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Overview
•

 
SEM factor model basics

•
 

Group differences: -
 

practical

•
 

Relative merits of factor scores & sum scores

•
 

Test for normal distribution of factor

•
 

Alternatives to the factor model

•
 

Extensions for
 

multivariate
 

linkage & association



Structural Equation Model basics
• Two kinds of relationships 

– Linear regression X -> Y    single-headed
– Unspecified Covariance X<->Y   double-headed

• Four kinds of variable
– Squares – observed variables
– Circles – latent, not observed variables

– Triangles – constant (zero variance) for specifying means
– Diamonds -- observed variables used as moderators (on paths)



Single Factor Model
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Factor Model with Means
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Factor model essentials

•
 

Diagram translates directly to algebraic formulae

•
 

Factor typically assumed to be normally distributed: 
SEM

•
 

Error variance is typically assumed to be normal as 
well

•
 

May be applied to binary or ordinal data
–

 
Threshold model



What is the best way to measure factors?

• Use a sum score

• Use a factor score

• Use neither - model-fit



Factor Score Estimation

• Formulae for continuous case
– Thompson 1951 (Regression method)
– C = LL’ +  V
– f = (I+J)-1L’V-1x
– Where J = L’V-1 L



Factor Score Estimation

•
 

Formulae for continuous case
– Bartlett 1938 
– C = LL’

 
+  V

– fb
 

= J-1L’V-1x
– where J = L’V-1 L

•
 

Neither is suitable for ordinal data



Estimate factor score by ML
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ML Factor Score Estimation
•

 
Marginal approach

•
 

L(f&x) = L(f)L(x|f)    (1)
•

 
L(f) = pdf(f) 

•
 

L(x|f) = pdf(x*) 
•

 
x* ~ N(V,Lf) 

•
 

Maximize (1) with respect to f
•

 
Repeat for all subjects in sample

–
 

Works for ordinal data too!



Multifactorial Threshold Model
Normal distribution of liability x.  ‘Yes’ when liability x > t

0 1 2 3 4-1-2-3-4
0

0.1

0.2

0.3

0.4

0.5

x

 t



Item Response Theory -
 

Factor model 
equivalence

• Normal Ogive IRT Model

• Normal Theory Threshold Factor Model

• Takane & DeLeeuw (1987 Psychometrika)
– Same fit
– Can transform parameters from one to the other



Item Response Probability
Example item response probability shown in white
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Do groups differ on a measure?

•
 

Observed
–

 
Function of observed categorical variable (sex)

–
 

Function of observed continuous variable (age)

•
 

Latent
–

 
Function of unobserved variable

–
 

Usually categorical 
–

 
Estimate of class membership probability

•
 

Has statistical issues with LRT



Practical: Find the Difference(s)
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Sequence of MNI testing
1. Model fx of covariates 
on factor mean & variance

2. Model fx of covariates on 
factor loadings & thresholds

2. Identify which loadings & 
thresholds are non-invariant

1 
beats 

2?

Yes Measurement 
invariance: Sum* 
or ML scores

No

3. Revise scale

MNI: Compute 
ML factor scores 
using covariates

* If factor loadings equal



Continuous Age as a Moderator in the Factor Model
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What is the best way to measure and 
model variation in my trait?

• Behavioral / Psychological characteristics usually Likert
– Might use ipsative?

• What if Measurement Invariance does not hold?
– How do we judge:

• Development
• GxE interaction
• Sex limitation

• Start simple: Finding group differences in mean



Simulation Study (MK)

• Generate True factor score f ~ N(0,1)
• Generate Item Errors ej ~ N(0,1)
• Obtain vector of j item scores sj = L*fj + ej

• Repeat N times to obtain sample
• Compute sum score
• Estimate factor score by ML



Two measures of performance
• Reliability

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Two measures of performance

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

• Validity



Simulation parameters
• 10 binary item scale

• Thresholds 
– [-1.8 -1.35 -0.9 -0.45 0.0 0.45 0.9 1.35 1.8]

• Factor Loadings
– [.30 .80 .43 .74 .55 .68 .36 .61 .49]



Mess up measurement parameters

• Randomly reorder thresholds

• Randomly reorder factor loadings

• Blend reordered estimates with originals 0% - 
100% ‘doses’











Measurement non-invariance

• Which works better: ML or Sum score?

• Three tests:
– SEM - Likelihood ratio test difference in latent factor 

mean
– ML Factor score t-test
– Sum score t-test



MNI figures



More Factors: Common Pathway Model



More Factors: Independent Pathway Model

= 1 = 1 = 1

Independent pathway model is submodel of 3 factor common pathway

 

model



Example: Fat MZT MZA



Results of 
fitting twin 

model



ML  A, C, E or P Factor Scores
• Compute joint likelihood of data and factor scores

– p(FS,Items) = p(Items|FS)*p(FS)
– works for non-normal FS distribution

• Step 1: Estimate parameters of (CP/IP) (Moderated) 
Factor Model

• Step 2: Maximize likelihood of factor scores for each 
(family’s) vector of observed scores
– Plug in estimates from Step 1



Business end of FS script



The guts of it

! Residuals only



Shell script to FS everyone



Central Limit Theorem 
Additive effects of many small factors
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Measurement artifacts

• Few binary items
• Most items rarely endorsed (floor effect)
• Most items usually endorsed (ceiling effect)

• Items more sensitive at some parts of distribution
• Non-linear models of item-trait relationship



Assessing the distribution of latent trait
• Schmitt et al 2006 MBR method

• N-variate binary item data have 2N possible patterns

• Normal theory factor model predicts pattern frequencies
– E.g., high factor loadings but different thresholds
– 0 0 0 0
– 0 0 0 1 but 0 0 1 0 would be uncommon
– 0 0 1 1
– 0 1 1 1
– 1 1 1 1 1  2

 
3 4

item threshold



Latent Trait (Factor) Model

M1 M2 M3 M4 M5 M6

F1

l6l1
Discrimination

Difficulty

Use Gaussian quadrature
 weights to integrate over factor; 

then relax constraints on 
weights



Latent Trait (Factor) Model

M1 M2 M3 M4 M5 M6
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Discrimination

Difficulty

Difference in model fit:
LRT~ 2



Chi-squared test for non-normality performs well



Detecting latent heterogeneity 
Scatterplot of 2 classes
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Scatterplot of 2 classes 
Closer means

S1

S2

Mean S1|c1

Mean S1|c2

Mean S2|c1 Mean S2|c2



Scatterplot of 2 classes 
Latent heterogeneity: Factors or classes?

S1

S2



Latent Profile Model

Class 1:  p

Class 2: (1-p)
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Factor Mixture Model 
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Classes or Traits? 
A Simulation Study

• Generate data under:
– Latent class models
– Latent trait models
– Factor mixture models

• Fit above 3 models to find best-fitting model
– Vary number of factors
– Vary number of classes

• See Lubke & Neale Multiv Behav Res (2007 & In press)



What to do about conditional data

• Two things
– Different base rates of “Stem” item
– Different correlation between Stem and “Probe” 

items

• Use data collected from relatives



Data from Relatives: Likely failure of conditional 
independence
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Series of bivariate integrals

m/2           t1i t2i

Π
 

(  (x1 , x2 ) dx1 dx2 )j
j=1             t1       t2

i-1 i-1
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Can work with p-variate integration, best if p<m 
“Generalized MML” built into Mx



Dependence 1
Did your use of it cause you physical problems or make you 
depressed or very nervous?

Consequence: physical & psycholog
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Extensions to More Complex 
Applications

• Endophenotypes

• Linkage Analysis

• Association Analysis



Basic Linkage (QTL) Model

Q: QTL Additive Genetic          F: Family Environment          E: Random Environment

 
3 estimated parameters: q, f and e       Every sibship may have different model


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Measurement Linkage (QTL) Model

Q: QTL Additive Genetic          F: Family Environment          E: Random Environment

 
3 estimated parameters: q, f and e       Every sibship may have different model


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Fulker Association Model

Multilevel model 
for the means
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Measurement Fulker Association Model (SM)
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Multivariate Linkage & Association Analyses

• Computationally burdensome
• Distribution of test statistics questionable
• Permutation testing possible

– Even heavier burden
• Potential to refine both assessment and genetic models
• Lots of long & wide datasets on the way

– Dense repeated measures EMA
– fMRI
– Need to improve software!  Open source Mx
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