Complex Trait Genetics in Animal Models

Will Valdar Oxford University

Mapping Genes for Quantitative Traits in Outbred Mice

Will Valdar Oxford University What's so great about mice?

Share ~99% of genes with humans

~90% of the two genomes can be portioned into regions of conserved synteny

Shorter lifespans

You can do invasive experiments

You can breed them as you like – control the genetics

What is an inbred strain?

BALB/c

http://www.informatics.jax.org/mgihome/genealogy/

one inbred strain

two inbred strains

Mouse model of anxiety

Mouse model of anxiety

Anxious mouse

F2 cross

Generation

Linear models

Also known as

ANOVA ANCOVA regression multiple regression linear regression

H₀:
$$y \sim 1$$

H₁: $y \sim 1 + x$
 $y = \mu + \varepsilon$
 $y = \mu + ax + \varepsilon$

H₀:
$$y \sim 1$$

H₁: $y \sim 1 + x$
 $y = \mu + \varepsilon$
 $y = \mu + ax + \varepsilon$

H₀:
$$y \sim 1 + x1$$

H₁: $y \sim 1 + x1 + x2$
 $y = \mu + a_1 x_1 + \varepsilon$
 $y = \mu + a_1 x_1 + a_2 x_2 + \varepsilon$

 H_1 vs H_0 : Does x2 explain a significant amount of the variation after accounting for x1?

or

is x2 significant conditional on x1?

F2 cross

Generation

Chromosome scan for F2

Advanced intercross lines (AILs)

Darvasi & Soller (1995) Genetics

F12 cross

Chromosome scan for F12

Practical

- 1. Fitting a linear model to test a marker-phenotype association
- 2. Single marker association on an F2
- 3. Permutation test
- 4. Single marker association on an AIL (F12)
- 5. Conditional modelling of loci

Start Firefox, File->Open and go to F:\valdar\ThursdayAfternoonAnimals\practical.R Start R

Practical: F2 cross

Bonferroni = 2.6permutation ~ 2.1uncorrected = 1.3

Practical: F2 cross

20

0

0.0

0.5

1.0

1.5

2.0

max.logPs

2.5

3.0

3.5

Bonferroni = 2.6permutation ~ 2.1uncorrected = 1.3

generalized extreme value (GEV) distribution

phenotype ~ MARKER

phenotype ~ MARKER

phenotype ~ m37 + MARKER

phenotype ~ MARKER

phenotype ~ m37 + MARKER

phenotype ~ MARKER

4 ·

logP

phenotype ~ MARKER

phenotype ~ m37 + MARKER

phenotype ~ m37 + MARKER

phenotype ~ MARKER

phenotype ~ m37 + MARKER

phenotype ~ m37 + m29 + MARKER

F2

F18

chromosome 1

chromosome 2

F18

chromosome 1

chromosome 2

chromosome 2

chromosome 1

population structure

gross genetic differences between groups

where groups = families

population structure

gross genetic differences between groups

where groups = families

multilocus approach

Heterogeneous Stocks

Avg. Distance Between Recombinations:

HS ~2 cM

124 Phenotypes

Anxiety [24] Asthma [13] **Biochemistry** [15] Bone Morphology [23] Diabetes [16] Haematology [15] Immunology [9] Weight/size related [8] Wound Healing [1]

Intraperitoneal Glucose Tolerance Test

Glucose AUC

How to select peaks: a simulated example

How to select peaks: a simulated example

Simulated example

Chromosome

phenotype ~ ?

condition on 1 peak

phenotype ~ peak 1 + ?

condition on 2 peaks

phenotype ~ peak 1 + peak 2 + ?

condition on 3 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + ?

condition on 4 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + ?

condition on 5 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + ?

condition on 6 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + peak 6 + ?

condition on 7 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + peak 6 + peak 7 + ?

condition on 8 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + ?

condition on 9 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + peak 9 + ?

condition on 10 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + peak 9 + peak 10 + ?

condition on 11 peaks

phenotype ~ peak 1 + peak 2 + peak 3 + peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + peak 9 + peak 10 + peak 11 + ?
Peaks chosen by forward selection

Bootstrap sampling

Bootstrap sampling

Forward selection on a bootstrap sample

Forward selection on a bootstrap sample

Forward selection on a bootstrap sample

Bootstrap evidence mounts up...

In 1000 bootstraps...

Model Inclusion Probability

Chromosome

Chromosome

Chromosome

854 loci in all phenotypes, 84 diabetes loci

854 loci in all phenotypes, 84 diabetes loci

ARTICLES

genetics

Genome-wide genetic association of complex traits in heterogeneous stock mice

William Valdar¹, Leah C Solberg^{1,4}, Dominique Gauguier¹, Stephanie Burnett¹, Paul Klenerman², William O Cookson¹, Martin S Taylor¹, J Nicholas P Rawlins³, Richard Mott¹ & Jonathan Flint¹

Servin B, Stephens M (2007)

Bayesian Multiple QTL modelling

- Kilpikari R, Sillanpaa MJ (2003) Bayesian analysis of multilocus association in quantitative and qualitative traits. Genet Epidemiol 25: 122-135
- Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167: 967-975
- Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3: e114
- Fridley BL (2008) Bayesian variable and model selection methods for genetic association studies. Genet Epidemiol.

The Collaborative Cross

Heterogeneous Stocks (HS)

Collaborative Cross

Churchill et al 2004; Broman 2005; Valdar et al 2006