
S = \sqrt(V) ; ! compute Standard deviation
End Algebra;

```
! start values
Start 100 M 1 1
Start 106 U 1 1
```

```
#define nvar 1! n dependent variables per individualG1: Singleton (non-pair) data<br/>Data Ninput_vars=8 NGroups=1<br/>missing=-1! Number of variables per family<br/>! Missing valuesRectangular file=wednesday.dat<br/>Labels<br/>ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2! read raw data
```

```
select AQ1 ;
```

```
Provide some start values to aid
estimation
Default is .01
! start values
Start 100 M 1 1
Start 106 U 1 1
Means M ; • • means model
Covariances V : ! variance/covariance model
end
```

```
#define nvar 1
                            ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput_vars=8 NGroups=1
                                  ! Number of variables per family
missinq=-1
                                   ! Missing values
Rectangular file=wednesday.dat
                                  📍 read raw data
lahels
ntrid zyqMZDZ aqe1 sekse1  AQ1 aqe2 sekse2 AQ2
select AQ1 ;
Begin matrices;
   M Full 1 nvar free *mean
   V Full nvar nvar free ! variance
End matrices:
Tell Mx how which matrix contains
the means and the variance/
```

covariance matrix

Means M ; means model Covariances V ; ! variance/covariance model end

```
#define nvar 1
                              ! n dependent variables per individual
G1: Singleton (non-pair) data
Data Ninput vars=8 NGroups=1
                                      ! Number of variables per family
missing=-1
                                      ! Missing values
Rectangular file=wednesday.dat
                                     📍 read raw data
Lahels
ntrid zyqMZDZ aqe1 sekse1  AQ1 aqe2 sekse2 AQ2
select AQ1 :
Begin matrices;
   M Full 1 nvar free
                          tmean!
   V Full nvar nvar free ! variance
End matrices;
Begin Algebra;
    S = \sqrt(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Each group needs an end statement
Covariances V 🗀
                       ! variance/covariance model
end 🗸
```

Output

** Mx startup successful **

!@human; **MX-PC 1.63h** Job started on 08/10/08 at 17:09:35
#DEFINE NVAR 1 ! N DEPENDENT VARIABLES PER INDIVIDUAL

The following MX script lines were read for group 1

```
NOTE: Missing value *string* set to '-1'
```

RECTANGULAR FILE=WEDNESDAY.DAT **!** READ RAW DATA Rectangular continuous data read initiated Note: Maximum ordinal/rectangular record length is: 1000

NOTE: Rectangular file contained 424 records with data that contained a total of 2891 observations

LABELS NTRID ZYGMZDZ AGE1 SEKSE1 AQ1 AGE2 SEKSE2 AQ2 Select AQ1 ; Begin Matrices;

NOTE: Selection yields 179 data vectors for analysis NOTE: Vectors contain a total of 179 observations

Descriptives

Descriptive Statistics

		N	Minimum	Maxim	um	Mean	Std. Deviation	
	AQ1	179	75.00	130).00	102.3408	10.41288	
	Valid N (listwise)	179						
N Var Mi	mmary of VL f	ile data AQ1 0000 0000 3408 8224 0000	for grou		MA Thi 1 MA Thi [= 1	TRIX M s is a FU 102.340 TRIX S s is a co \SQRT(V)] 10.383	omputed FULL 1	f orde matri
					1	107.822	24	

Descriptives

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
AQ1	179	75.00	130.00	102.3408	10.41288
Valid N (listwise)	179				

- Spss assumes this is a sample
- Mx assumes this is a population
- Slightly different algebra

G1: Singleton (non-pair) data

```
MATRIX M
This is a FULL matrix of orde
1
1 102.3408
MATRIX S
This is a computed FULL matri
[=\SQRT(V)]
1 10.3838
MATRIX U
This is a FULL matrix of orde
1 107.8224
```

How about regression?

 $\circ Y = X * B + C$

Regression speak

- AutismQuotient = Sex*Beta1 + Age*Beta2 + Intercept
- o BG speak
 - AutismQuotient = Sex Effect + Age Effect + Grand Mean

Spss...

🖗 ntrid		Dependent:	ОК
zyg5gr		AQ1	Paste
≱ zygMZDZ ≱ age1		<1 of 1 N	ext Reset
⊳sekse1 ⊳wit1	=	Independent(s):	Cancel
som1		age1	Help
anx1		sekse1	
> soc1 > tho1		Mallard Takes	
att1		Method: Enter	_
del1		Selection Variable:	
agg1			Rule
> age2 > sekse2	L	Case Labels:	
wit2			- 1
som2		J 1	
anx2		WLS Weight:	-
soc2	× >		
	Chab	stics Plots Save.	Options

Begin matrices;

- ! intercept
- ! aka grand mean, aka intercept, aka observed variable, akak mean C Full 1 nvar free
- ! independent variable
- ! aka observed covariates for individual X Full 1 ndef fix
- ! beta
 ! aka covariate effect
 B Full ndef 1 free
- variance
 V Full nvar nvar free
- End matrices;

regression.mx

! tell Mx to put the independent variables in the X matrix Specify X age1 sekse1 ;

! start values
Start 95 C 1 1
Start 106 V 1 1
Start .5 B 1 1
Start 2 B 2 1

Begin Algebra;

```
! Write out the regression equation for the observed (dependent) variable - Y
Y = X*B + C ;
```

End Algebra;

```
Means Y ; ! means model
Covariances V ; ! variance/covariance model
Option multiple
Option issat
end
```

Regression

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	sekse1, age1		Enter

- a. All requested variables entered.
- b. Dependent Variable: AQ1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.126ª	.016	.005	10.38881

a. Predictors: (Constant), sekse1, age1

ANOVA^b

Mo	odel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	305.003	2	152.501	1.413	.246ª
1	Residual	18995.210	176	107.927		
	Total	19300.212	178			

a. Predictors: (Constant), sekse1, age1

b. Dependent Variable: AQ1

Coefficients^a

		Unstanc Coeffi	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	93.564	65.862		1.421	.157
	age1	.549	3.623	.011	.151	.880
	sekse1	-2.608	1.558	125	-1.673	.096

a. Dependent Variable: AQ1

Run regression.mx

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	93.564	65.862		1.421	.157	
	age1	.549	3.623	.011	.151	.880	
	sekse1	-2.608	1.558	125	-1.673	.096	

a. Dependent Variable: AQ1

G1: Singleton data – Regression

```
MATRIX B
This is a FULL matrix of order 2 by 1
1 0.5487
2 -2.6080
MATRIX C
This is a FULL matrix of order 1 by 1
1 93.5636
```

Vhat does this mean?	Code Number Mean Variance	SEKSE1 -2.0000 179.0000 0.4581 0.2482	AGE1 -1.0000 179.0000 18.1749 0.0459
	Minimum Maximum	0.2482 0.0000 1.0000	17.6100 18.9900

 \circ Age Beta = .549

M

- For every 1 unit increase in Age the mean shifts .549
- Grand mean = 93.564
- Mean Age = 18.2
- So the mean for 20 year olds is predicted to be:
 - 104.544 = 93.564 + 20*.549

Sex effects?

Sex Beta = -2.608
Sex coded Male = 1 Female = 0

• Female Mean:

• 93.564 = 93.564 + 0*-2.608

• Male Mean:

• 90.656 = 93.564 + 1*-2.608

How do we get the p-values?

Coefficients^a

		Unstanc Coeffi	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	93.564	65.862		1.421	.157
	age1	.549	3.623	.011	.151	.880
	sekse1	-2.608	1.558	125	-1.673	.096

a. Dependent Variable: AQ1

Set the elements to equal 0 regression.mx

Do this one at a time!
 save temp.mxs
 drop B 1 1 1
 end

get temp.mxs drop B 1 2 1 end

Coefficients^a

			lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	93.564	65.862		1.421	.157
	age1	.549	3.623	.011	.151	.880
	sekse1	-2.608	1.558	125	-1.673	.096

a. Dependent Variable: AQ1

Difference Chi-squared >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0.023
Difference d.f. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1
Probability >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0.879
Difference Chi-squared >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2.826
Difference d.f. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1
Probability >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0.093

Why bother with Mx?

 Because most stat packages can't handle non-independent data...

- Non-independence reduces the variance
- Biases t and F tests

Why bother with Mx?

 Because we want complete flexibility in the model specification...

As you see later today

Why bother with Mx?

 Because very few packages can handle ordinal data adequately...

Working with non-independent data

Correlation.mx

```
Correlation.mx
#define nuar 1
                              n dependent variables per individual
#define nsih 2
                            ! number if siblings per family
G1: Corelation between twin pairs
                                   ! Number of variables per family
Data Ninput vars=8 NGroups=1
missing=-1
                                   ! Missing values
Rectangular file=wednesday.dat
                               ! read raw data
Labels
ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
select AQ1 AQ2 ;
Begin matrices;
   M Full 1 nvar free !mean
   V Symm nsib nsib free ! variance
End matrices:
Begin Algebra;
   S = \stnd(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1 U 2 2
Start 50 U 2 1
EQ U 1 1 U 2 2
Means MIM ; ! means model
end
```

Correlation.mx

#define nvar 1 #define nsib 2 ! n dependent variables per individual
! number if siblings per family

Defining the nsib as the number of siblings per family HINDAC AALD A HALAADD совісэ рег томіту missing=-1 ! Missing values Rectanqular file=wednesday.dat **!** read raw data Lahels ntrid zyqMZDZ aqe1 sekse1 AQ1 aqe2 sekse2 AQ2 select AQ1 AQ2 ; Begin matrices; M Full 1 nvar free !mean V Symm nsib nsib free 👘 ! variance End matrices: Begin Algebra; S = \stnd(V) ; ! compute Standard deviation End Algebra; ! start values Start 100 M 1 1 Start 106 U 1 1 U 2 2 Start 50 U 2 1 EQ U 1 1 U 2 2 Means MIM ; ! means model end

```
Correlation.mx
#define nuar 1
                                n dependent variables per individual
#define nsih 2
                               ! number if siblings per family
G1: Corelation between twin pairs
                                      ! Number of variables per family
Data Ninput vars=8 NGroups=1
missing=-1
                                       ! Missing values
Rectanqular file=wednesday.dat
                                  ! read raw data
Labels
ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
select AQ1 AQ2 ;
Selecting the AQ variable for sib 1 and sib 2
   V Symm nsib nsib free ! variance
End matrices:
Begin Algebra;
    S = \stnd(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1 U 2 2
Start 50 U 2 1
EQ U 1 1 U 2 2
```

```
Correlation.mx
  #define nvar 1
                             ! n dependent variables per individual
  #define nsih 2
                             ! number if siblings per family
  G1: Corelation between twin pairs
  Data Ninput vars=8 NGroups=1
                                    ! Number of variables per family
  missing=-1
                                    ! Missing values
  Rectangular file=wednesday.dat ! read raw data
  Lahels
  ntrid zugMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
  select AQ1 AQ2 ;
  Begin matrices;
     M Full 1 nvar free !mean
     V Symm nsib nsib free 👘 ! variance
  End matrices:
The V matrix is now a symmetric 2 2 matrix
Var1 Cov
Cov Var2
  STALE IOD H I I
  Start 106 U 1 1 U 2 2
  Start 50 U 2 1
  EQ U 1 1 U 2 2
  Means MIM ; ! means model
  end
```

```
Correlation.mx
#define nvar 1
                            ! n dependent variables per individual
#define nsih 2
                            ! number if siblings per family
G1: Corelation between twin pairs
Data Ninput vars=8 NGroups=1
                                   ! Number of variables per family
missing=-1
                                   ! Missing values
<u>____</u>
The S matrix will contain the standardised var/cov matrix (ie)
the correlation)
R
 1
         r
Enu macrices,
Begin Algebra;
   S = \stnd(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 106 U 1 1 U 2 2
Start 50 U 2 1
EQ U 1 1 U 2 2
Means MIM ; ! means model
              ! variance/covariance model
Covariances V ;
end
```

Correlation.mx #define nvar 1 ! n dependent variables per individual #define nsih 2 ! number if siblings per family G1: Corelation between twin pairs Data Ninput vars=8 NGroups=1 ! Number of variables per family missing=-1 ! Missing values Rectangular file=wednesday.dat ! read raw data Lahels ntrid zugMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2 select AQ1 AQ2 ; Begin matrices; M Full 1 nvar free !mean V Symm nsib nsib free 👘 ! variance End matrices: Begin Algebra;

Some extra start values

```
! start values
Start 100 M 1 1
Start 106 V 1 1 V 2 2
Start 50 V 2 1
EQ V 1 1 V 2 2
Means M[M ; ! means model
Covariances V ; ! variance/covariance model
end
```

```
Correlation.mx
#define nvar 1
                              ! n dependent variables per individual
#define nsih 2
                              ! number if siblings per family
G1: Corelation between twin pairs
Data Ninput vars=8 NGroups=1
                                     ! Number of variables per family
missing=-1
                                     ! Missing values
Rectangular file=wednesday.dat ! read raw data
Lahels
ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
select AQ1 AQ2 ;
Begin matrices;
   M Full 1 nvar free
                           !mean
   V Symm nsib nsib free ! variance
End matrices:
Begin Algebra;
   S = \stnd(V) ; ! compute Standard deviation
End Algebra;
EQ V 1 1 V 2 2 sets the variances to be the same for the two
siblings.
```

```
Correlation.mx
#define nvar 1
                              ! n dependent variables per individual
#define nsih 2
                              ! number if siblings per family
G1: Corelation between twin pairs
Data Ninput vars=8 NGroups=1
                                     ! Number of variables per family
missing=-1
                                     ! Missing values
Rectangular file=wednesday.dat
                                 ! read raw data
Lahels
ntrid zygMZDZ age1 sekse1 AQ1 age2 sekse2 AQ2
select AQ1 AQ2 ;
Begin matrices;
   M Full 1 nvar free !mean
   V Symm nsib nsib free 👘 ! variance
End matrices:
Begin Algebra;
   S = \stnd(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1
We are also using the same mean for both siblings
M|M = stack 2 M matrices side by side
Means MIM ; ! means model
Covariances V :
               ! variance/covariance model
end
```

Output – correlation.mxo

Summary of VL file data for group 1 G1: Corelation between twin pairs

AQ1	AQ2
1.0000	2.0000
179.0000	168.0000
102.3408	102.0893
107.8224	106.8789
75.0000	73.0000
130.0000	136.0000
	1.0000 179.0000 102.3408 107.8224 75.0000

Notice the small increase in variance when accounting for the non-independence

MATRIX M This is a FULL matrix of order 1 by 1 102.1865 1 MATRIX S This is a computed FULL matrix of order 2 b $[=\STND(V)]$ 2 1 1.0000 0.3791 1 2 0.3791 1.0000 MATRIX U This is a SYMMETRIC matrix of order 2 by 2 1 107.8418 1 40.8812 2 107.8418 Your model has 3 estimated parameters and -2 times loq-likelihood of data >>> 2584.422 344 Akaike's Information Criterion >>>> 1896.422 Bayesian Information Criterion >>>> 390.630 Sample size Adjusted BIC >>>> 935.445 Deviance Information Criterion >>>> 706.745

Re-conceptualising the correlation

MATRIX S This is a computed FULL m $[=\STND(U)]$ 1 1.0000 8 3791 2 A.3791 1_0000 MATRIX U This is a SYMMETRIC matri 2 107.8418 1 2 40.8812 107.8418

 The correlation is the standardised covariance – an index of the amount of variance shared between the 2 variables or 2 individuals

 The variance of each variable is composed of that which is shared and that which is not

• V = S + N

Re-conceptualising the correlation

```
MATRIX S
This is a computed FULL m \bigcirc V = S + N
 [=\STND(U)]

    So another way to model the

    1.0000
            0.3791
1
2
    A.3791
           1.0000
                            covariance would be
MATRIX U
This is a SYMMETRIC matri
                       2
                                 S+N \mid S_{-}
    107.8418
1
2
      40.8812
               107.8418
                                 S \mid S+N;
```

```
#define nuar 1
                               ! n dependent variables per individual
                               ! number if siblings per family
#define nsib 2
G1: Corelation between twin pairs
Data Ninput vars=8 NGroups=1
                                       ! Number of variables per family
missing=-1
                                       ! Missing values
Rectanqular file=wednesday.dat
                                      📍 read raw data
Labels
ntrid zyqMZDZ aqe1 sekse1 AQ1 aqe2 sekse2 AQ2
select AQ1 AQ2 ;
                                              Alt_correlation.mx
Begin matrices;
   M Full 1 nuar free
                              tmean.
   S Full nvar nvar free ! shared variance
   N Full nvar nvar free ! non-shared variance
End matrices;
Begin Algebra;
   V = S + N | S
       S | S+N ;
    C = \stnd(V) ; ! compute Standard deviation
End Algebra;
! start values
Start 100 M 1 1
Start 50 S 1 1 N 1 1
Means M[M ; ! means model
Covariances V ;
                       ! variance/covariance model
end
```

Results

 Correlation.mx 	O Alt_correlation.mx MATRIX N This is a FULL matrix of order 1 by 1 1 66.9606
	MATRIX S This is a FULL matrix of order 1 by 1 1 1 40.8812
MATRIX V This is a SYMMETRIC matrix of order 2 by 1 2 1 107.8418 2 40.8812 107.8418	MATRIX V This is a computed FULL matrix of order 2 I [=S+N S_S S+N] 1 2 1 107.8418 40.8812 2 40.8812 107.8418
Your model has 3 estimated parameters and	Your model has 3 estimated parameters and
-2 times log-likelihood of data >>> 2584.422 Degrees of freedom >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	—

Twin modelling takes this 1 step further

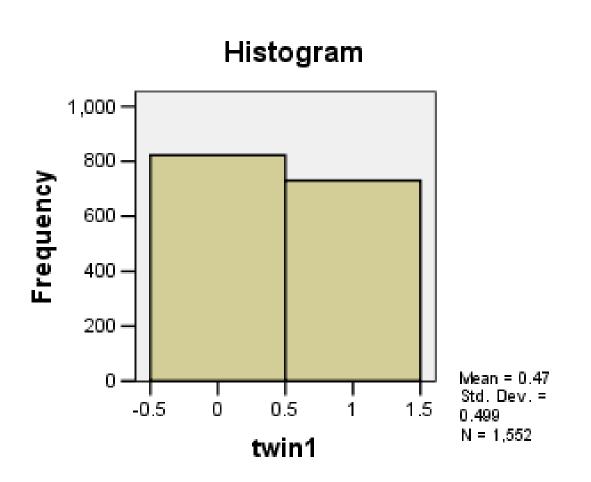
 Covariance Var1 | Cov_ Cov | Var 2 ; $\circ MZ$ $A+C+E \mid A+C_{-}$ $A+C \mid A+C+E$; $\circ DZ$ $A + C + E | .5 * A + C_{-}$.5*A+C | A+C+E ;

- A = Additive
 genetic variance
- C = Common environment variance
- E = unique
 Environmental
 variance (including
 measurement
 Error)

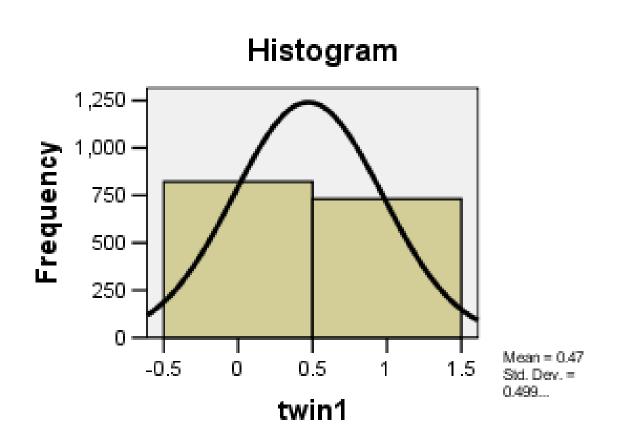
Working with ordinal data

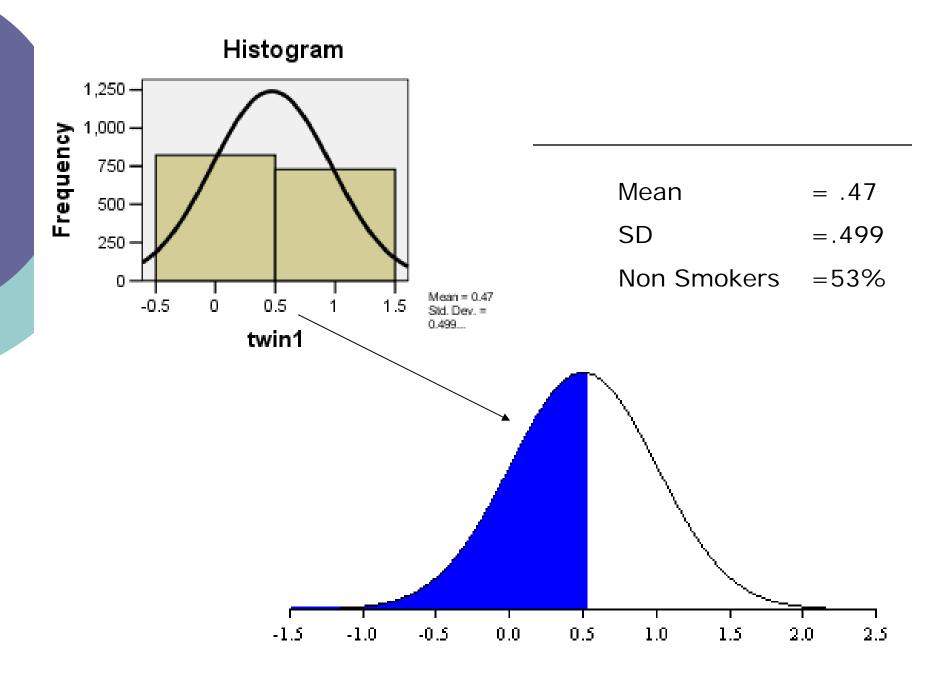
	100	25.80 1
	100	21.10 1
Diagray data	100	21.79 1
Binary data	100	21.12 1
	100	32.05 1
	100	37.41 1
o File: two_cat.dat	100	33.56 0
	100	32.78 1
\circ NI=5	100	39.19 0
\cup INI – \bigcirc	4 0 0	00 00 4
a Labola 7, a train1 train2		0.14

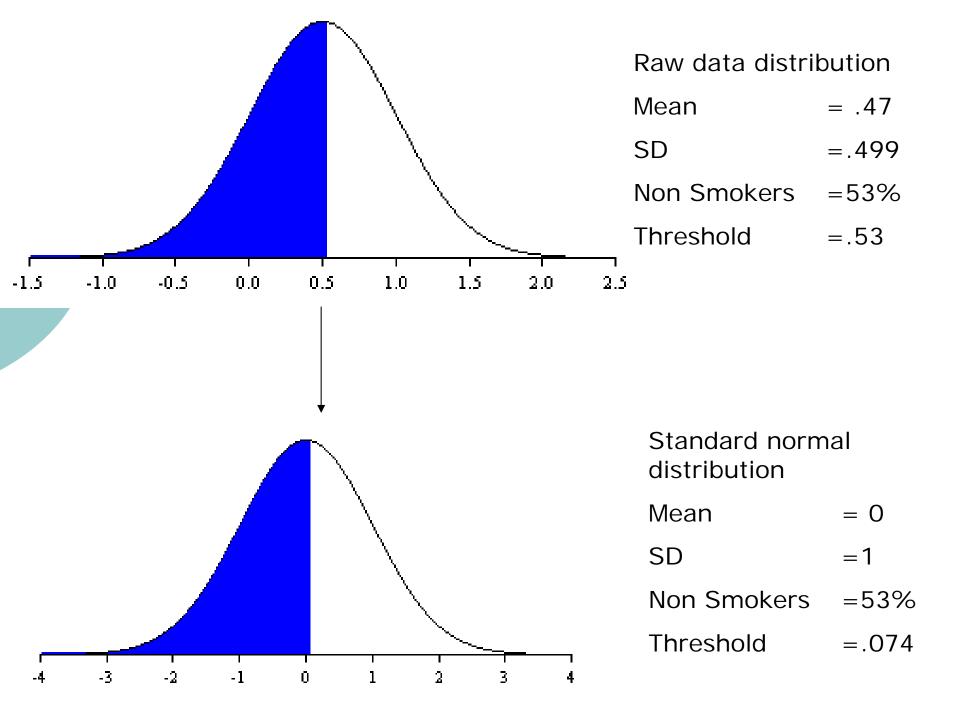
- Labels Zyg twin1 twin2 Age Sex
- Trait smoking initiation


- Never Smoked/Ever Smoked
- (Recoded from yesterday)
- Data is sorted to speed up the analysis

Twin 1 smoking initiation


		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	822	47.5	53.0	53.0
	1	730	42.2	47.0	100.0
	Total	1552	89.7	100.0	
Missing	System	179	10.3		
Total		1731	100.0		


twin1


Twin 1 smoking initiation

Twin 1 smoking initiation

Threshold = .074 – Huh what?

How can I work this out
Excell

 $\circ = \mathsf{NORMSINV}()$

	B2 - fx =NORMS	SINV(B1)
	A	В
1	Percent of non-smokers	0.52964
2	Threshold	0.074365
		

Why do we rescale the data this way?

Convenience

- Variance always 1
- Mean is always 0
- We can interpret the area under a curve between two z-values as a probability or percentage

Why do we rescale the data this way?

You could use other distributions but **you** would have to specify the fit function

Threshold.mx

#define nvar 1

Covariances V ;

end

```
G1: Singleton (non-pair) ordinal data
Data Ninput vars=5 NGroups=1
Ordinal file=two cat.dat
Lahels
Zyq Twin1 Twin2 Aqe Sex
select twin1 ;
Begin matrices;
                             ! Threshold
    T Full 1 nuar free
   V Stand nuar nuar free ! variance
End matrices;
! start values
Start 0 T 1 1
Thresholds T :
```

! variance/covariance model

B2 f =NORMSINV(B1)						
	A	B				
1	Percent of non-smokers	0.52964				
2	Threshold 0.074365					
n						
G1: Singleton (non-pair) ordinal data						
MATRIX T This is a FULL matrix of order 1 by 1 1 1 0.0744						
MATRIX V This is a STANDARDISED matrix of order 1 by 1 1 1 1.0000						

How about age/sex correction? binary_regression.mx

#define nvar 1 #define ndef 2

```
G1: Singleton (non-pair) ordinal data
Data Ninput_vars=5 NGroups=1
```

Ordinal file=two_cat.dat Labels Zyg Twin1 Twin2 Age Sex

select twin1 Age Sex;
definition Age Sex;

Begin matrices; T Full 1 nvar free ! Threshold B Full ndef 1 free ! Beta D Full 1 ndef ! Age V Stand nvar nvar free ! variance End matrices;

! start values Start 0 T 1 1

! place covariate in d matrix Specify D Age Sex

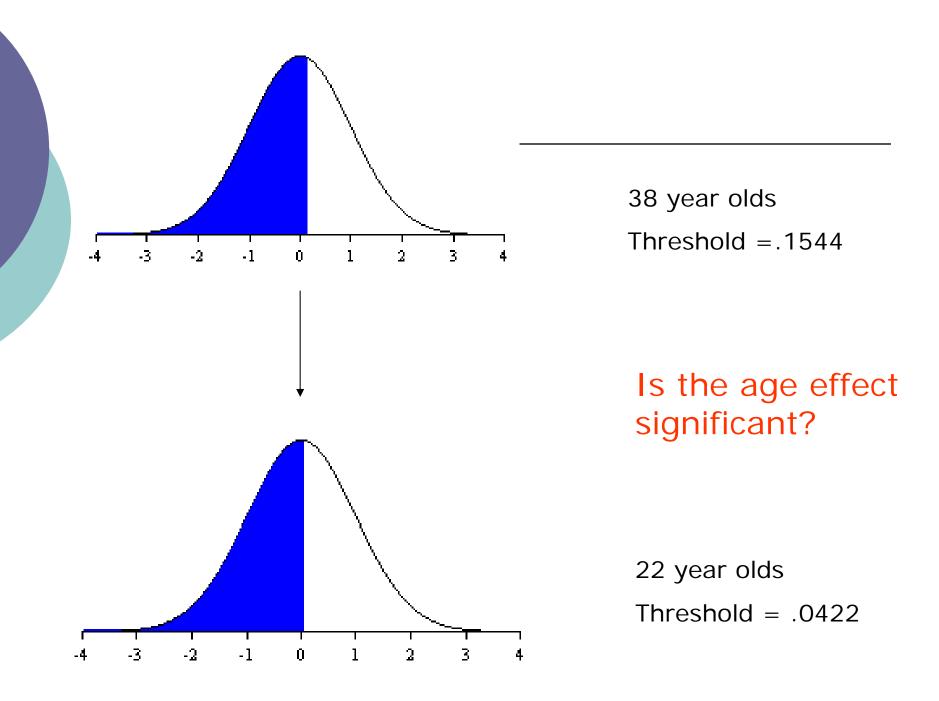
How about age/sex correction?

G1: Singleton (non-pair) ordinal data

```
MATRIX B
This is a FULL matrix of order
                              2 by 1
1 0.0070
2 -0.0500
MATRIX D
This is a FULL matrix of order 1 by 2
     37.1300 0.0000
MATRIX T
This is a FULL matrix of order
                              1 by 1
1 - 0.1118
```

What does this mean?

\circ Age Beta = .007


 For every 1 unit increase in Age the threshold shifts .007

Summary of VL file data for group 1

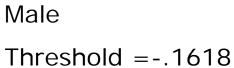
	SEX	AGE	TWIN1
Code	-2.0000	-1.0000	1.0000
Number	1552.0000	1552.0000	1552.0000
Mean	0.4826	30.0439	0.4704
Variance	0.2497	33.1815	0.2491
Minimum	0.0000	20.0000	0.0000
Maximum	1.0000	39.9800	1.0000

What does this mean?

- Beta = .007
- Threshold is -.1118
- 38 is +1.38 SD from the mean age
 - The threshold for 38 year olds is: .1544 = -.1118 + .007*38
- o 22 is -1.38 SD from the mean age
 - The threshold for 38 year olds is:
 .0422= -.1118 + .007*22

How to interpret this

- The threshold moved slightly to the right as age increases
- This means younger people were more likely to have tried smoking than older people

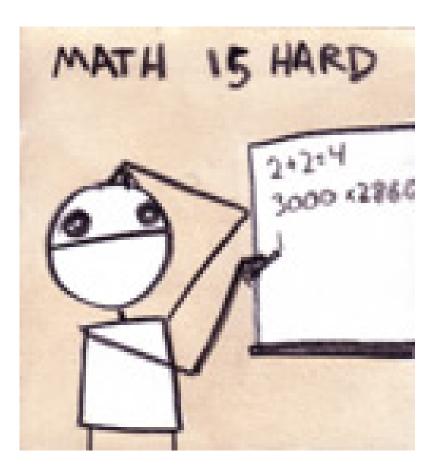

• But this was not significant

How about the sex effect

Beta = -.05
Threshold = -.1118
Sex coded Male = 1, Female = 0

So the Male threshold is:
-.1618= -.1118 + 1*-.05
The Female threshold is:
-.1118 = -.1118 + 0*-.05

Are males or females more likely to smoke?


Female

Threshold =-.1118

General Advice/Problem solving

Scripting styles differ
Check the parameter numbers
Check the sample description
Learn to love the manual
Comments are your friends

Time for coffee

explodingdog.com