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A1    A2 

 
B1    B2 

 
Gametes A1 B2, A2 B1 are recombinants  
    A1 B1, A2 B2 are non-recombinants 
 
θ = Prob (recombinant) 
 
θ=.01  A and B are 1cM apart 
 

Definition of centimorgan
 

(cM)



Genome Arithmetic


 

Kb=1,000 bases; Mb=1,000Kb


 

3.3 billion base pairs; 3,300 cM
 

in genome
3,300,000,000/3,300 = 1 Mb/cM



 

33,000 genes
33,000/3,300 Mb = 10 genes / Mb



 

Thus, 20 cM
 

region may have 200 genes to 
examine



 

Erratum –
 

closer to 20,000 genes in humans



Linkage Vs. Association


 

Linkage:
-Disease travels with marker within families
-No association within individuals 
-Signals for complex traits are wide (20MB)



 

Association:
-Can use case/control or case/parents design
-Only works if association in the population
-Allelic heterogeneity (eg, BRAC1) a problem



 

Linkage –
 

large scale; Association fine scale (<200kb)



LOD Score


 

LOD score is log10

 

(odds for linkage/odds for 
no linkage)  Traditional (1955) cut-off is 
LOD=3 (linkage 1000 times more likely)



 

A LOD of 3 corresponds to α
 

= 0.0001


 

Lander and Kruglyak
 

(1995) A LOD score 
cut-off of 3.6 for a genome screen using an 
infinitely dense map corresponds to a 
“genome-wide significance of 0.05”



 

This is the criteria often cited today



Effective Number of Tests
 For genome-wide p=.05

Marker Spacing LOD P-value Neffective

10 cM 2.88 .000135 370

5 cM 3.06 .000088 568

2 cM 3.24 .000057 877

1 cM 3.35 .000044 1,136

0.1 cM 3.63 .000022 2,273





Bipolar Disorder



 

Lifetime prevalence of BP1 ≈
 

1%, BPII ≈
 

0.5%


 

Risk of suicide 10 –
 

15%


 

Treatment not curative, treatments not 
completely effective in mitigating symptoms



 

Heritability estimates ≈
 

80%


 

Linkage reports for ½
 

the chromosomes, with a 
lack of replication



 

Lack of power in original reports? 







Significant and Suggestive 
Linkage


 

Given density of markers, significant linkage 
is LOD > 3.03



 

Suggestive linkage is LOD > 1.75


 

These take into account that 2 genome 
screens were analyzed (narrow and broad)



 

Significant
 

–
 

Occurs once in twenty genome 
screens
Suggestive

 
–

 
Occurs once in a genome 

screen



Chromosome 6



Linkage Analysis (Summary)


 

Approximately 2,000 “independent “
 

tests with an 
infinitely dense genetic map  (Multiple testing a 
much bigger problem in GWAS)



 

Linkage studies have been unsuccessful for 
complex diseases



 

May be useful as input into GWAS analysis?


 

Today –
 

GWAS (using SNP chips) have taken over


 

My opinion –
 

pursue chromosomes 6 and 8, even if 
not genome-wide significant in GWAS  



Genome-Wide Association 
Studies (GWAS)



 

Chips by Illumina
 

and Affymetrix
 

genotype 1 
million SNPs

 
(Single Nucleotide 

Polymorphisms) as well as CNVs
 

(Copy 
Number Variations)



 

Affordable on a large scale


 

Capitalize on Linkage Disequilibrium between 
the markers and variation at a susceptibility 
gene



Disequilibrium  
Let  P(A1

 

)=p1
Let  P(B1

 

)=q1
Let  P(A1

 

B 1

 

)=h11

No association if h11

 

=p1

 

q1

D = h11

 

-p1

 

q1



Linkage Disequilibirum: 
 
Linkage 
Random Genetic Drift 
Founder Effect 
Mutation 
Selection 
Population 
admixture/stratification 



Population Stratification

1 9

9 81

25 25

25 25

26 34

34 106

Odds ratio = 1Odds ratio = 1

Odds ratio = 2.38

Population 1 Population 2

Combined Population



L in k age D iseq u ilib riu m  
_________________  
 
A 1    A 2 

 
B 1    B 2 

 
G am etes A 1 B 2, A 2 B 1 are  recom binan ts  
    A 1 B 1, A 2 B 2 are  non -recom binan ts 
 
θ  =  P  (recom binan t) 
__________________  
 
C onsider hap lo type  A i B j, frequency  h ijo in  genera tion  
0 , w hat is  the frequency  in  the  nex t genera tion?  





D´
 

and r²
D tends to take on small values and depends on 

marginal gene frequencies

D
 

=  D / max(D)
r²

 
= D²

 
/ (p1

 

p2 q1

 

q2

 

)
=  square of usual correlation coefficient ()

Note: r2

 
= 0   D 

 
= 0

D 
 

= ±1 if one cell is zero (eg, no recombination)

r²
 

can be small even when D 
 

= ±1
Prediction of one SNP by another depends  on r²



D 

 

= 1, r2 = .1



D 
 

= 1, r2

 

= .01



Haplotypes



 

We measure genotypes


 

A double heterozygote is ambiguous


 

Must estimate haplotype
 

frequencies from 
genotype frequencies –

 
usually assume 

random mating and use EM algorithm


 

The program haploview
 

is commonly used to 
estimate and depict LD



   gametes 
 
Note: A1  A2   A1  A2 

 

 

  B1  B2   B2  B1  
    
    Person 1      Person 2 

Different Haplotypes; same genotypes A1 A2 B1 B2

Haplotypes
 

A1 B1

 

, A2 B2

 

; A1 B2

 

, A2 B1

Independence
 

hij

 

= pi qj

Positive Association
 

hij

 

> pi qj

Negative Association
 

hij

 

< pi qj



Assume random mating but allow for disequilibrium 

B1

 

B1 B1

 

B2 B2

 

B2

A1

 

A1 h11
2 2h11

 

h12 h12
2

A1

 

A2 2h11

 

h21  2h12

 

h22

A2

 

A2 h21
2 2h21

 

h22 h22
2

A1

 

B1 A1

 

B2 A2

 

B1 A2

 

B2

h11 h12 h21 h22





D
 

plot from Haploview



Blocks and Bins


 

Predictability of one SNP by another best described 
by r2 –

 
basic statistics



 

Block –
 

set of SNPs
 

with all pair-wise LD high 
(usually defined in terms of D)



 

If one uses r2 –
 

insert a SNP with low frequency in 
between SNPs

 
with freqs

 
close to 0.5, then block 

breaks up!


 

Perlegen
 

(Hinds et al, Science, 2005) -–
 

use bins 
where a tag SNP has r2  of 0.8 with all other SNPs.  
Bins may not be contiguous.



Summary (Blocks and Bins)


 

Blocks using D 
 

may have a “biological”
 interpretation (long stretches with |D | =1 and 

indicates no recombination)


 

Selection of Tag SNPs
 

is a statistical issue, 
want to predict untyped

 
SNPS from those 

that are typed –
 

r2

 
is natural measure



 

Most current WGA studies use bins based on 
r2 (typically r2

 
> 0.8)



 

Sample size needed is N/ r2 with reduced r2



Analysis



 

Case/ control studies are common.  Use 
logistic regression with case/control status as 
the dependent variable.  Use SNP genotype 
as an independent variable with other 
covariates and test one SNP at a time



 

PLINK is my program of choice to do this


 

Family based studies are also used.  TDT 
(case and both parents) designs are used in 
GWAS but less efficient 



SNP Marker  Coding:

Genotype X1 
 

 

1/1 0  
1/2 1  
2/2 2  

 

 



log (odds) = 
 

+ 1

 

X1
odds = ee 1 X1

Genotype
 

Odds
11

 
e

12
 

ee1

22
 

ee21

Test 1 = 0, all odds = e

Note:  No dominance effect                                   

Testing Marker Effects



SNP Marker Coding:

Genotype X1 
 

X2 

1 1 0 0 
1 2 1 1 
2 2  2 0 

 

 



log (odds) = 
 

+ 1

 

X1

 

+ 2

 

X2
odds = ee 1 X1  e 2 X2

Genotype
 

Odds
1 1

 
e

1 2 e
 

e1e2

2 2
 

ee21

Test 1

 

= 2 = 0, all odds = e
If 2 = 0, then have additive model                                  

Testing Marker Effects



Haplotypes?



 

We may wish to consider more than one SNP 
at a time in the linear regression.


 

More information in a set of close SNPs


 

May wish to study a set of SNPs
 

to see if one 
explains the case/control difference, i.e., does the 
evidence for one SNP disappear when controlling 
for other SNPs.



Haplotype
 

Trend Analysis



 

Zaykin
 

et al (2002) Hum Hered
 

53:79-91


 

Use haplotypes
 

in logistic regression


 

For a pair of SNPs, there are 4 haplotypes, 
so there will be 3 “dummy”

 
variables



 

Assume pair of haplotypes
 

in an individual 
are “additive”, so only need 3 regression 
coefficients



 

If haplotypes
 

are known with certainty, then:



Haplotype X1 X2 X3
h1

 

/ h1 2 0 0
h1

 

/ h2 1 1 0
h1

 

/ h3 1 0 1
h1

 

/ h4 1 0 0
h2

 

/ h2 0 2 0
h2

 

/ h3 0 1 1
h2

 

/ h4 0 1 0
h3

 

/ h3 0 0 2
h3

 

/ h4 0 0 1
h4

 

/ h4 0 0 0



Estimated Haplotypes



 

One can get estimates of the haplotype
 probabilities for each individual (LD between 

SNPs
 

OK)


 

Put the estimated probabilities into the 
logistic regression



GWAS Studies

How do we keep up?



A Catalog of Published GWAS


 

www.genome.gov/26525384


 

Number of Studies:


 

2005  2 –
 

Includes Age-related Macular Degeneration


 

2006  8


 

2007 87


 

2008 70 (through July 27)


 

Bipolar Disorder:


 

3 studies (1 used pooled genotypes)


 

No convincing signals





“History”
 

of GWAS


 

Early studies used pooled designs –
 

too 
expensive to do individual genotypes



 

Affymetrix
 

and Illumina
 

come out with 
affordable SNP chips



 

First study to generate enthusiasm –
 

Age-
 related macular degeneration (Klein, 2007) 

found a “real”
 

signal


 

Type II diabetes studies found “real”
 

signals –
 linkage studies were problematic



Welcome Trust (WTCCC) 
Initiative



 

Common set of 3,000 controls


 

Several disorders (including Bipolar) with 
2,000 cases each



 

Results in the public domain 


 

Published in Nature in 2007



Major U.S. GWAS Initiatives



 

New NIH Policy –
 

All NIH Funded GWAS 
studies must deposit individual genotypes 
and phenotypic data in dbGaP

 
at NCBI



 

GAIN and GEI RFAs
 

funded studies with 
existing DNA, subjects consented to allow 
data to go to dbGaP, and genotyping done at 
associated genotyping centers



 

New RFA from NIMH to collect very
 

large 
(~10,000) samples



GAIN Proposals
 Genetic Association Information Network



 

6 WGA projects were selected across NIH


 

Projects:


 

Schizophrenia


 

Bipolar Disorder


 

Depression


 

ADHD


 

Psoriasis


 

Type 1 Diabetes (nephropathy)


 

Data at dbGap
 

(1 year embargo on publication)


 

Note:  4/6 Mental Health related!!



Gene Environment Initiative 
(GEI)


 

8 GWAS funded –
 

oral cleft, addiction, coronary 
heart disease, lung cancer, type 2 diabetes, birth 
weight, dental caries, premature birth 



 

Required existing DNA and subjects consented to 
share



 

Issued Supplement for replication samples


 

Addiction (Bierut) samples genotyped first –
 

we got 
genotypes from CIDR in May; once cleaned, they go 
to dbGaP



Good News for Analysts


 

Cleaned data available goes to investigators 
who collected data at the same time as 
everyone else



 

It takes years to collect subjects


 

Cleaning GWAS data is hard and time 
consuming



 

Opportunity for combining data from multiple 
studies



 

Is this fair?



dbGaP



 

Genotype and Phenotype Database


 

Data made available to investigators and 
others at the same time –

 
1 year publication 

embargo


 

Request access using eRA
 

Commons sign 
on –

 
requires Institutional sign-off



 

Request must be approved by a DAC (data 
access committee)





Some statistical and data 
management issues



 

Genomic Inflation Factor


 

We illustrate with admixed schizophrenia 
data (CATIE) where we don’t control for 
ethnicity



Genomic inflation factor --
 lambda



 

When testing 300K to 1M SNPs, most tests 
are under the null



 

Median chi-square should be .445


 

Lambda = median chi-sq/.445


 

Can use lambda to correct chi-sqs
 

for this 
inflation



 

Better –
 

look for source (eg, ethnic 
admixture), and correct for that



Unzipped (binary) file is 185MB





495,163 SNPs
 

Analyzed
Total Time: 9 min!
Terrible lambda
Note: Mixture of EU and AAs



Plink Output



P-values



 

Uncleaned, admixed data –
 

small p-values 
are an artifact.



 

Welcome Trust used significance level of         
5 x 10-7

 
based an Bayesian arguments



 

Bonferroni
 

correction assumes independent 
tests



 

PLINK also computes q-values based on 
FDR (false discovery rate)



False Discovery Rate (FDR)


 

V= # true null hypotheses called significant
S= # non-true hypotheses called significant
Q=V/(V + S)    (false positives/all positives)
FDR = E(Q)



 

Benjamini
 

& Hochberg (1995)
When testing m hypotheses H1

 

,…,Hm

 

, order p-values 
p1

 

, …
 

pm

 

, let k be largest i for which pi ≤
 

(i/m) q*
Then reject H1

 

, …
 

Hm
Theorem:  Above controls FDR at q*
Computer program: QVALUE; computed by PLINK



Interpretation of FDR



 

If q-value is 0.1, 1/10 is false positive.


 

If we identify 10 SNPs
 

and 9 are real and 1 is 
false positive –

 
major success.



 

Usual experiment-wise error (Bonferroni
 correction) only one false positive at the 

chosen p-value.



Some statistical and data 
management issues



 

Population stratification


 

Perform principal components analysis 
(10,000 markers probably enough), and plot 
your samples along with hapmap

 
samples



 

Eigenstrat
 

is commonly used


 

We illustrate with NIMH repository control 
data who self report as “white”





Problem Samples
 (to be removed)



 

One subject clusters with Yoruba sample


 

A handful of subjects trail off to Asian sample.  
Some reported American Indian ancestry



 

In addition, several samples had phenotypic 
sex differ from genetic sex –

 
probably sample 

swaps



Cleaning of GENEVA addiction 
GWAS data (SAGE)



 

1 million Illumina
 

chips were done at CIDR


 

Data should be at dbGaP
 

in a few weeks


 

We just completed cleaning, but haven’t 
received the final data



Study Design


 

Case/ Control (4,400 individuals)


 

Samples come from 3 studies


 

Alcohol Dependence (COGA)


 

Nicotine Dependence (COGEND)


 

Cocaine Dependence (FSCD)


 

Cases have a diagnosis of alcohol dependence


 

Controls do not have a dx
 

of alc, nic, or cocaine 
dependence; must have drunk alcohol



 

Mixture of EUs, AAs
 

and Hispanics



Primary Model


 

Dependent variable (s)


 

Case control status (diagnosis of alcohol 
dependence)—simple logistic model



 

Independent variables


 

Genotype --(1 df
 

trend test)


 

EU vs
 

AA vs
 

Hispanic (Asians, Mixed, etc 
excluded)



 

Study (alc, cocaine, nicotine) 


 

Gender


 

Test each SNP with 1 df



Relatedness


 

Identify unexpected relatedness, correct pedigree 
and identify one representative from each family



 

Use IBD –
 

Identity by Descent


 

Two individuals can share 0, 1 or 2 alleles from a 
common ancestor



 

MZ twins (or duplicates) always share 2 alleles IBD; 
Parent-offspring pairs always share 1 allele IBD, etc.



 

PLINK can estimate these probabilities from the 
SNP data (which is IBS data since parents are not 
genotyped) 



            Z2             Z1             Z0kinship Relationship
1 0 0 0.5 MZ twin (or duplicate)
0 1 0 0.25 parent-offspring

0.25 0.5 0.25 0.25 full siblings
0 0.5 0.5 0.125 half siblings
0 0.5 0.5 0.125 avuncular (uncle/aunt - niece/nephew
0 0.5 0.5 0.125 grandparent-grandchild
0 0.25 0.75 0.0625 great grandparent - great grandchild

Prob
 

of IBD by Relationship



We found “unexpected”
 relatedness



 

Duplicates:


 

8 subjects were both in FSCD and COGA


 

This will be documented by dbGaP


 

Some full sibs were selected for SAGE and 
were known –

 
Others were identified in cleaning



 

Other unexpected relatedness found


 

Data from “extra”
 

samples will be distributed by 
dbGaP



Aneuploidy



 

Normal male –
 

XY; Normal Female –
 

XX


 

Phenotypically
 

male if at least one Y 
chromosome



 

Found XXY (male who genotypes like a 
female), XYY, XO individuals, mosaics



 

Most of this is due to DNA from cell lines


 

Some detected by looking at intensity plots



CIDR  X0/XX=magenta, XYY=purple, XXY=skyblue, X0=yellow, XXX=black, XY/XXY/XYY=green

XYY

XXY

X0
XX/X0

XY/X0?



Population structure 



 

Assign samples to population groups for 
allele frequency estimation, HW testing, etc.



 

Alternatively, produce quantitative covariates 
to control for population admixture



 

Use the program Eigenstrat
 

to perform 
Principal Component Analysis  



Asian









Admixture



 

First PC separates EUs
 

and AAs


 

Second PC separates Hispanics


 

Some self reported ethnicities were in error 
and turned out to be data entry mistakes



 

One “unexpected”
 

Asian was found 



Hardy-Weinberg Equilibrium



HWE


 

Let a SNP have two alleles 1,2 with 
frequencies p and q =1 –

 
p, respectively.



 

The SNP is in HWE if the genotypic 
frequencies are p2, 2pq, and q2

 
for genotypes 

11, 12, 22. 


 

Hardy and Weinberg showed a population 
reaches HWE in a single generation of 
random mating.



 

Usually see HWE for markers.



HWE


 

Filter out SNPs
 

with p < 10-06

 
when testing for 

HWE


 

Note: test done separately within ethnic 
groups –

 
mixing populations with different 

allele frequencies leads to non-HWE


 

CNVs
 

(copy number variations) can cause 
non-HWE



 

Bottom line –
 

always inspect intensity plots 
for signals of interest.



Intensity Plot –
 

good SNP





Uniform Distribution

p0 1

If we perform N independent statistical tests for which all null
Hypotheses are true, we expect a uniform distribution.  



QQ-plot of association test


 

When we test 1 million SNPs, most are not 
truly associated.  Plot  -

 
log(p) for observed 

tests against a uniform distribution as a final 
check



 

Genomic inflation factor –
 

If using a chi-
 square test with 1 df, median value should be 

0.445.  λ=observed median / .445.  Usually 
correct chi-sq by dividing by λ



 

Always best to control for pop admixture, 
eliminate CNVs, etc first



λ

 

= 1.045
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Conclusions


 

GWAS has already been successful for many 
complex traits –

 
linkage has not been



 

Many GWAS are in progress


 

We use plink and SAS for data management, 
data cleaning and analysis



 

The only way to learn this is to really be 
involved in one



 

Availability at dbGaP
 

is a major event –
“can’t herd cats, but you can move their food”



Final Words



 

Current GWAS –
 

Chi-Square on steroids


 

Only pick low fruit –
 

genome-wide significant; 
test one SNP at a time



 

How to identify true signals mixed in with 
noise due to chance?



 

How to identify gene-gene interactions and  
G x E interactions?  



 

Where is the heritability of 50-80%?
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