Association Analysis

 Using sib pairs to control for stratificationMichael Neale Boulder Workshop 2001

Association Model

Each sib pair i has different MEANS

Features of Association Model Attractive

- Residual variances \& covariances (R \& C)
- change
- could use linkage model for joint analysis
- Can be extended to multiple alleles, loci, phenotypes and larger pedigrees
- But assumes no population stratification

Fulker association model

- Separate associated mean differences
- between sib pairs
- within sib pairs
- Between = within if genuine allelic effect
- Derive cunning model

Allelic effects

Assuming additivity, unnecessarily

Call contributions to pair sum b's Call contributions to pair diffs w's

Pair means \& differences

G Sib1	G Sib2	Pair Sum/2	Pair Diff/2	Mean Sib1	Mean Sib2
A1A1	A1A1	b	0	b	b
A1A1	A1A2	$\mathrm{b} / 2$	$\mathrm{w} / 2$	$\mathrm{~b} / 2+\mathrm{w} / 2$	$\mathrm{~b} / 2-\mathrm{w} / 2$
A1A1	A2A2	0	w	w	-w
A1A2	A1A1	$\mathrm{b} / 2$	$-\mathrm{w} / 2$	$\mathrm{~b} / 2-\mathrm{w} / 2$	$\mathrm{~b} / 2+\mathrm{w} / 2$
A1A2	A1A2	0	0	0	0
A1A2	A2A2	$-b / 2$	$\mathrm{w} / 2$	$\mathrm{w} / 2-\mathrm{b} / 2$	$-b / 2-\mathrm{w} / 2$
A2A2	A1A1	0	-w	-w	w
A2A2	A1A2	$-b / 2$	$-\mathrm{w} / 2$	$-b / 2-\mathrm{w} / 2$	$-b / 2+\mathrm{w} / 2$
A2A2	A2A2	$-b$	0	$-b$	$-b$

Within pair distance between homozygote $=\mathrm{w}$; between pairs it is b

Mean of sib 1

$\mathrm{b}=\mathrm{w}$ (no stratification)

Genotype of sib 1

Mean of sib 1

No w (all stratification)
 Genotype of Sib 1

Mean of sib 1

$\mathrm{b}=5 \mathrm{w}=4$ (some of each)

Genotype of sib 1

Fulker Association Model

Multilevel model for the means

Conclusion
 Association analysis

- Easy method to control for stratification
- Sibling samples are readily available
- Extensions straightforward:
- Multivariate
- Multiallelic
- Multiple sibs

