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Rationale
Why use non-random ascertainment

Statistical Power

IBD 2 vs IBD 0 contrast

Increase proportion of IBD 2's: ASP

Increase proportion of IBD 1's: DSP

Both: EDAC
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Overview

Rationale

Normal Theory Maximum Likelihood
pros & cons

Missing Data

Correction for ascertainment
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Maximum Likelihood Estimates
Have nice properties

Asymptotically unbiased

Minimum variance of all asymptotically 
unbiased estimators

Invariant to transformations
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Central Limit TheoremCentral Limit Theorem
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Normal Theory Likelihood Function
For raw data in Mx

j=1

ln Li = fi   
�

ln [wj   g(xi, � ij, � ij)]
m

xi   - vector of observed scores 
on n subjects	

ij   - vector of predicted means� ij  - matrix of predicted covariances
     - functions of parameters

Normal distribution 
 ( � ij, � ij)Normal distribution 
 ( � ij, � ij)
Likelihood is height of the curveLikelihood is height of the curve
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Pihat Linkage Model for Siblings
Each sib pair i has different COVARIANCE
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Weighted mixture of models
Finite mixture distribution

j=1

m

j = 1....m models
wij Weight for subject i model j

e.g., Segregation analysis



Mixture of Normal Distributions Mixture of Normal Distributions 
Two normals, propotions w1 & w2, different meansTwo normals, propotions w1 & w2, different means

But Likelihood Ratio not Chi-Squared - what is it?
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Mixture distribution model
Each sib pair i has different set of WEIGHTS

p(IBD=2) x P(LDL1 & LDL2 |  rQ = 1 )
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p(IBD=1) x P(LDL1 & LDL2 |  rQ = .5 )
p(IBD=0) x P(LDL1 & LDL2 |  rQ = 0 )

Total likelihood is product of weighted likelihoods

rQ=1 rQ=.5 rQ=.0

weightj     x Likelihood under model j



Likelihood-based confidence 
interval

3.84 units of 2*ln L give 95% confidence interval of approximately (.44; .63)
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Computing Likelihood Based 
Confidence Intervals

Fix parameter in question at successive 
values and maximize wrt rest (grid search)

Plot graph and interpolate (spline search)

Redefine fit function to be e.g. 
(3.84 + Original fit)2 +/- parameter value
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Outlier detection

Continuous data case
Mahalanobis distance
Z-score

Can do something similar for Ordinal case

Use option mx%p=filename to obtain 
individual fit statistics
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Deviations in two dimensionsDeviations in two dimensions
Mahalanobis distance D

Pythagorean when R=0
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Missing data
Little & Rubin 1987

Missing completely at random
Causes of missingness independent

Missing at random
Causes of missingness are either independent 
or measured

Not missing at random
Due to residual variance in the missing variable 
itself
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Computing likelihood
In presence of missing data

Formally
Integrate over all missing value could be

� �

�
t  

�
- � � (x,y) dx dy� �  = � t � (y) dy �

Data X = 1 Y = 1Data X = 1 Y = 1
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Data X = 1 Y = .Data X = 1 Y = .
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In practice
What Mx does

Continuous case
Filter covariance and mean/threshold 
matrix and pretend

Ordinal case 
Filter threshold and covariance matrix
and compute easier integral
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Linkage analysis

Analyze genotyped pairs and 
non-genotyped pairs together

Assign prior probabilities for IBD for 
non-genotyped pairs

Look out for bias
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Approach 2
Correcting for Ascertainment

Use only genotyped pairs

Unscrew likelihood (why?)
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Ascertainment Examples

Studies of patients and controls

Patients and relatives

Linkage studies
Affected sib pairs, DSP etc
Multiple affected families
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Example: Two Coin TossExample: Two Coin Toss
3 outcomes3 outcomes

HH HT/TH TT

Outcome
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Frequency

Probability i = freq i / sum (freqs)



Non-random ascertainment
Example

Probability of observing TT globally
1 outcome from 4 = 1/4

Probability of observing TT if HH is not 
ascertained

1 outcome from 3 = 1/3

or 1/4 divided by 'ascertainment 
correction' of 3/4   = 1/3

) *
) *

*

Correcting for ascertainmentCorrecting for ascertainment
Univariate case; only subjects > t ascertainedUnivariate case; only subjects > t ascertained
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Affected Sib PairsAffected Sib Pairs
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Correcting for ascertainment
Dividing by the realm of possibilities

Without ascertainment, we compute

With ascertainment, the correction is

1

1
pdf, 2 ( 3 ij, 4 ij), at observed value xi
divided by:5

- 6 2 ( 3 ij, 4 ij) dx  = 16
5

t 2 ( 3 ij, 4 ij) dx6



Correcting for ascertainment

Multivariate selection: multiple integrals 
double integral for ASP
four double integrals for EDAC

Use (or extend) weight formula

Precompute in a calculation group
unless they vary by subject
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Pihat vs Mixture
Ascertainment

Mixture: 3 models, invariant over subjects
3 ascertainment corrections
Modify Weights

Pihat: N sibs different covariance models
Compute ascertainment correction for 
each sib pair
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General Likelihood Function
What about the means ; ij?

j=1

Li = fi   < wij   g(xi, = ij, > ij)
m

Have varied > ij (pihat) or wij (full IBD)

Association analysis varies = ij

causes trouble for asc correction

Correction for ascertainment
Joint linkage and association analysis

Better watch out

Correction wj depends on 

predicted means ? ij (9 types)

predicted covariances, @ ij (3 types)
could still pre-compute 27 integrals & pick

Careful if you are modeling covariates like age 
via means
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Two sources of information
In selected samples

Difference in covariance as a function of 
IBD status

Deviation of average pihat from .5

Use them both?
Read in pihat in a separate group
Estimate mean & variance
Set mean to .5

C
C
C DDD

Expected Pihat Approach

For a given q2 can we predict what pihat 
should be under selection?

Three distributions, initially .25 .5 .25

Compute three integrals
recompute proportions

E
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High correlation (IBD 2)High correlation (IBD 2)
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Low correlation (IBD 0)Low correlation (IBD 0)
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Conclusion

Can handle non-random ascertainment in 
two ways

Include screened but not genotyped pairs in 
analysis

Use only genotyped pairs

Make use of 'marginal' average pihat info
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