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Overview

Rationale/objective of session
Estimation of genetic parameters
Variation in identity

Application/Practical

— mean and variance of genome-wide IBD
sharing for sibpairs

— estimation of heritability of height
— genome partitioning of genetic variation



Objectives

Understand that there is variation in identity (per
ocus, chromosome and genome-wide)

How this can be estimated with genetic markers

How and why variation in identity changes with
the length of the chromosome

How this can be exploited to estimate genetic
variance

How this relates to linkage analysis




Estimation of genetic parameters

 Model

— expected covariance between relatives
* Genetics
* Environment

« Data

— correlation/regression of observations between
relatives

 Statistical method
— Least squares (ANOVA, regression)
— Maximum likelihood
— Bayesian analysis



Mean offspring height (inches)

[Galton, 1889]
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The height vs.

pea debate
(early 1900s)
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Biometricians Mendelians

Do quantitative traits have the same
hereditary and evolutionary properties
as discrete characters?




XV.—The Correlation between Relatives on the Supposition of Mendelian Inherit-
ance.© By R. A Fisher, BA. Communicated by Professor J. ARTHUR
Tuomson. (With Four Figures in Text.)

(MS. received June 15, 1918. Read July 8, 1918. Tssued separately October 1, 1918.)
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Several attempts have already been made to interpret the well-established
results of biometry in accordance with the Mendelian scheme of inheritance. It
is here attempted to ascertain the biometrical properties of a population of a more
general type than lhas hitherto been examined, inleritance in which follows this
scheme. It is hoped that in this way it will be possible to make a more exact
analysis of the causes of human variability. The great body of available statistics
show us that the deviations of a human measurement from its mean follow very
closely the Normal Law of Errors, and, therefore, that the variability may be
uniformly measured by the standard deviation corresponding to the square root
of the mean square error. When there are two independent causes of variability
capable of producing in an otherwise uniform population distributions with standard
deviations oy and oy, it is found that the distribution, when both causes act together,
has a standard deviation J/o+o,%. [t is therefore desirable in analysing the
causes of variability to deal with the square of the stg
measure of variability. We shall term this quantity thd
population to which 1t refers, and we may now ascribe to thie coustituent causes

viation as the

f the normal

fractions or percentages of the total variance which they together produce. It

Trait

RA Fisher (1918).
Transactions of
the Royal Society
of Edinburgh

52: 399-433.



Genetic covariance between
relatives

— 2 2
covg(yiy)) = @;05° + diop

a = additive coefficient of relationship
= 2 * coefficient of kinship (= E(r))

d = coefficient of fraternity
= Prob(2 alleles are IBD)



Examples (no inbreeding)

Relatives a d
MZ twins 1 1
Parent-offspring Z: 0
Fullsibs i Ya

Double first cousins Ya 6



Controversy/confounding:
nature vs nurture

* |s observed resemblance between
relatives genetic or environmental?

— MZ & DZ twins (shared environment)
— Fullsibs (dominance & shared environment)
« Estimation and statistical inference

— Different models with many parameters may
fit data equally well




Total mole count for MZ and DZ twins

MZ twins - 153 pairs, r = 0.94
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Sources of variation in Queensland school
test results of 16-year olds

10%

78%
12%

Additive . Shared Non-shared
genetic environment environment



A different approach

Estimate genetic variance
within families



Actual genetic relationship

= proportion of genome shared IBD (r,)

» Varies around the expectation
— Apart from parent-offspring and MZ twins

* Can be estimated using marker data



Notation / concept

7t IS a random variable!
7 (pihat) is an estimate of ©
If the estimate is unbiased then

E(r|pihat) = pihat: the regression of true on
estimated values is 1.0

E(pihat) # &
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IDENTITY BY DESCENT
Sib 1

. a I R
Sib 2

= BN -
= BN

4/16 = 1/4 sibs share BOTH parental alleles IBD = 2

B 8/16 = 1/2 sibs share ONE parental allele IBD = 1

- 4/16 = 1/4 sibs share NO parental alleles IBD = 0




Single locus

Relatives E(r,) var(m,)

Fullsibs Y 1/,
Halfsibs Ya 6



n unlinked loci

Relatives E(r,) var(m,)

Fullsibs Y Vg
Halfsibs Ya 60
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F'ic. 64. Scheme to illustrate a method of crossing over of
the chromosomes.

[Thomas Hunt Morgan, 1916]



Locl are on chromosomes

* The cross-over rate per meiosis is ~low:
segregation of large chromosome
segments within families

— increases variance of IBD sharing

* Independent segregation of chromosomes
— decreases variance of IBD sharing



Chromosome length

* Longer chromosomes have more
recombination

— more ‘independent’ segments

— smaller variance in mean |IBD sharing
* Smaller chromosomes have less

recombination

— more like single loci

— larger variance in mean |IBD sharing

Practical: test empirically



Dominance (fullsibs): =,

Prob(2 alleles IBD) = 7
Prob(2 alleles non-IBD)= %

Mean(IBD2)= 7.
Variance(IBD2) = V4 - V42 =3/ 4

—> Variation in (mean) =4 is larger than
variation in (mean) r,
Practical: test empirically



Theoretical SD of r,

Relatives 1 chrom (1 M) genome (35 M)
Fullsibs 0.217 0.038
Halfsibs 0.154 0.027

[Stam 1980; Hill 1993; Guo 1996]



Fullsibs: genome-wide
(Total length L Morgan)

var(rn,) = 1/(16L) — 1/(3L?) [Stam 1980; Hill 1993; Guo 1996]

var(ny) = 5/(64L) — 1/(3L?)

var(r,)/ var(n,) = 1.3 if L = 35

*Genome-wide variance depends more on total genome
length than on the number of chromosomes



Fullsibs: Correlation additive and
dominance relationships

1(1,, 0q) = 6(1,) / o(ng) = [1/(16L) / (5/(64L))]°~ = 0.89.

Difficult but not impossible to disentangle
additive and dominance variance



Summary
Additive and dominance (fullsibs)

SD(TT,) SD(Ty)

Single locus 0.354 0.433
One chromsome (1M) 0.217 0.247
Whole genome (35M) 0.038 0.043
Predicted correlation 0.89

(genome-wide n, and n,)

Practical: test empirically



Analysis (fullsibs)

Y=p+A+C+E

var(Y) = 6%(A) + 64(C) + o4(E)
cov(Y,,Y,) = n,6%(A) + c%(C)
Full model: ACE
Reduced model: CE

* Need software that can handle VC and ‘user-
defined’ covariance structure
— e.g. Mx, QTDT, ASREML



|ldea not new

Ritland, K (1996). A marker-based method
for inferences about quantitative

inheritance in natural populations.
Evolution 50: 1062-1073.

Thomas SC, Pemberton JM, Hill WG (2000).
Estimating variance components in natural

populations using inferred relationships.
Heredity 84:427-36.



Practical

Data from:

REPORT

Genome Partitioning of Genetic Variation for Height from 11,214
Sibling Pairs

Peter M. Visscher, Stuart Macgregor, Beben Benyamin, Gu Zhu, Scott Gordon, Sarah Medland,
William G. Hill, Jouke-Jan Hottenga, Gonneke Willemsen, Dorret I. Boomsma, Yao-Zhong Liu,
Hong-Wen Deng, Grant W. Montgomery, and Nicholas G. Martin

1104 The American Journal of Human Genetics Volume 81 November 2007 www.ajhg.org

Marker data summarised into average ‘pihats’ and
IBD2 coefficients per chromosome and genome
wide, per sibling pair



Files

data.txt
data.xls
a_genome .mx

gqtdt.ped
gtdt.dat
gtdt.ibd



Data set (data.txt, data.xls)

Column What

1 Pair ID

2-24 Chromosomal mean pihats
25-47 Chromosomal mean IBD2
48 Genome-wide mean pihat

49 Genome-wide mean IBD2



Column

50
51
52
53
54-57
58
59

Data set
What

sex sib1 (1=male)

age sib1

raw height sib1

Z-score sib1

and for sib2

code for sex of sibling pair

country code (1+2=0Z, 3=US, 4=NL)



Part of a_genomewide.mx

Rectangular File=data.txt

Labels

famid

al a2 a3 a4 a5 a6 a7 a8 a9 allO all al2 al3 al4 al5 al6 al7 al8 al9
a20 a2l a22 a23

dl d2 d3 d4 d5 d6 d7 d8 d9 d10 dil di2 di3 di4 di5 di6 di7 di8 di9
d20 d21 d22 d23

meana meand

sexl agel htl yl sex2 age2 ht2 y2 sexboth code

SElect yl ygel sexl age2 sex2;
Definition_variablesagel sexl age2 sex2;



Output Mx

MATRIX |

This 1s a computed FULL matrix of order
1 by 4
[=F%T | K%T | (F+K)%T | E%T]

1 2 3 4
1 0.0292 0.8606 0.8897 0.1103
C A C+A E

With C+A+E =1



qtdt.ped

* Pedigree + phenotypes + covariates +
markers

 Dummy markers used: ignore!
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Top of gtdt.ped

pihat =
IBD2

->P
->P
->P

+P,=1

2P, + P,
I:)2

2(pihat — IBD2)
IBD2
1-P,-P,



TY

C SEX

C AGE

S2 C1

S2 C2

S2 C3

S2 C4

S2 C5

S2 C6

S2 C7

S2 C8

S2 C9

S2 C10
S2 C11
S2 C12
S2 C13
S2 C14
S2 C15
S2 C16
S2 C1v
S2 C18
S2 C19
S2 C20
S2 C21
S2 C22
M G

gtdt.dat

T = Trait

C = covariate

S2 = skip ‘marker’
M = marker



NULL HYPOTHESIS

Family #1 var-covar matrix terms [2]...[[VellllVall

Family #1 regression matrix...

[linear] =

[2 x 3] Mu SEX AGE
1.3 1.000 1.000 16.000
1.4 1.000 1.000 16.000

Some useful information...

df : 22423
log(likelihood) : 30196.57
variances : 0.080 0.894
means : 0.079 0.019 -0.002

FULL HYPOTHESIS

Family #1 var-covar matrix terms
[3]1---[[Velll[VollllVall
Family #1 regression matrix...
[linear] =
[2 x 3] Mu SEX AGE
1.3 1.000 1.000 16.000
1.4 1.000 1.000 16.000

Some useful Information...
df : 22422

log(likeliRK
variances :
means :

Output QTDT
N
regress.tbl

Test statistic
= 2(-30186.27- -30196.57)
= 20.6

- ECA



What to do (1)

* Marker data only:

— Calculate mean and SD of chromosomal
pihats and IBD2 (use Excel, R, or whatever)

— Calculate mean and SD of genome-wide pihat
and IBD2

— Plot mean genome-wide pihat against mean
genome-wide IBD2 for each sibling pair

— Use autosomes only (1-22)



What to do (2)

* Phenotype data only:

— What is the sib correlation for the
standardised Z-scores?

Use Z-scores because the unit of
measurement for Height varies between
cohorts!



What to do (3)

 Marker data plus phenotypes

— Estimate additive variance from genome-wide pihat
using Mx or QTDT

— Estimate additive variances for each chromosome
— Note the test statistic for A

* You need to edit a_genome.mx and gtdt.dat

to run different chromosomes
— Use e.g. Notepad, Wordpad, Word, vi, emacs, ....



Analysis examples

Run a_genome.mx using MX

QTDT —weg —vega —a-

\

Reduced model Full model
e = error e = error

g = polygenic g = ‘polygenic’ (here C!)
a = ‘'marker’
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