Testing for Linkage Replication

Michael C. Neale Seth B. Roberts

Virginia Institute for Psychiatric and Behavioral Genetics

Linkage replication is important

If not essential!

- Basic desirable property in science
- Traditionally high significance levels
 - Bayesian 23 chromosome
 - Type 1 error rate
 - Lod > 3.3, p < .00074
- Relaxation of these levels
 - Complex traits
 - Genotyping errors?
 - Biotech
 - Larger Type I error rate

Other disorders too

some non-psychaitric

- Bipolar 21q 5 studies 30cM
- IDDM 14q 2 studies 70cM
- Multiple sclerosis 5p 2 studies 60cM
- Psoriasis 4q, 20p 2 studeies 40cm

Published studies

Simulation and analytic methods

- Theoretical
 - Likelihood ratio support interval (Ott 91)

- One LOD unit either side of peak 95%CI

- But:
 - False positives
 - Biased if samples are 'small'

Simulation

Horvatta et al 1998 Mol Psychiat

- 5 susceptibility loci
 - allele freq .05
 - prop var 5% (75% E)
 - -1cM map
 - within 25cM scan
 - 100 1000 sib pairs
- Mean distance of peak from true QTL
 - 10.4 100 sib pairs
 - -2.6 1000 sib pairs

Theoretical

Lander & Kruglyak 1995 Nat Genet

- Take random walk from QTL
 - Interval: LOD < t from maximum
 - zL: prop alleles IBD in ASP's
 - Lambda: locus specific relative risk
- As zL or Lambda decrease N gets huge
 - To get 1cM CI:
 - 170 FI meioses for zL=.975
 - 400 FI meioses for zL=.855-.975

- 1500	zL=.75
- 2800	zL=.67
- 7600	zL=.60
- 37000	zL=.55

Animal work by Darvasi also relevant

Roberts et al Simulation Study

Effects of phenocopies etc

- 13 Markers equally spaced 5 or 10cM
- Nuclear fams: ASPs and their parents
- N 200-1600 families
- Two disease loci, various gene actions
- Proportion linked (alpha) .25-1.00
- Prevalence approx 3%
- Parametric & Non-parametric

Method

- GASP (Wilson et al 1996) simulate genotype & phenotype data
- SAS penetrance & phenotypes > dx
- Genehunter (Kruglyak et al 1996)
 Multipoint LODs every 2cM
 Markers every 10cM

families=200; additive; incomplete penetrance; parametric

Effect of proportion of linked families

²⁰⁰ families; additive; incomplete penetrance; parametric

200 families; additive; incomplete penetrance; parametric

Effect of proportion of linked families

200 families; additive; incomplete penetrance; parametric

Effect of Sample Size

alpha=0.25; additive; incomplete penetrance; parametric

Effect of Sample Size

alpha=0.25; additive; incomplete penetrance; parametric

Additive, incomplete penetrance, alpha=.25, 10cM markers

Test of homogeneity

Combining data from two or more studies

- Support intervals overlap?
 Biased in small-moderate samples
 Meta-analysis (Li & Rao 96; Gu et al 98)
 Usually for vs against linkage
 Summary statistics
- Formal test for heterogeneity (Roberts et al 1999; Roberts 1999)

Formal test Likelihood Ratio Chi-squared

- Obtain raw data from k studies
- InLi = log likelihood of data for parameter estimates theta i
- ► G0 = sum of ln Li
- G1 = sum of In Li when location estimates are constrained to be equal
- 2(G0 G1) ~ chi-squared with k-1 df

Computing LRT for heterogeneity

- Obtain multipoint curves for each of the k datasets
- Sum maximum LOD for each 'LODu'
- Sum multipoint curves across datasets and find maximum 'LODc'
- LRT = 2 In 10(LODu LODc)

Considerations

- Same locus -> same gene action?
- Do trait-relevant loci cluster genomically?
- Usual limitations of linkage studies x k:
 - genotyping errors
 - phenotyping errors

Conclusions

Be careful out there

- Heterogeneity adds enormously to location error
 - Narrow phenotypic definitions?
- Sample sizes / design could be better
 - Big sibships
- Watch out for false positives
 - QTL effect sizes expected to be biased upwards
- Replicate or be damned