Correction for Ascertainment

Michael C Neale

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University Gemini Holdings PLC Cambridge

Acknowledgements

(Subset)

- David Fulker, Brian Everitt, David Hand
- Ken Kendler, Lindon Eaves
- Wild bunch \& workshop students
- NIH
- Gemini Holdings PLC Cambridge UK

Rationale

Why use non-random ascertainment

- Statistical Power
- IBD 2 vs IBD 0 contrast
- Increase proportion of IBD 2's: ASP
- Increase proportion of IBD 1's: DSP
- Both: EDAC

Overview

- Rationale
- Normal Theory Maximum Likelihood
- pros \& cons
- Missing Data
- Correction for ascertainment

Maximum Likelihood Estimates

Have nice properties

- Asymptotically unbiased
- Minimum variance of all asymptotically unbiased estimators
- Invariant to transformations

Central Limit Theorem

Infinite factors of equal and small effect

Normal Theory Likelihood Function

For raw data in Mx

$$
\ln L_{i}=f_{i} \sum_{j=1}^{m} \ln \left[w_{j} g\left(x_{i}, \mu_{i j}, \Sigma_{i j}\right)\right]
$$

x_{i} - vector of observed scores on n subjects
μ_{ij} - vector of predicted means
Σ_{ij} - matrix of predicted covariances - functions of parameters

Normal distribution $\phi\left(\mu_{\mathrm{ij}}, \Sigma_{\mathrm{ij}}\right)$

Likelihood is height of the curve

Pihat Linkage Model for Siblings

Each sib pair i has different COVARIANCE

Weighted mixture of models

Finite mixture distribution
$\ln L_{i}=f_{i} \sum_{j=1}^{m} \ln \left[w_{i j} \quad g\left(x_{i}, \mu_{i j}, \Sigma_{i j}\right)\right]$
$j=1$....m models
w_{ij} Weight for subject i model j

e.g., Segregation analysis

Mixture of Normal Distributions

Two normals, propotions w1 \& w2, different means

But Likelihood Ratio not Chi-Squared - what is it?

Mixture distribution model

Each sib pair i has different set of WEIGHTS

weight $_{j} \times$ Likelihood under model j
$p(I B D=2) \times P(L D L 1 \& L D L 2 \mid r Q=1)$
$\mathrm{p}(\mathrm{IBD}=1) \times \mathrm{P}(\mathrm{LDL} 1 \& \mathrm{LDL} 2 \mid \mathrm{rQ}=.5)$
$p(I B D=0) \times P(L D L 1 \& L D L 2 \mid r Q=0)$
Total likelihood is product of weighted likelihoods

3.84 units of 2*In L give 95\% confidence interval of approximately (.44; .63)

Computing Likelihood Based Confidence Intervals

- Fix parameter in question at successive values and maximize wrt rest (grid search)
- Plot graph and interpolate (spline search)
- Redefine fit function to be e.g.
- (3.84 + Original fit) ${ }^{2}+/-$ parameter value

Outlier detection

- Continuous data case
- Mahalanobis distance
- Z-score
- Can do something similar for Ordinal case
- Use option $m x \% p=$ filename to obtain individual fit statistics

Deviations in two dimensions

Deviations in two dimensions

Mahalanobis distance D

Missing data

Little \& Rubin 1987

- Missing completely at random
- Causes of missingness independent
- Missing at random
- Causes of missingness are either independent or measured
- Not missing at random
- Due to residual variance in the missing variable itself

Computing likelihood

In presence of missing data

- Formally
- Integrate over all missing value could be

$$
\int_{t}^{\infty} \int_{-\infty}^{\infty} \phi(x, y) d x d y=\int_{t}^{\infty} \phi(y) d y
$$

$$
\begin{aligned}
& \text { Data } X=1 Y=1 \\
& \qquad \int_{t x}^{\infty} \int_{t y}^{\infty} \phi(x, y) d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Data X = } \mathbf{1} \mathbf{Y}=. \\
& \int_{\text {ty }}^{\infty} \phi(\mathrm{y}) \mathrm{dy}=\int_{\mathrm{ty}}^{\infty} \int_{-\infty}^{\infty} \phi(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}
\end{aligned}
$$

In practice

What Mx does

- Continuous case
- Filter covariance and mean/threshold matrix and pretend
- Ordinal case
- Filter threshold and covariance matrix and compute easier integral

Linkage analysis

- Analyze genotyped pairs and non-genotyped pairs together
- Assign prior probabilities for IBD for non-genotyped pairs
- Look out for bias

Approach 2

Correcting for Ascertainment

- Use only genotyped pairs
- Unscrew likelihood (why?)

Ascertainment Examples

- Studies of patients and controls
- Patients and relatives
- Linkage studies
- Affected sib pairs, DSP etc
- Multiple affected families

Example: Two Coin Toss

3 outcomes

Non-random ascertainment

Example

- Probability of observing TT globally
- 1 outcome from 4 = 1/4
- Probability of observing TT if HH is not ascertained
- 1 outcome from 3 = 1/3
- or $1 / 4$ divided by 'ascertainment correction' of $3 / 4=1 / 3$

Correcting for ascertainment

Univariate case; only subjects > t ascertained

Affected Sib Pairs

$$
\int_{t x}^{\infty} \int_{t y}^{\infty} \phi(x, y) d y d x
$$

Correcting for ascertainment

Dividing by the realm of possibilities

- Without ascertainment, we compute pdf, $\phi\left(\mu_{\mathrm{ij}}, \Sigma_{\mathrm{ij}}\right)$, at observed value X_{i} divided by:

$$
\int_{-\infty}^{\infty} \phi\left(\mu_{\mathrm{ij}}, \Sigma_{\mathrm{ij}}\right) \mathrm{dx}=1
$$

- With ascertainment, the correction is

$$
\int_{\mathrm{t}}^{\infty} \phi\left(\mu_{\mathrm{ij}}, \Sigma_{\mathrm{ij}}\right) \mathrm{dx}
$$

Correcting for ascertainment

- Multivariate selection: multiple integrals
- double integral for ASP
- four double integrals for EDAC
- Use (or extend) weight formula
- Precompute in a calculation group
- unless they vary by subject

Pihat vs Mixture Ascertainment

- Mixture: 3 models, invariant over subjects
- 3 ascertainment corrections
- Modify Weights
- Pihat: N sibs different covariance models
- Compute ascertainment correction for each sib pair

General Likelihood Function

What about the means μ_{ij} ?

$$
L_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \prod^{\mathrm{m}} w_{\mathrm{ij}} g\left(x_{\mathrm{i}}, \mu_{\mathrm{ij}}, \Sigma_{\mathrm{ij}}\right)
$$

Have varied Σ_{ij} (pihat) or w_{ij} (full IBD)
Association analysis varies causes trouble for asc correction

Correction for ascertainment

 Joint linkage and association analysis- Better watch out
- Correction w_{j} depends on
- predicted means μ_{ij} (9 types)
- predicted covariances, Σ_{ij} (3 types)
- could still pre-compute 27 integrals \& pick
- Careful if you are modeling covariates like age via means

Two sources of information

In selected samples

- Difference in covariance as a function of IBD status
- Deviation of average pihat from . 5
- Use them both?
- Read in pihat in a separate group
- Estimate mean \& variance
- Set mean to .5

Expected Pihat Approach

- For a given q^{2} can we predict what pihat should be under selection?
- Three distributions, initially . 25. 5. 25
- Compute three integrals
- recompute proportions

High correlation (IBD 2)

$$
\int_{\mathrm{tx}}^{\infty} \int_{\mathrm{ty}}^{\infty} \phi(\mathrm{x}, \mathrm{y}) \mathrm{dy} \mathrm{dx}
$$

Medium correlation (IBD 1)

$$
\int_{t x}^{\infty} \int_{t y}^{\infty} \phi(x, y) d y d x
$$

Low correlation (IBD 0)

$$
\int_{t x}^{\infty} \int_{t y}^{\infty} \phi(x, y) d y d x
$$

Conclusion

- Can handle non-random ascertainment in two ways
- Include screened but not genotyped pairs in analysis
- Use only genotyped pairs
- Make use of 'marginal' average pihat info

