Haplotyping in Families Practical

Gonçalo Abecasis

The Gene Flow Pattern

- At each marker location ℓ
- Define inheritance vector \mathbf{v}_{ℓ}
 - -2^{2n} alternative outcomes
 - Meiotic outcomes specified in index bit
 - Likelihood for each gene flow pattern
 - Conditional on observed genotypes
- For haplotyping, choose most likely pattern

Observed Genotypes

- For each family
- For each marker
- Some pattern of observed genotypes

Gene flow pattern

- In turn, specify gene flow throughout the pedigree
- For each individual, we know precisely what founder allele they carry

Combine the two...

- Conditional on gene flow (aka, inheritance vector)
- In this case one founder allele set, {1, 1, 1, ?}
- Conditional likelihood
 P(allele 1)³ P(any allele)

A more complex example

A more complex example ...

Founder Allele Graph II

- Possible groups of founder alleles
 - Any Allele Singleton
 - Passes only through untyped individuals
 - One Possible State For Each Allele
 - At least one allele passes through homozygotes or different heterozygotes
 - Two Possible States For Each Allele
 - All alleles pass through identical heterozygotes
 - Arbitrarily fixing one founder allele sets others

Possible founder allele states...

Founder Alleles in Group	Corresponding Allele States	Probability
(B)	(any allele)	1
(A,C,E)	(1,2,1) or (2,1,2)	$P(1)^{2}P(2)+P(2)P(1)^{2}$
(D,E,F,G)	(1,2,3,4)	P(1)P(2)P(3)P(4)

Episodic Ataxia Pedigree

