next up previous index
Next: 2 Unary operations Up: 5 Exercises Previous: 5 Exercises   Index

1 Binary operations

Let

\begin{displaymath}{\bf A} = \left( \begin{array}{rr} 3 & 6\\ 2 & 1 \end{array} ...
...rray}{rrrr} 1 & 0 & 3 & 2\\ 0 & -1 & -1 & 1 \end{array}\right)
\end{displaymath}

ex2html_comment_mark>128 0.bean1

<
Form AB.
<
Form BA. (Careful, this might be a trick question!)

Let

\begin{displaymath}{\bf C} = \left( \begin{array}{rr} 3 & 6\\ 2 & 1 \end{array} ...
...D}= \left( \begin{array}{rr} 1 & 2\\ 3 & 4 \end{array} \right)
\end{displaymath}

1.
Form ${\bf CD}$.
2.
Form ${\bf DC}$.
3.
In ordinary algebra, multiplication is commutative, i.e. $xy = yx$. In general, is matrix multiplication commutative?
Let

\begin{displaymath}{\bf E}^{\prime}= \left( \begin{array}{rrr} 1 & 0 & 3\\ 1 & 2 & 1
\end{array} \right)
\end{displaymath}

4.
Form ${\bf E(C+D)}$.
5.
Form ${\bf EC + ED}$.
6.
In ordinary algebra, multiplication is distributive over addition, i.e. $x(y+z) = xy + xz$. In general, is matrix multiplication distributive over matrix addition? Is matrix multiplication distributive over matrix subtraction?


Jeff Lessem 2000-03-20