next up previous index
Next: 5 Path Analysis and Up: 6 Exercises Previous: 1 Binary operations   Index

2 Unary operations

  1. Show for two (preferably non-trivial) matrices conformable for multiplication that

    \begin{displaymath}{\bf (AB)}^{\prime} = {\bf B}^{\prime} {\bf A}^{\prime}\end{displaymath}

  2. If $\bf C$ is

    \begin{displaymath}\left( \begin{array}{rr} 2 & 6 \ .5 & 4
\end{array} \right), \end{displaymath}

    find the determinant of $\bf C$.
  3. What is the inverse of matrix $\bf C$?
  4. If $\bf D$ is

    \begin{displaymath}\left( \begin{array}{rr} .2 & .3 \ .4 & .6 \end{array} \right), \end{displaymath}

    find the determinant of $\bf D$.
  5. What is the inverse of $\bf D$?
  6. If tr($\bf A$) means the trace of $\bf A$, what is tr($\bf C$) + tr($\bf D$)?


Jeff Lessem 2002-03-21