# Correction for Ascertainment

Michael C Neale

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University Gemini Holdings PLC Cambridge

#### Acknowledgements (Subset)

David Fulker, Brian Everitt, David Hand

- Ken Kendler, Lindon Eaves
- Wild bunch & workshop students
- NIH
- Gemini Holdings PLC Cambridge UK

#### Rationale

Why use non-random ascertainment

- Statistical Power
- IBD 2 vs IBD 0 contrast
- Increase proportion of IBD 2's: ASP
- Increase proportion of IBD 1's: DSP
- Both: EDAC

#### Overview

- Rationale
- Normal Theory Maximum Likelihood
   pros & cons
- Missing Data
- Correction for ascertainment

### **Maximum Likelihood Estimates**

Have nice properties

- Asymptotically unbiased
- Minimum variance of all asymptotically unbiased estimators
- Invariant to transformations

# **Central Limit Theorem**

Infinite factors of equal and small effect



# Normal Theory Likelihood Function For raw data in Mx $In L_{i} = f_{i} \sum_{j=1}^{m} In [w_{j} g(x_{i}, \mu_{ij}, \Sigma_{ij})]$ x<sub>i</sub> - vector of observed scores on n subjects

- μ<sub>ij</sub> vector of predicted means
- Σ<sub>ii</sub> matrix of predicted covariances
  - functions of parameters





## Weighted mixture of models

Finite mixture distribution

 $ln L_i = f_i \sum_{j=1}^{m} ln [w_{ij} g(x_i, \mu_{ij}, \Sigma_{ij})]$ 

j = 1....m models w<sub>ij</sub> Weight for subject i model j

e.g., Segregation analysis



Total likelihood is product of weighted likelihoods

# Likelihood-based confidence interval



#### Computing Likelihood Based Confidence Intervals

- Fix parameter in question at successive values and maximize wrt rest (grid search)
- Plot graph and interpolate (spline search)

Redefine fit function to be e.g.
 - (3.84 + Original fit)<sup>2</sup> +/- parameter value

## **Outlier detection**

- Continuous data case
   Mahalanobis distance
   Z-score
- Can do something similar for Ordinal case
- Use option mx%p=filename to obtain individual fit statistics





# Missing data

Little & Rubin 1987

- Missing completely at random
   Causes of missingness independent
- Missing at random
  - Causes of missingness are either independent or measured
- Not missing at random
  - Due to residual variance in the missing variable itself

## **Computing likelihood**

In presence of missing data

• Formally

- Integrate over all missing value could be

 $\int_{t}^{\infty} \int_{-\infty}^{\infty} \varphi(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \, d\mathbf{y} = \int_{t}^{\infty} \varphi(\mathbf{y}) \, d\mathbf{y}$ 







- Continuous case
  - Filter covariance and mean/threshold matrix and pretend
- Ordinal case
  - Filter threshold and covariance matrix and compute easier integral

#### Linkage analysis

- Analyze genotyped pairs and non-genotyped pairs together
- Assign prior probabilities for IBD for non-genotyped pairs
- Look out for bias

#### Approach 2

Correcting for Ascertainment

- Use only genotyped pairs
- Unscrew likelihood (why?)

#### Ascertainment Examples

- Studies of patients and controls
- Patients and relatives
- Linkage studies
  - Affected sib pairs, DSP etc
  - Multiple affected families

#### **Example: Two Coin Toss**

#### 3 outcomes





Example

- Probability of observing TT globally
  1 outcome from 4 = 1/4
- Probability of observing TT if HH is not ascertained
  - 1 outcome from 3 = 1/3
  - or 1/4 divided by 'ascertainment correction' of 3/4 = 1/3







#### **Correcting for ascertainment**

Dividing by the realm of possibilities

• Without ascertainment, we compute pdf,  $\phi(\mu_{ij}, \Sigma_{ij})$ , at observed value  $X_i$ divided by:  $\int_{-\infty}^{\infty} \phi(\mu_{ij}, \Sigma_{ij}) dx = 1$ 

• With ascertainment, the correction is  $\int_t^{\infty} \phi(\mu_{ij}, \Sigma_{ij}) dx$ 

#### **Correcting for ascertainment**

Multivariate selection: multiple integrals
 double integral for ASP
 four double integrals for EDAC

Use (or extend) weight formula

Precompute in a calculation group
 unless they vary by subject

#### Pihat vs Mixture

Ascertainment

- Mixture: 3 models, invariant over subjects
   3 ascertainment corrections
  - Modify Weights

 Pihat: N sibs different covariance models
 Compute ascertainment correction for each sib pair **General Likelihood Function** 

What about the means  $\mu_{ij}$ ?

 $L_i = f_i \prod_{j=1}^{m} w_{ij} g(x_i, \mu_{ij}, \Sigma_{ij})$ 

Have varied  $\Sigma_{ij}$  (pihat) or  $w_{ij}$  (full IBD)

Association analysis varies  $\mu_{ij}$  causes trouble for asc correction

#### **Correction for ascertainment**

Joint linkage and association analysis

- Better watch out
- Correction w<sub>i</sub> depends on
  - predicted means µ<sub>ii</sub> (9 types)
  - predicted covariances,  $\Sigma_{ii}$  (3 types)
  - could still pre-compute 27 integrals & pick

 Careful if you are modeling covariates like age via means

#### Two sources of information

In selected samples

- Difference in covariance as a function of IBD status
- Deviation of average pihat from .5
- Use them both?
  - Read in pihat in a separate group
  - Estimate mean & variance
  - Set mean to .5

#### **Expected Pihat Approach**

- For a given q<sup>2</sup> can we predict what pihat should be under selection?
- Three distributions, initially .25 .5 .25
- Compute three integrals
   recompute proportions





## Conclusion

- Can handle non-random ascertainment in two ways
- Include screened but not genotyped pairs in analysis
- Use only genotyped pairs
- Make use of 'marginal' average pihat info