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Preface

What M x does

MX is a structural equation modeling padkage, bu it isflexible enough to fit a variety of
other mathematica models. At its heat is a matrix algebra procesor, which can be used
by itself. There ae many built-in fit functions to enable structural equation modeling and
other experimentsin matrix algebra and statisticad modeling. It off ers the fitting functions
found in commercia software such as LISREL, LISCOMP, EQS, SEPATH, AMOS and
CALIS, including faaliti esfor maximum likeli hoodestimation d parametersfrom missng
data structures, under normal theory. Complex ‘norstandard’ models are eay to speafy.
For further general applicability, it allows the user to define their own fit functions, and
optimization may be performed subjed to linea and norinea equality or boundry
constraints.

How to Read this Manual

The bad newsisthat this manual isquite long; the good rewsisthat you don t need to read
it all! Chapter 1 contains an introductionto multi variate path modeling. The"how to" part
of themanual startsin Chapter 3, in which general syntax conventionsandjobstructure ae
laid out, followed by description d the cmmmands necessary to read data. Chapter 4 deds
withtheheat of Mx: how to define matricesand matrix algebraformul aefor model -fitting,
and ways of estimating and constraining parameters. Methods of changing the default
fit-function, of deaeasing and increasing the quantity (and guality) of the output, and for
fitting sub-models efficiently, are described in Chapter 5. The last chapter supdies and
briefly describes a number of example scripts. The Appendices describe the use of MX
under diff erent operating systems, error codes, introductory matrix algebra and redprocd
causation.

Origin

The development of Mx owesmuchto LISREL and| acknowledgethe pioneeing eff ort put
in byKarl Joreskog & Dag Sérbom. There ae many who have suppated and encouraged
this effort in many different ways. | thank them all, and espedally Lindon Eaves, Ken
Kender and John Hewitt since they also provided grant suppat?, and David Fulker for
allowing modification d hisnotes on matrix algebrato be supdied as an appendix to this
manual. Jadk McArdle and Steve Boker provided excdlent path diagram drawing software
(RAMPATH) which was the basis for the development of MXx Graph, Luther Atkinson
suggested the binary file save option; Buz Brown programmed the Redangular file rea,
Karen Kenny and JohnFritz organized the interadive website; these df ortswere part of the
excdlent software, hardware and consultancy suppat supgdied by University Computing
Services at the Medicd Coll ege of Virginia, VirginiaCommonwedth University. The MX

! The aithor was sippated by ADAMHA grants MH-40828 MH-45268 AG-04954 MH-45127and RR-
08123



Xii

team includes my colleagues Drs. Steve Boker, Hermine Maes, Mr. Gary Xie and Wayne
Hadady.

What’ s New in 1999

New inthiseditionisthe Mx Graphicd interfacedocumentation. Chapter 2 describeshow
to take advantage of this software which isavail able for the MSWindows (Win3.X98/NT)
platform. Jobsbuilt with dagramsor scripts can be exeauted onaUnix server to get results
more quickly for CPU intensive modeli ng.

Several feaures have been added to enable modeling ordinal data. P ?isthe ordinal file
command,which operateslike aredangular fileread except that it expedsordinal datawith
a lowest caegory of zero. Likelihoads are then computed using numericd integration
software provided by Genz (1992. The same software isused in the latest functionwhich
returns all of the cdl propationsfor a avariance matrix and set of thresholds.

A new frequency command (described on p?) supdements the weight command by
alowing different cases to have different weights. This feaure all ows data-weighting
approadies to be implemented.

A number of new feguresimprove the quantity and quality of statistica and matrix output.
First, the diff erence between a supermodel and asubmodel can be cmmputed automaticaly
if theoptionIsst isused to identify a supermodel, or if option sat is used to enter the fit of
a supermodel against which new models are to be compared. Matrix ouput can be
formatted with any legal Fortran format, and matrices written can be gppended to existing
files. Thislatter feadureisuseful for ssimulationwork becaise the results of several model-
fitting runs can be written to the same fil e for later analysis.

Several new examples have been added, bdh to the text and to the Mx website. It isa
pleasure to continue to dffer Mx free of charge, which all ows rapid fixing of bugs and
immediate release of new feaures.

I nternet Support

MX is puldic domain; it isavail able from theinternet at http://griffin.vcu.edu/mx/. With
a suitable browser, you can oltain the program, documentation and examples, send
comments, seethelatest versionavail able for your platform, and so on. E-mail bug reports,
requests for further information, and most important your comments and suggestions for
improvements to neale@psycho.psi.vcu.edu - it is hard to overemphasize the importance
of constructive aiticism. Y ou can also grab the code for avariety of operating systemsvia
anorymous ftp to opal .vcu.edu. Please have the aurtesy (and self-interest) to E-mail me
so that | can kegp you informed of updates, bug reports etc.

A graphicd interfacefor structural equationmodeling, “Mx Graph” iscurrently ina pha-test
to Mx that will relievethe user of getting to grips with the detail s of scripts. Evenwith this
interface knowledge of the script language is necessary to use alvanced feaures and
methods. The good rewsisthat amuch deeper understanding of modeling can come from
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thisactivity. We arein the process of revising the script language to enhance itsflexibility
and readability.

Technical Support

A number of users have been most helpful finding errorsin the documentation or software
or both, and for suggesting new features that would make MX easier to use. Thank you! |
hopethat all userswill forward any comments, bug reports, or wish-liststo me. My current

addressis:

address Department of Psychiatry
VirginiaInstitute for Psychiatric and Behavioral Genetics
Box 126 MCV
Richmond VA 23298-0126, USA

phone 804 828 3369

fax 804 828 1471

E-mail neal e@psycho.psi.vcu.edu (internet)

and my order of preference for communication is E-mail, fax, phone and snail mail. When
reporting problems, E-mail is especially useful to include the problem file.

Tofind Goto

Matrix Algebra Appendix C
Learn basic Syntax

SEM Path Analysis Neale & Cardon (1992) chapter 5
Loehlin (1987)
McArdle & Boker (1990)

Everitt (1984)

How to do basic SEM Chapter 1
How to recast basic SEM Chapter 1
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How to use the graphical interface Chapter 1
Job Structure Chapter 3
Reading Data Chapter 3
Declare Matrices Chapter 4
Use Matrix Formulae

Use different Fit Functions, Chapter 5
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Change Options

Look through Example Scripts Chapter 6
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1

Introduction to
Structural Equation Modeling

What you will find in this chapter

u Guidelines for buil ding your own scripts
u A brief introductionto the caabiliti es of MXx.
u Threediff erent ways to implement a structural equation model in Mx

1.1 Guideinesfor good Script Style

Programming, like much of life, requires compromises. We must balancethe time taken to
dothingsagainst their value. Now, there ae both short-term considerations (“how do|l get
thisworking as soonas posdble?”) and long-term ones (“how can | savetimein what I'm
going to be doing next week?”). Thisusually resultsin making a choice of methodthat is
based onthe following fadors:

Time taken to get the script working properly
Clarity, which can affed time to debug and modify
Efficiency of the script - how fast it runs
Flexibility - how easy it isto alter.

Normally, wewould choase amethodthat will solve our probleminthe shortest time. If we
exped to use the same basic model but with a varying number of observed and latent
variables, then it is worth spending the extratimeto write ascript in which these changes
can be made eaily.

Part of writi ng goodscriptsisto writethem so that you, a coll eagues can understand them.
Sometimes readability can be a the expense of efficiency, andit isupto youto dedde on
the balance between thetwo. One of the most important thingsto remember isto put plenty
of commentsin your scripts. Doing so can seem like a waste of time, bu it usualy pays
off handsomely when the scripts are read by yourself or others at alater date.

1.2 Matrix Algebra

Mx will evaluate matrix algebra expresgons. It has a simple language, which uses sngle
|ettersto represent matrices, certain charadersto represent matrix operations, andaspedal
syntax to invoke matrix functions. Thus the program can be used as a matrix algebra
cdculator, which is helpful in a variety of reseach and educaiona settings, and which
provides a powerful way to spedfy structural equation and aher mathematicd models.
Most users of multi variate statistics will need to know some matrix algebra, and Appendix
| givesabrief introductionto the subject, a ong with examples and exerciseswhich use MXx.
Even those famili ar with matrix algebra shoud review the “How to doit in MX” sedions
inthe gpendix asthat iswhere dementary principles of writing Mx scriptsareintroduced.
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1.3 Structural Equation Modeling

One of the most common wses of Mx isto fit Structural Equation Models (SEM) to data.
A nice aped of SEM isthat the models can be represented as a path dagram. Mx Graph
incorporates path dagram drawing software diredly; this oftwareisin a-test. For now, we
concentrate on trandating path dagrams into models ‘by hand'. This approach has the
advantage of giving greder understanding of the modeling process and can yield highly
efficient scripts which are eay to change when, for example, the number of variables
changes.

There are many acourts of SEM, which vary widely in complexity and clarity, and which
are aimed at different fields of study or different software padkages (Joreskog, K.G. &
SOrbom, 1991 Bentler, 1989 Everitt, 1984 Loehlin, 1987 McArdle & Boker 1990 Bollen
1992 Nede & Cardon 1992 Steiger, 1994. The brief account given hereisintended to
provide a pradicd guide to setting up modelsin Mx for thase with some famili arity with
path analysisor SEM. We begin with asimple, fodproof method,cdled RAM (McArdle
& Boker 1990 which would be ided except that it is inefficient for the computer to fit.
More dficient approaches will foll ow.

RAM Approach

A path diagram consists of four basic types of objed: circles, squares, orne-headed and two-
headed arrows. Circles are used to represent latent (not measured) variables? and squares
correspond to the observed (or measured) variables. In a path dagram, two types of
relationship between variables are pasgble: causal and correlational. Causal relationships
are shown with aone-headed arrow going fromthe variable that is doing the caising to the
variable being caused. Correlational or covariancere ationshipsare shownwith two headed
arrows. A spedal type of covariance path is one that goes from the variable to itself.
Variationin avariables which isnot due to causal eff eds of other variablesin the diagram
isrepresented by this self-correlational path. Sometimesthisis cdled ‘residua variance
or ‘error variance .

Figure 1.1shows a sample path dagram with two latent variables and four observed. The
RAM model spedficaioninvolvesthreematrices. F, A andS. Sisfor the symmetric paths,
or two-headed arrows, and is ymmetric. A is for the asymmetric paths, or one-headed
arrows, and F isfor filtering the observed variables out of the whale set. The dimensions
of these matrices arefixed by the number of variablesinthemodel. A andSareboth mxm,
and F is mgxm, where m=my+m_is the total number of variables in the model, m, the
number of observed variables, and m, the number of latent variables. In our example we
have my=4, m =2 and m=6.

2 The use of the term ‘variable’ here may be somewhat confusing to those famili ar with operations reseach
and numericd optimization. In numericd optimization, avariableis something that isto be changed to find the
optimum. In SEM, these ae cdled ‘freeparameters’ or simply ‘ parameters'.
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slielielle

Figurel.1 Example path dagram with two latent variables (P and Q) andfour
observed variables (R, S, T, U)
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and Note how F is an elementary matrix of 1'sand Os with a1 wherever the row variable
isthe same & the wlumn variable.

Now that we have defined these matrices, computing the predicted covariancematrix under
thismodel isrelatively simple. Theformulais:

F(I-A)tS(1-A)YF/
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which is easy to program in Mx and is quite general. So, suppose that we have measured
R, S Tand U on asampleof 100 subjects, and computed the covariance matrix. How would
wefit themodd in Figure 1.1 to these data, using the aboveformula? A sample script might
look like this:

! SimpTe RAM approach to fitting models
|

#Ngroups 1

#define latent 2 ! Number of Tatent variables

#define meas 4 ! Number of measured variables

#define m 6 I Total number of variables, measured + latent
Title Ram approach to fitting models I' Title

Data NInput=meas NObserved=100
CMatrix File=ramfit.cov

! Number of variables,subjects
! Reads observed covariance matrix

Matrices; ! Declares matrices
AFullmm I One-headed paths
S Symm m m ! Two-headed paths

F Full meas m

I Iden mm

End Matrices;

I Filter matrix
I Identity matrix
! End of matrix declarations

Specify A ! Set certain elements of A as free parameters
000000
000000
100000
200000
030000
040000
Specify S I Set the free parameters in S
0
50
006
0007
00008
000009

Value 1.0 S11S22

! Put 1's into certain elements of S

Matrix F ! Do the same for Matrix F but a different way
001000 I Note - this could be omitted if F had
000100 I been declared ZI instead of full.
000010
000001

Start .5 All ! Supply .5 starting value for all parameters

Covariance F & ((I-A)” & S);

End group

! Formula for model



Introduction to structural equation modeling 5

Thisscript isorganizedinto six sedions: (i) defines, (i) title and datareading, (iii ) declaring
matrices, (iv) putting parameters into matrices, (v) putting numbers into matrices and (iv)
the formulafor the model. More detail on all these mmporents can be foundin the body
of the manual, bu let’slook at some of the basic fedures.

Anything after ! isinterpreted as a cmment. Blank lines are inadive but serve to
visually separate the sedions of the script.

The #define statement is used to preassgn numbers to certain strings of letters.
After a ommand like#define Tatent 2, MX will i nterpret ‘latent’ as 2 whenever
it istryingtoread anumber. #NGroups indicatesthe number of groupsin the script.

The Titlelineisrequired.
The Datalineis required and supplies essential information about the number of
variables to be analyzed (NInput vars) and the number of subjects measured

(Nobservations).

The(CMatrix statement readsin the observed covariance matrix from afile, in lower
triangular format. The file ramfit.cov might look like this:
*

1.51

31 1.17

22 .19 1.46
.11 .23 .34 1.56

where the * indicaes freeformat.

TheMatrices lineisrequired andstartsthededaration o matricesthat will beused
in the mvariance statement. We make use of the #define’ d words to get them the
right size.

Specify putsfreeparametersinto matrices. All the usable dements of the matrix
arelisted (i.e. only the lower triangle for symmetric matrices, or only the diagonal
elements for diagonal matrices). A zero indicaes that the dement isfixed, and a
positive integer indicates that it’s free Different paositive integers represent
different free parameters; if we wished to have parameters 1 and 2 set equal, we
would replacethe 2 with a 1.

Thefixed valuesof 1for thevariances of thelatent variablesare given with aValue
Statement.

Start .5 all setsall the freeparametersto .5as an initial guessof the parameter
estimates.
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u The Covariance statement supplies the formulafor the model. We have used the
& operator for quadratic matrix multiplication (A& = A*B*A’), to make the script
more efficient. It would work equally well, and orly dlightly more lowly with the
full expresson F*(1-A)*S*(I-A)""*F’ given above.

u End group marksthe end d the script.

What are the advantages and dsadvantages of setting up models with the RAM method?
On the positive side, it is extremely simple and general. It doesn't matter if there are
feedbadk loops, everything will be spedfied corredly (seeAppendix D). Of course, some
caemay berequired with the chaice of starting values, but we do have apradicd method.
On the negative side, the wvariance statement involves inverting the (1-A) matrix, which
will be slow when we have many variables or aslow computer. Many modelsdo nd need
to use matrix inversionin the mvariancestatement. Infaq, it isonly feadbad loops which
make this necessary; we can therefore seek a simpler, more dficient spedficaion d the
model. There ae many of these, bu we shall be dming for one that is g/stematic and
straightforward.

Simplified Mx Approach for Models without Feedback L oops

Consider Figurel.lagain. It hastwo levels of variables: PandQat level 1,andR, S T and
Uat level 2. We could put al the two-headed arrows at the first level in ore matrix, all the
level 1tolevel 2 arrowsinasecndmatrix, andall the two-headed level 2 arrowsin athird
matrix. Letting these matricesbe X, Y and Z respedively, we would get:

PQ RSTU

PO R(b 0 R(fooO0O

P(1 a S|lc O S|0 00
X - VA andZ: g

Qla 1 T|0o d T{lOOhO

Uulo e Uulo 0 0 i

It so happens that all the observed variables are & the same level (2) in this model, which
makeslife eay for us. Although it may seem that we have atificialy contrived the model
to havethisdesirablefeaure, many structural equationmodels can bewrittenthisway. The
covarianceformulafor this model is:

YXY'+Z

andthis has avery simple multi variate path dagram to represent it, as svownin Figure 1.2
TogetfromFigure1.1to Figure 1.2all wedid wasto coll apsethe vedor of variableswithin
ead level to form asingle vedor of variables at ead level. The paths are wllapsed into
matrices of paths.
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@,

yA

Figurel.2 Multivariate path diagram for the system shown in Figure 1.1.

4.

Exercises:

1 Fit the model using the simpler X, Y and Z specification.

2. Find the change in chi-squared when the parameters b and c are set equal
3 Pick asimple published model and data and fit it with MXx with the RAM

approach
Find a more efficient method to fit the model in 3.

To best learn how to use MXx, readers should attempt the exercises themselves before
reading the next section, which describes the answer to the first exercise.
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! Mx partly simplified approach to fitting models
|

#Ngroups 1
#define top 2 ' Number of variables in top level
#define bottom 4 ' Number of variables in bottom level

Title Mx simplified approach to fitting model ! Title

Data NInput=bottom NObserved=100 ! Number of variables,subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; ! Declares matrices
X Stan top top free I Two-headed, top level
Y Full bottom top ! From top to bottom arrows
7 Diag bottom bottom free I Two-headed, bottom Tevel
End Matrices; ! End of matrix declarations
Specify Y I Declare certain elements of Y as free parameters
310
32 0
0 33
0 34
Start .5 All ! Supply .5 starting value for all parameters
Covariance Y*X*Y' + 7: ! Formula for covariance model
End group

What tricks have we used here? First, the keyword Free in the matrix dedaration sedion
makes elements of matrices X andZ free Matrix X is sandardized, which meansthat it is
symmetric with I'sfixed onthe diagonal, so freeparameter number 1 goesin the lower off -
diagonal element (the upper off-diagonal element is automaticdly assgned this free
parameter aswell, because standardized matrices are symmetric). Matrix Z isdiagonal, so
it will have parameters 2 through 5 assgned to its diagona elements. We ocould pu
parameters 6 through 9in matrix Y, but 31to 34are used instead, just to emphasi ze that we
donit want our spedficaion numbersto overlap with spedficationsautomaticaly suppied
by Mx when the freekeyword is encourtered at matrix dedarationtime.

Note how this gript is much shorter than the original, because of the reduced need for
spedficaion statementsto pu parametersinto matrices. Thisill ustratesavaluablefeaure
of programming with MX: with appropriate matrix formulation o the model, spedfication
statements can be eliminated. The alvantage of setting up models in this way is that
modifying themodel to cater for adiff erent number of observed or latent variables becomes
trivially ssimple. The more complex the model, the greaer the value of this approac.
Anather advantage isthat the computer time required to evaluate the model can be grealy
reduced. We have nat only eliminated the nead for matrix inversion when the predicted
covariancematrix isbeing ca culated, but al so reduced the size of the matricesthat arebeing
multi plied.
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Fully Multivariate Approach

We now turn to athird implementation of the same model to show how the matrix algebra
features can be used to make an efficient script which can be easily modified. Take another
look at Figure 1.1. Thefirst latent factor, P, causes the first two observed variables, Sand
T, whereas the second factor, Q, only affects the other two observed variables, U and V.
Perhaps we expect to change the number of observed variablesin one or other of these sets.
If so, we might want to split the causal paths into two matrices, one for each factor. So,
what was matrix Y in the ssimplified Mx approach will be partitioned into 4 pieces:

. the effectsof Pon Sand T
. the dfedsof P onU andV (zero)
. the dfedsof Q onSand T (zero)
. the dfedsof QonU andV

We'll use aseparate matrix for ead of these, and use definition variables to make the
changesin their dimensions automatic.
|

! Mx multivariate approach to fitting models
|

#Ngroups 1

#define top 2 ' Number of variables in top level (P,Q)

#define left 2 ! Number of variables in bottom left Tlevel (R.S)
#define right 2 I Number of variables in bottom right level (T,U)

#define meas 4
|

TitTle Mx simplified approach to fitting model ! Title

Data NInput=meas NObserved=100 ! Number of variables & subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; ! Declares matrices

X Stan top top free

J Full Teft 1 free

K Zero left 1

L Zero right 1

M Full right 1 free

7/ Diag meas meas free

Two-headed, top Tevel
From P to R,S arrows
From Q to R.S (zeroes)
From P to T.U (zeroes)
From Q to T,U arrows

|
|
|
|
!
! Two-headed, bottom Tlevel

End Matrices; ! End of matrix declarations
Start .5 All ! Supply .5 starting value for all parameters
Begin Algebra;
Y =J|K _
LM ;

End Algebra;

Covariance Y*X*Y' + Z; I Formula for model
End group
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S0, the magjor change here is to use the dgebra sedion to compute matrix Y. We have
eliminated the need for a spedfication statement by applying the keyword freeto matrices
Jand M. If wethouwght that we might expand the model to have more than ore fador for
eadt side, then we could further generali ze the script by changing the matrix dimensions
from 1 to #define' d variables.

1.4 Other Typesof Statistical Modeling

Theexampleinthischapter only dedswithfitting astructural equationmodel to covariance
matrices, bu Mx will do much more than this! There ae many types of fit function bult
in to hande different types of datafor structural equation modeling, including:

Means and covariance matrices
Correlation matrices with weight matrices
Contingency tables

Raw data

Also, the program’s multigroup and algebra caabiliti es cater for tests of heterogeneity,
norlinea equality andinequality constraints, andmany other aspedsof advanced structural
modeling.

Mx hasapowerful set of matrix functionsandastate-of-the-art numerica optimizer, which
makeit suitableto implement many other types of mathematica model. One aucial feaure
makes this possble — user-defined fit functions. The program will optimize dmost
anything. Given famili arity with matrix algebra and the basics of MX syntax, it is often
much quicker to implement anew model with Mx than to write aFORTRAN or C program
spedficdly for thetask. A dlight drawbadk isthat the MX script may run more slowly than
a purpose built programs, althouwgh this is usually well worth the saving in development
time.
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2 Introduction tothe
M X Graphical User Interface

What you will find in this chapter
How to use Mx Graphical User Interface (GUI) to:

Draw path diagrams

Automatically create and run scripts from diagrams
View & print results on diagrams

Run Mx scripts

View output in Project Manager, HTML or text formats
Edit and debug Mx scripts

Compare results and export them to other programs.

21 UsingMx GUI

Mx GUI can be started by double clicking the Mx icon in either the group window in
Windows 3.xx, or from the Start menu in Windows 95. In Windows 95 you may drag the
Mx 32 icon from the explorer to the desktop to create a shortcut, which will simplify
starting the program.

File Edit Seach MsPioject Dutput PathDiagram Preference  'window Help

s R S = = s [ PN S S 0 S S

| Parsing Complete [C&FS [MOW [SCRL [OvR
#s Group 1 Free factor mean ©a Group 2 Factor mean = 0 =] 3

Run | Parse | TDScriptl Datali Run | Parse | TnScriptl DataMap | Managerl

| | =
4 Rtwrod?

041
0.00
[-0.16 0.14) 0.00
H Q
[ Mx Proct Manager Window ———————_____________mEE
Job Group Matrix ToScript Delete Undo Run View

0.62

Matrix Name [Matrix Row Matrix Column|Matrix Type [Matrix Role |
5 e e Symm ~||Generic vI
OB L L T L L L L L

Value 1 2 <4 4
| Statistics AR WEARE WEARS H
1 |vari 0.693 ] ] ] =
2 |veR2 i 0.593 i i
3 [vaRrs a a 0.693 a _|;I
1 | »

Figure2.1 Mx GUI with Project Manager Window and two diagram windows open
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Figure 2.1 showsadiagram of thelayout of the Mx GUI when the Project Manager window
is active. The button bar icons are grouped into: filing, editing, printing, running, and
drawing. As with any GUI you are free to behave as you like, clicking on buttons in any
order. Thereare, however, somelogical waysto proceed that will savetime. The purpose
of thischapter isto demonstrate the capabilities of theinterface and how to useit efficiently.

Y ou can draw path diagrams at any time during an Mx session. A diagram which iseither
visibleinawindow or minimized iscalled open. AnMx script can be automatically created
from all open diagrams, sent to the Project Manager, and run. Parameter estimates will be
displayed in the diagrams.

Path diagrams are models of latent variables (circles) and observed variables (squares),
which are related by causal (one-headed) and covariance (two-headed) paths. While
diagrams can be drawn and printed in the abstract, to fit models we must attach - or ‘map’
-our datato the squares. Mapping datais the best starting point for drawing a diagram.

2.2 Fitting a Simple Model

Preparing the Data

We start with a simple dataset: a cvariance matrix based ona sample of 123 subjeds
measured ontwo variables, X and Y. Thisinformationisentered in a .dat file, which for
those famili ar with Mx naation, contains the Data, CMatrix, and Labels part of an Mx
script:

Data Ninput=2 Nobservations=123

CMatrix

.95

.b5 1.23

Labels X Y

Thisfileis supdied with Mx Gui; biv.dat wasinstaled in the examples subdredory of the
Mx install ation dredory. For detailson hav to use other types of data, see dapter 3. To
createthefileyourself, any text editor, such as Microsoft' sEdit program or Notepad will do.
Thereisatext editor built i nto the Mx GUI, and by chocsing the menuitem File[New, o
clicking the new fileicon[3:, anew file can be alited and saved from the File menu a by
clicking the savefile [Z1. If thefil eis creaed with awordprocesor such as Wordperfed or
Word, it must be saved as ASCII text.

Editing Dat Files

Mx GUI includes away to prepare datafor analysiswith either Mx scriptsor diagrams. It
will read existing .dat files, or write new ones. To seehow this works, the example file
ozbmiodz.dat inthe examples subdredory of where Mx GUI wasinstall ed can berealinto
the dat file aitor. Click on MxProjed and seled data edit. In the data edit window, click
L oad, andthen seled the ozbmiodz.dat file. The number of inpu variables (N1=2) appeas
inthetopleft window, andthe number of observations (NO=380) appeasin the next window
totheright. Third isthefilename. Inthelast window at the topisthe type of data. Last,
in the largest panel the labels from the Labels command appea. All these fields may be
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edited to creae anew dat file. Editing the filename is best done when saving thefile.

Depending onthe type of data being read there may be one or two additional folder tabs
visible below thelargewindow containing thelabels. Clicking onthesetabsall owsthedata
to be alited or to name an external fil e from which they cen be read. In the ozbmiodz.dat
case, bath means and covariances are suppied as data and they are bath read in from
external files.

Drawing the Diagram

To start a new diagram, click onthe ‘new drawing’ icon [f=1 then cli ck the button marked
[DataMap]. Then click the biv.dat file to open. The program then shows a list of the
variables in this file. You can highlight one or more of these variables by using click,
shift-click, click and drag, or control-click - theusual Microsoft Windowsconventions. Get
both X and 'Y highlighted by positioning the pointer over the X variable, pressng the left
mouse button down, dragging it to the Y variable, and then releasing the mouse button. X
and Y shoud naw be highlighted in blue. Hit and two new observed variables will
appea in the diagram ready for analysis (they may have gpeaed behind the data map
window). Click to close the data map window.

Note that the variables are aeaed with variance paths £ (small doule-headed arrows).
These paths represent residual variance they are sometimes cdl ed autocorrel ational paths.
Thisiscdled a‘null model’. It hasonly variances and nocovariances.

Fitting the M odel

Click [Run] to runthisjob. Youwill haveto suppy ajob reme andafile name. Enter null
for bath, withou any file extension. Mx GUI will then buld, save and run the script file
null.mx. Inaddtion MXx automaticdly savesthe diagram into the filenul1.mxd which can
be reloaded | ater.

While the jobis running, a wurter appeas. The numbers it displays $ow that the Mx
engineis dill trying to solve the problem. When it has finished the message ‘ Parsing to
Core’ may appeda, indicating that the graphicd interfaceis busy interpreting the results.
Oftenthis gep is o fast that it isinvisible.

Viewing Results

Results Panel

After the job has run, the Results Panel appeas (seeFigure 2.2). It contains information
abou the status of the optimization; in thisexample, thewords* AppeasOK’ shoud beon
the top line, meaning that the solutionit foundis very likely to be aglobal minimum?.

3 For reference, other passble Optimization conditi ons are shown in Table 2.1.
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Results Panel E
Optimization: &ppears OF.
ML ChiSq | 25432 [24.301, 24.551) Dif 2
Probability | 0,000 Parameters | &
AlC 21432 (20,301, 20.551) Statistics |10
AMSEA | 0316 (0,309, 0.370) Conztraints | 0
Help |

Figure2.2 The Results Panel to view the results

Table2.1 Correspondence between optimization codes and IFAIL parameter

Optimization Code IFAIL  Serious Action

Failed! Incomputable -1 Yes Check output & script for errors

Appears OK Oorl No Carefully accept results

Failed! Constraint Error 3 Yes Check output & script for
constraint errors

Failed! Too few iterations 4 Yes Restart from estimates

Possibly Failed 6 Sometimes  Restart from estimates

Failed! Boundary Error 9 Yes Send script & datato

neal e@psycho.psi.vcu.edu

The next line indicates the type of fitting function used, ML ChiSqg, which is the usual
Maximum Likelihood fit function for covariance matrices, scaled to yield a y°
goodnessof-fit of the model. They? is 39.546in this example, with lower and upper 90%
confidenceintervalsof 21.564and 62.%7respedively. Thereisonedegreeof freedom, and
the model fits very poaly (p=.000. There ae two free parameters estimated (the two
variance parameters) and threeobserved statistics (the two variances and the covariance).
Akaike's Information Criterion (AIC) is greaer than zero, refleding poa fit. This
impressonis suppated by the RM SEA statistic, which shoud be .05 a lessfor very good
fit, or between .05and .10for goodfit. The high value of .538for RMSEA, andits 90%
confidence intervals which do na overlap regions of goodfit (0.393is greaer than .10
indicaethat themodel doesnat fit well. Click ontheto removethe ResultsPanel. The
Results Panel can be reviewed later by seleding the Output|Fit Results option.

Viewing Resultsin the Diagram

When the Results Panel closes, the estimates of the variance parameters for this model
bemmevisibleinthediagram, onthe doude-headed arrows. Theresults panel information
has been copied into the diagram. Theseresults can be deleted entirely (click ontheresults
box in the diagram and ht delete or ctrl-x) or the spedfic dements may be seleded for
viewing and grinting. To dsplay only thefit and pvalue we would double dick theresults
boxto kring uptheresultsboxand change the seledionsas snownin Figure 2.3. If the null
optioninthe Preferences|Job options panel (see p 25 wasused to thesedata, the grayed-out
fit statistics would be avail able for display in the diagram.
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| Deagrees of Freedor

| Fit Status v| Constraints
| Fit Type | Th 2 B
| Group Fit Value v
| Total Fit Walue V5
| Probability v
| Alc ¥
_ | RMSEA ¥
v =
s
v

0k I Cancel | Help |

Figure2.3 The Results Box Panel to Change the results displayed in the diagram

Project Manager

More information about this model can be foundin the Projed Manager - click the
button (or the toolbar icon&= , to open thiswindaw. Highlighted, the script file
nameisin theleft panel, the group rameisin the midde panel, and the first matrix in this
group is in the right hand panel. The values in this matrix are shown in the Matrix
Spreadshed at the bottom of the Projea Manager window.

Fit statisticsfor the model are shown in the left-hand panel of the manager, F: 39.546 feing
the value reported in the Results Panel. Y ou can seethe degrees of freedom, df: 1, in the
left-hand Projed Manager panel aswell, bu depending onyour display youmay haveto use
the slider at the bottom of the panel or resize the window to seethem. Moreinformation on
the fit of the model can be seen in the matrix spreadshed at the bottom of the Projed

Manager by cli cking the[Statistics| button. Cli ck on[Statistics| againto toggletheview bad
to the highli ghted matrix.

Inthemidde panel isalist of thegroupsin thejob - there'sonly onegroupinthiscase. In
the right hand panel isalist of matrices used to definethemodel (I, A, FandS), along with
the observed covariance matrix (ObsCov), expeded covariance matrix (ExpCov) and the
residual, ObsCov-ExpCov (ResCov). If you click onthe ObsCov matrix you can seethe
data matrix in the matrix spreadshed at the bottom of the Projed Manager. This view of
the seledted matrix can be turned onand df with the button on the right of the
manager. As described below these matrices can be aopied to the diploard with ctrl-c.

The matrix spreadshed can show nat only the values of the matrix (anditslabels) but also
the parameter spedficaions. If youclick onthe[Valug] button, the parameter spedfications
will be shown. Try this out for the S matrix. This is the matrix of Symmetric arows
(two-heeaded). There aetwo of these, orne going from X to X and oregoing fromY to Y.
The free parameters are numbered 1and 2in the specs view of the S matrix. A parameter
numbered zeroisfixed. The A matrix containsthe A symmetric paths (single-healed, causal
arrows) which runfrom column variable to row variable. There aenocausal pathsin this
model, so all of the dements of A are zero.

Click on ExpCov in theright hand panel. To theright is the formula used for this model.
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Models built from diagrams currently use one general formulafor the covariance:

ExpCov = F(1-A)*S(1-A) ¥F/

which is written using the quadratic operator & in the Mx matrix language: F&((I-A)~&S)
Beginnrers dorit need to know how these formulae ae used to fit the model. Details are
givenin Chapter 1, a seeMcArdle& Boker (1990 for amore completedescription d this
formulation.

Click onthe ResCov matrix in the right hand panel. Notice how the diagonal elements of
this matrix are very small. They are presented in scientific notation so 1.23e-08 means
.0000000123 and thisindicaes a goodfit of the model to these dements. The model does
nat fit the off-diagonal elements at all well. It predicts no covariance between these
variables, but .55is quite substantial covariancewith this smple size--- asis siown by the
fit statistic of ¥>=39.55for 1 f. The model shoud be revised.

Resizing the Project Manager

The Projed Manager windowv may be resized by pulli ng the side, top, bdtom or corner of
it to anew paosition. It isalso pasdbleto resize the propation d the window that displays
jobs by dragging® the battom of the group mnel up a down to anew position. Also, the
[View] buttonwill switch the matrix spreadsheet onand df .

Saving Diagrams

All open dagrams are automaticdly saved to file when the jobisrun, bu sometimesit is
useful to savediagrams manually. Thenull model diagram could besaved dredly (withou
running it) using the following steps:

u Click onthe diagramto seled it
u Click onthe save-to-disk icon B (or use the Fil /Save menuitem)
u Enter afilename such asnul1.mxd (.mxd isthe default extensionfor Mx diagrams,

which will be added automaticdly if you enter null withou .mxd at the end). Note
that all adive (minimized o displayed) diagram windows are saved to the file.

Seepage 29 for detail s on running and saving scripts.
2.3 Revising a Model
Revising modelsis easy with the graphicd tods.
Adding a Causal Path

Returning to the null path diagram, alinea regresson model can be devised by adding a
causal path from the independent variable, X, to the dependent variable, Y. It may clarify

* To drag something, move the mouse pointer over it, press down the left mouse button, move it to its new
position, then release the mouse button.
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the path estimates to pu more space between the variables. Click on the open spaceto
de-seled al thevariables. Then click onY and moveit alittl e to theright (if youwant to
keep it aligned with X, press $ift throughou the operation). Now click onthe arow tool
icon * ontheicon ker. Inthe diagram window, click on X, hdd the mouse button davn
anddragittoY, andrelease the button. The diagram shoud now have an arrow from X to
Y. Usualy we want these arows to be straight, but sometimes it is useful to make them
curved, which can be dore by dragging the littl e blue square in the middle.

Youcan naw hit in the diagram window. Enter regress for the Job reme. Note that
if instead you enter nul1 as the jobrame, it will overwrite the previous Mx script and
diagram files. This overwriting approach is useful when trying to get a model corredly
spedfiedinitially, but it isbetter to kegp substantively diff erent modelsin diff erent diagram
and script files. Doing so also al ows comparison between them.

The model fits perfedly, as sen by the ML ChiSq of zero in the Results Panel. 1t also has
zero degrees of freedom, becaise it has the same number of parameters asit does observed
statistics. Such amodel isoften caled ‘saturated’. Click on[OK]to view the new estimates
in the diagram.

Adding a Covariance Path

The procedure to add a covariance path is esentially the same asfor adding a causal path,
but you wsethe mvariance drawing tod instead. Notethat there aetwo typesof covariance
path: variance 3 which appeasasalittl eloopfromavariabletoitself, and covariance ™.
We' |l addthe covariancetype to the diagram.

First, delete the causal path by seleding the pointer todl (the white arow [%) click onthe
path once (a blue dot will appea in the midd e of the path to show that it is sleded) and
pressdelete or ctrl-x (cut). Note that you can urdoamistakewith the undotool “&, andthat
todl-changes can be acomplished via aright mouse button click on a diagram.

Seoond,addthe ovariancepath by seleding the covariancetod ™. Thenclick on X, drag
the panter to Y, and release. The path is automaticdly curved a cetain amourt. The
curvature can beincreased or deaeased by dragging the blue dat in the midd e of the path.
Single-healed arrows can be made to curve in the same way, bu their default foll ows the
conventionthat they arestraight lines, andwerecmmendkeeqing themthat way if posgble
(redprocd interadion betweentwo variablesA-B andB- A requiressome airvatureto stop
the lines being ontop d ead aher).

Third, hit to rerunthe model. Enter covar as the name of the job and script. Again
thismodel fits perfedly, with zero degrees of freedom. The parameter estimatesare not all
the same & the regresson model we fitted ealier. These two models may be cdled
‘equivalent’ because they always explain the data equally well, and a transformation can
be used to oltain the parameter estimates of one model from the other.

Changing Path Attributes
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A variety of charaderistics of paths can be changed and made visible in the diagram with
the Path Inspedor. Double-click the covariance path that we just creaed in the diagram to
bring up the Path Inspedor. Using the Inspedor a path can be fixed, bounéd, o equated
to other paths. Confidenceintervalscan berequested, and thedisplay of abels, start values
and other information can be switched on o off. These dianges can be made to several
paths at onceby seleding them all and chedking the* Apply to All Seleded’ boxin the Path
Inspedor.

Path Inspector E3

L abel
F e . T

Start Yalue _I Lo TS

ID-2 | Dizplay Label
E:;v;éc?nund v Dizplay Start Value
High Bound | Db st
[10500 .| Display C.I.
Precizion Digits

|2— | Apply ta All Selected
Estimated Y alue |1

Confidence Interval  |[0, O]

| Fix Thiz Parameter

Cancel | Help |

Figure2.4 Mx Path Inspedor with parameter F fixed at .2

Fixing a Parameter

For ill ustration, we will t est the hypothesisthat the covariancebetween X andY isequal to
point two. In the Path Inspedor panel for the mvariance arow chedk (v) “Fix This
Parameter.” Doulle dick the start value field andtypein .2to give the fixed value for this
path. One useful way to remember that a path isfixed isto dsplay only the start value and
nat the path label. Unchedk the “Display Label” box and chedk the “ Display Start Vaue”
box. At the endyour Path Inspedor panel shoud look like Figure 2.4. Click OK andthen
click [Rur]in the diagram window to rerunthe model. Enter anew job name such as fi xed.

If you naw look at the Projed Manager and cli ck [Statistics], you can seethefit of thismodel
and compareit with the other models 0 far. Note that the Path Inspedor also all ows youto
change the boundaries to restrict path estimatesto lie in a particular interval. To constrain
aparameter to be non-negative, we would simply change the lower boundto zero.

Confidence Intervals

For any freeparameter you can request confidenceintervals. Just doute dick onthe path,
and ched the “Calculate CI” and the “Display CI” boxesin theinspedor. Runthe model
again, but this time just click withou entering a new job reme so that the job
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overwrites the existing one in the manager. After all, we are fitting the same model and
simply calculating a few more statistics. MX computes likelihood-based confidence
intervals which have superior statistical properties to the more common type based on
derivatives. Chapter 5 describes the method used, and Neale & Miller (1997) discuss the
advantages of using thistype of confidenceinterval. Themain disadvantageisthat they are
relatively slow to compute, so we suggest computing them only when the model isfinally
correctly specified.

Equating Paths

Mx uses the Labels of the paths to decide whether or not they are constrained to be equal .
Toillustrate, add a latent variable to the diagram, and draw causal paths from it to both X
and Y, and constrain the two pathsto be equal. First click on the Circletool ), and click
onthediagramto add thecircle. Second, click on the causal path tool and add the two paths
from the new latent variable to X and Y. Third, click on one of the paths and give it the
same label as the other. Finally, to make the model identified we should delete the
covariance (double-headed) path between X and Y. On runningit, we should find the same
perfect fit (x*=0) of themodel. Thistimewe havethe squareroot of the covariance of X and
Y as estimates for the two paths.

Note that the latent variable we added had an variance path with the fixed value of 1.00 on
it. Thisis different from the observed variables, which come with free variance paths,
corresponding to residual error variance.

Having a fixed variance of 1.00 makes our latent variables standardized by default. Of
course, we could make alatent variable unstandardized by fixing it to some other value, or
(if there is enough information in the model) estimate its variance as a free parameter.

Moving Variables and Paths

It iseasy to modify the appearance of adiagram by moving oneor morevariables. To select
avariable, de-select everything by clicking on the selection tool [ ® and then clicking on
some open space in the diagram. Then click on the one variable, and drag it to its new
position. To move several variablestogether, click on one of them, then pressthe shift key
and click on another variable. Alternatively, you can click on the background of the diagram
and drag a rectangle around the variables you wish to select. When all the variablesto be
moved are selected, you can drag them to their new location.

24 Extending the M odel
Multiple Groups: Using Cut and Paste

A valuablefeatureof graphical interfacesistheability to rapidly duplicate objects by means

® Clicking the right mouse button in a diagram offers an alternative, menu-driven way to change the
drawing tool
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of cut and peste. Here we go through a simple multi-group example --- the dasscd twin
study --- to ill ustrate these adions.

Fitting the ACE Genetic Model

Structural equation modeling of datafrom twins has been described in detail elsewhere. In
summary, twin pairsarediagnosed aseither Monazygotic (MZ) or Dizygotic (DZ). Thepair
istreded as a cae, andthe MZ pairs are analyzed in a separate groupfrom the DZ. The
structural equation model is configured with threelatent variables which model posgble
effeds of: additive genes (correlated 1.0 in MZ twins and .5in DZ pairs); shared
environment (correlated 1.0in bahtypesof twin pair); and individual -spedfic environment
(uncorrelated between twins). Thisisatwo-groupexample so we will draw two dagrams.

Drawing the MZ Diagram

To begin modeling, open the Mx GUI and click onthe open anew drawing iconf§;]. Then
click the[DataMap] button and the[Open] button and select the fil e ozbmi omz . dat from the
examples sibdredory. Seledt only the variable BMI-T1 and click [New] to dropit into the
drawing. Move the data map window out of the way or close it, and start working on the
drawing.

We need to add A1, C1 and E1 latent variables. Click onthe latent variableicon i} and
draw three d¢rclesabovetheBMI-T1 variable. Relabel thevariablestoread A1, Cl andE1
by doule dicking inside the drcles andtyping in the new text.

Next we need to add the causal pathsfrom A1, C1, and E1 to BMI-T1. Click onthe caisal

arrow icon®™ andclick and d-ag from A1to BMI-T1, andrelease. Do the samefor C1to
BMI-T1 and E1 to BMI-T1. Mx automaticdly labels arrows and variables for us, bu we
want to use spedfic names for our paths: a, c and e. Therefore, we doulde dick oneat
path in turn and rename it in the label field o the Path Inspedor. Care is needed herel

Depending onthe order in which the latent variables were drawn, there may already be a
path cdled a, c or e on ore of the latent variables. Relabelli ng the caisal paths may have
inadvertently caused an equality constraint that we dorit want. Relabel any of the latent
variablevariancepaths as necessary to makethem diff erent froma, cande. Finaly, becaise
we aegoingtomode indvidual-spedficvariationwith ewe @anremovethevariancepath (3

onBMI-T1. Click insideit so that its blue seled button appeas and ht delete or ctrl-x.

We now have amodel for Twin 1,and we nedal to replicaeit for the Twin 2. Either press
ctrl-a or go to the Edit menu and click Select All. Pressctrl-c for copy and ctrl-v for paste
(or usetheicons E+fl and [k or the Edit menu equivalents) and you have anew copy of the
model for an individual. Use the mouse to drag it to the right of the existing model. You
may haveto resize the window to give yourself spacefor this. Alternatively, youcan zoom
out the drawing with the @ button (seebelow).

A very important step comes next. We have duplicated the model for twin 1--- both the A,
C and E part and the phenotype BMI-T1. We do nd want to model the mvariance between
BMI-T1andBMI-T1. When we dugdicaed the model for twin 1,the new BMI-T1 box was

blad rather than blue. Thisisbecaiseit isnot mapped to data. To map it, we seled the
variable BMI-T1 (and orly this variable) in the diagram. Then hit , click on
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BMI-T2in the variable list, and then [Map]. The variable in the diagram turns blue and the
label isrevised to say BMI-T2. MX now knows what datawe ae analyzing.

To complete the model for MZ twins, we need to dotwo things. First, change the labels of
the latent variables causing BMI-T2to A2, C2 and E2 by doule dicking onthe drclesand
typing in the new names. This gep isfor cosmetic purpaoses - Mx will still fit the corred
model even if the latent variables have incorred names. Seocond,we must spedfy that the
covariances between A1 and A2 and between C1 and C2 are fixed at one. Click on the
covariancepathtod ™. Click onA1, dagto A2 andrelease. Do the samefor C1and C2.
Note that if you drag from right to left, the arows curve downwards rather than upwards.
The curvature can be adjusted by clicking on the arow and dagging the blue seledion
buttonin the midde.

Y ou must now fix the A1-A2 and C1-C2 covariances to one. Click onead path in turn,
check the “Fix this parameter” box, make the starting value 1, and seled “Display Starting
Value”. At this stage the diagram shoud look something like Figure 2.5. It would be
possble to runthis model, but the parameters a and c are confounded when we have only
MZ twins. To identify the model we must add the DZ group.

Drawing the DZ Diagram

Adding the DZ twin groupiseasy. Click onthe MZ diagram and ht ctrl-a (seled all) and
ctrl-c (copy). Then pressthe new drawingiconfg;]. Click onthe new diagram, pressctrl-v
(paste) andthe MZ model iscopied into the new drawing window. Two stepsremain. First
click onthe mvariance between A1 and A2 and change its darting value to .5- the value
spedfied by genetic theory. Seaond,map the observed variablesto data. Hit the[DataMap)|
buttonand seled thefile ozbmiodz.dat. Highlight BMI-T1andBMI-T2inthevariablelist
andclick [AutoMap]. Because the variable labelsin the ozbmiodz . dat file aethe same &
the variable labelsin the ozbmiomz . dat fil e, the auitomap function maps the variables from
the li st to the diagram corredly.

Run | Parse | ToScript | DataMapl Managell

1.00 1.00 j

BMI-T1 BMI-T2

Figure 2.5 Starting values for an ACE twin model for MZ twins

Fitting the M odel
Finally, run the model by clicking the button in either diagram. Enter ace as the
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filename for the script and diagrams. The Results Panel should report afit of 2.3781 and
the estimates in the diagram should look like those in Figure 2.6.

8 MZ Twins [_ (O] %]
Run | Parse | ToScript | DalaMapl Managerl

1.00 1.00 =

BMI-T1 BMI-T2

Appears Ok ML ChiSg
Group Fit: 0.200742
Fits 2.378 (0.000, 7.163)
Probability 0.498
AlG-3.622 (6.000, 1.163)
RMSEA 0.017 (0.000, 0.047)
Degrees of freedorn 3
Free pararneters 3
Obsetved Statistics 6
Constraints 0 hd
< | oy

Figure 2.6 Parameter estimates from fitting the ACE model to MZ and DZ twin data

Notethat in thisexample, thereweretwo Mx errorsintheerror window. Theseerrorswarn
usthat although we had supplied both means and covariances asdata (in the .dat files), only
a model for covariances was supplied. See below on page 23 for details on how to
graphically model means.
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Selecting Different Variablesfor Analysis

To unmap variables, youmust seled one and orly one variable, go to the datamap window,
seleat only that variablein thelist, and then pressthe[Unmap] button. Y ou can then remap
thevariablein your diagramto anather variablein theli st by seleding thevariableinthelist

and pressng[Map].

The[AutoMap] feaure lets you automaticaly map boxes to variablesin a dataset by name.
If you have aseries of unmapped boxesin your diagram, andaseries of unmapped variables
in your dataset, then pressng[AutoMap] will map them by name. Thisisvery useful when
you have run an analysis on ore dataset, then wish to fit the same model to a different
dataset. It also comesin handy when you have multiple groups, with variables with the
same names being analyzed in dfferent groups, as we did with the twin study example
above.

Modeling Means

The Mx GUI alows the user to draw and fit models to means as well as to covariances.
Thisis smplified with a new type of variable in a path dagram, the triangle. Let's add
means to the twin model we developed ealier. If you do nd still have the MZ and DZ
drawings open, load them from the fil e ace .mxd.

Seled theMZ diagram and click onthetriangletool ™. Point the mouse somewhere below
theredangles andclick onceto crede atriangle. Then usethe causal path tool *™ to draw
paths fromthe triangle to the variables BMI-T1 and BMI-T2. Do the same thing in the DZ
group. Mx hasautomaticaly set new, freeparameters onthe paths and we ca runthejob.

The output for thisjob shoud give exadly the same goodressof-fit to the model aswe had
before, because the model for the means is saturated. It has one free parameter for eat
mean. Let'stest the hypothesisthat Twin 1meansare equal to Twin 2means. GototheMZ
diagram and make the label onthe path from the triangle to BMI-T1 the same as the label
fromthetriangleto BMI-T2. Dothesameinthe DZ diagram (keep thelabel sdiff erent from
those onthe paths from the triangles in the MZ diagram). Runthejobagain, andgiveit a
new name, like tleqt?. Inthe Project Manager window we see that the 2 (F:) has only
dlightly increased from 2.38 to 2.55 - an increase of less than .2 for two degrees of
freedom, whichisnon-significant. Thisindicatesthat the hypothesisthat the means of twin
1 and twin 2 are equal is not rejected.

To continue the example we can test whether MZ means are equal to DZ means. Thisis
done by going back to the DZ diagram (ctrl-tab is a shortcut way to switch between Mx
windows) and changing the paths from the triangle so that they have the samelabel asthose
inthe MZ group. Run the model again and call it mzeqdz. They? of 6.24 hasincreased by
about 3.7 over the t1eqt? model, for one degree of freedom, which isnot significant at the
.05 level. The hypothesis that the MZ means equal the DZ means is not rejected. The
sample sizes here (637 MZ and 380 DZ pairs) are quite large, so the chance that this result
is atype Il error (failure to detect a true effect) is small. The observed MZ-DZ mean
difference must be small relative to the variance of body massindex in these data. We can
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ched this result in the Projed Manager window. Seled the tleqt? job and examine the
predicted MZ and DZ mean in the ExpMean matrix for the MZ groupand compare it with
the ExpMean matrix in the DZ group ly aternately seleding the MZ and DZ groups. The
DZ meanis.45andthe MZ meanis.34whichisapproximately .11 d astandard deviation
different because the expeded variance (see ExpCov) is abou .97 for this model. The
standard error of the difference between two means is given by the formula

/SDS/n,+SD7ZIn,. Thisformulaisn't entirely appropriate for the caein hand kecaise we
have correlated olservations making up the two samples. If we pretend that they are
uncorrel ated then the standard error would be gpproximately v1/760 + 1/1274=.0458. If we
pretend that the twins are perfectly correl ated then we would have v1/380 + 1/637=.0648.
The first estimate of the standard error would give a z-score for the difference of
.11/.0458=2.40 (significant at .05 level), whereas the second would give 1.70 (not
significant at .05 level). Thetruth lies somewhere in between, and a very nice property of
the maximum likelihood testing isthat it handlesthese complicationswith ease and provides
appropriate tests for both independent and correlated observations. The y? difference test
above showed that the difference was not quite significant at the .05 level. Better still, we
can obtain confidence intervals on this y? test and on the parameter estimate itself.

TheMXx Model for Means

When computing a predicted mean, Mx traces the paths from an observed variable
(rectangle) to a mean variable (triangle) and multiplies the paths together. If there are
several triangles or pathways from a triangle to an observed variable, it sums their
contributions to the mean. Notethat, unlike covariances, thereis no changing of direction
when traversing paths, and only the single-headed arrows are used. The matrix formulaMx
uses to compute the predicted means (shown in ExpMean in the Project Manager) is

ExpMean = F(1-A)1M U

where U is a unit matrix and M contains the paths from the triangles to the circles and
squares.

2.5 Output Options

Zooming in and out

To zoom into a part of a diagram, click on the zoom in tool then click on the diagram
workspace and drag a rectangle around the part of the figure that you wish to enlarge.

To zoom out, select the zoom out tool & click on the di agram and drag a square inside it.
Note that this feature works proportionately, so that it is possible to get a very tiny and
unreadable figure if you drag a very small square by mistake.

Sometimes zooming operations can cause a diagram to become so big or small that it
disappears altogether. A click on the zoom undo button €& will shrink or expand the
diagram to roughly fit the window size.
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Copying Matricesto the Clipboard

A matrix may be copied to the Windows clipboard by selecting it in the right hand panel of
the Project Manager window, and pressing ctrl-c or the copy icon t+El. The contents of the
windows clipboard may then be pasted into wordprocessing or spreadsheet applications,
usually by pressing ctrl-v or clicking the appropriate paste tool or menu item. By defaullt,
the matrices are copied with a tab character between each column, and a carriage return
character at the end of each row --- suitable for many applications. These defaults may be
changed using Preference]M atrix Options. For example, to obtain output formatted suitable
for aLaTeX table, the user-defined delimiters should be changed to & for columns and \\
for rows. Note aso that the number of decimal places may be changed. Diagrams may be
copied to the clipboard as described bel ow.

Comparing Models

When several models have been fitted to the same data, it is possible to generate atable of
parameter estimatesand goodness-of -fit stati sticsautomatically. Themenuitem OutputjJob
Compare will build afile of comparisons, which you can view with atext editor. Thefirst
column of thisfile containsalist of al the pathsin the model, followed by thefit statistics.
The remaining columns are the estimates and fit statistics found for all the modelsin the
project manager. This table may then be copied into other software for publication. The
format of the table depends on the Preference|M atrix Options in the same way as copying
matrices to the clipboard.

To get only a few of the models in the manager, ssimply delete the jobs that should be
excluded from the comparison, by selecting them and hitting the Project Manager
button.

Setting Job Options

MXx uses a default set of job options suitable for most general purpose model-fitting, but
there may be times when other settings are desired. The Job Option panel (menu
Preference-Job Option) is used to change these settings. Figure 2.7 shows the default
settings.

Job Option Panel

| Output Statizticz

5 HTMI % TEXT | Mull Model | Mone > Auto > Manual
Decimals |4 Mull ChiSg IEI rull Cf |EI

Wit 80 | Power Calculation
Debug [0 Alpha [0 Dt [
MpSol |EI

| Confidence Interval an Fit % IEID

Ind. Likelihood File

I | Standardizi | Restar Df Adjust IEI

Cancel | Help | Dptimizatinnl
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Figure2.7 The Job Option Panel. Text output with four decimal places of precision
and 80 columnwidth will be generated. Debug statisticsand individual pedigreelikelihood
statistics will not be generated. Confidence intervals (90%) on the fit statistics will be
computed, and null model and power statistics will not. Parameter estimates will not be
standardized. New MxX jobs created from diagrams will be started from the starting values
in the diagram, not the current estimates.

Text Output

Having run an Mx job, you may wish to view the regular text output. If so, ssimply hit the
output tool [Z1. TheMx GUI comeswith asharewareeditor called notebook . exe whichyou
can seled. It alows you to edit and view much larger files than Microsoft Windows
Notepad editor. Youcan seled an alternativetext viewer viaPreferences (thoughwedo nd
recommend Microsoft Notepad because of itsinability to edit large fil es).

HTML Output

Flexview is supgied with Mx to simplify the viewing of HTML output. In arder to useiit,
youmust first tell Mx to produce HTML output when it runs, before runring thejob. This
you do via the Preferences-Job Option menu item. Netscape 4.5 could be dhosen, bu
ealier versions gart upslowly every time. Under Internet Explorer 4.0,chocosing explorer
as the html viewer (typicdly foundin c:\windows\explorer.exe) works quite well. For
large output fil es, Flexview does nat work well andtext output or anather viewer shoud be
used. Flexview is hareware and you shoud register it if you deddeto useit regularly.

HTML and Text Appearance
You can change the number of dedmal places and the width of Mx output by entering
different values in the deamals and width fields.

Debug Output

Auxili ary output about optimization may be printed to the file nagdump . out by requesting
NpSol values greaer than 0 (upto 30. Debug output will go to thisfile aswell i f Debug
isset to 1.Debug prints the values of the parameter estimates and the fit functionfor eath
groupfor every iteration duing optimization. Such filescan beboth large and slow towrite
to disk, so we recommend ony using these feauresin an emergency.

Individual Likelihood Files
If youare using raw data, it is posdble to save the individual li kelihoodstatistics (see#p.
72) to afile by entering afilename in the text box “Ind. LikelihoodFile”.

Additional Statistical Output

Certain ‘comparative' fit indices require the computation d the fit of a Null model. By
default the null model has free parameters for the variances and zero covariances. This
model will be fitted automaticdly by Mx and the statistics will be computed if the Null
model radio butonis st to Auto. Sometimes, a different null model than the default is
required; this model shoud be fitted by the user and the y* and degrees of freedom nated.
These statistics would then be entered by first seleding the Manual radio buton and then
entering valuesin the Null ChiSgandNull Df fields. The alditional statisticswill bevisible
in the Results Panel.
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Power Calculation

Tocomputestatisticd power, the “Power Calculation” chedkboxshoud be chedked, andthe
alpha-level and degreesof freedomshoud be entered. Seethe#p. 62for information on haev
to fit modelsthat assess satisticd power.

Confidence Intervalson Fit

By default the Mx GUI requests 90% confidenceintervalson fit. If an alternativeinterval
isrequired, it can be entered in thistext field. If Cl'sare not required, then the dhedk box
can be deaed. Note that this is not the same & confidence intervals on the parameter
estimates, which must be requested for paths using the Path Inspedor.

Standardize

By default, Mx producesunstandardized parameter estimates. Thisdefault may be danged
by seleding the “Standardize” chedk box. The graphicd interfacethen generates diff erent
Mx scripts which include nonlinea constraint groups to remove the variance of the
variables. This box shoud be diedked when working with correlation matrices to oltain
corred confidenceintervals onthe parameters. Correlation matrices shoud be entered in
dat fileswith akMatrix nat aCMatrix command.

Restart

The Restart chedk box changes the scripts generated from diagrams. Instead of using the
starting values of paths, the aurrent estimates are used instead. If amodel has been fitted
before, andisonly dlightly changed, e.g. by fixing one parameter, then re-runnng from the
existing estimates may be much faster than starting from the starting values again.

Optimization Options

Mx uses certain default values of the optimization parameters which have proven to be
reliable under avariety of condtions. Occasionally it isnecessary to use diff erent settings;
thesetechnicd options are described on p. 101For the most part, these options shoud na
be dhanged.

If optimization ends with the message “Posgbly Failed” you can try to restart optimization
automaticaly with Randam Start at -2 for two attempts to solve the problem. If youwant
to try randamized starting values for amodel, set it to a positive value, bu be sure to pu
sensible boundries onall your freeparameters.

Printing

To print diagrams, cli ck the printer icon Ifllor usethe Filemenuandseled Print. Notethat
the part of the diagram visible in the window is printed. Print can also be used to print
scriptsfromthe editor window. The script font can be changed with the Preferences|Script
fonts menu item.

Printed output can be previewed withtheFil ePrint preview menuitemor the preview tod
onthetoadbar. Thisfedureisagoodway to savetime and paper. Somefeauresof printing,
like printing the object handles on seleded oljeds, may be unexpeded, so print preview is
recommended.
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Improving Print Quality
There arevariouswaysto improve the visual appeaanceof the diagrams. Generally, these
areworth dang for final copy, such as printing for pulicaion a to make slidesfor atalk.

First, you can move the path |abels away from the paths by clicking onthem and dragging
themto anew locaion. Occasionaly it may be difficult to seled the label becaise another
objed, such as the path, is ®leded instead. If so, try clicking slightly to the right of the
label. Seoond,in Preferences you can choose font size and appeaance, separately for the
pathsandthevariables. Alsoin Preferencesyoucan chooselinethickness which currently
affeds bath the paths and the lines aroundthe variables. To addimpad for color printing,
you can change the alor of the badkgroundandforegroundcomporents (paths, boxes, text
etc.) in adiagram. Third, remember that the anourt of information dsplayed abou a path
- labels, estimates, confidence intervals, boundiries and so on - can be dianged for
individual paths with the Path Inspedor. Revising the gpeaance of many paths
simultaneously can be dore by seleding several paths and chedking the “apply to all” box
in the Path Inspedor.

The variance arows ometimes become obscured by paths going to and from variables.
They may be dragged to ore of eight positions aroundcircles or squares.

Aligning Variables and Paths The grid tool ¥ adds a grid to the arrently adive
drawing. The mlor andsize of thisgrid can be changed viathe Preferences|Grid menuitem.
It isthen smpleto align circles and squaresto this grid by moving them. Much faster isto
use the snap to grid feaure FH, which automatical y dignsvariables onthe grid. Objeds
will move only to another grid place so moving avariable asmall distanceoften won't have
any effed at all. Moving it agreaer distancewill alow it to snap to anew grid pasition.
The granularity or size of the grid can be dhanged using Preferences|Grid size.

Pathslabelsare given adefault central pasition based onthelength and dredion o the path
they arelabeling. If apathislonger inthe verticd axisthan the horizontal, itslabel will be
centered verticdly. Conversaly, if itislonger inthehorizontal axisitslabel will be centered
harizontally. By moving objedsfurther away it is ©metimespaossbleto automaticdly aign
relevant path labels; thisisthe preferred way to align path labels. If necessary itispossble
tomove eat individual label away fromitsdefault position by dragging it to anew position
- but this shoud be used as a last resort. We recommend that print preview (Fil e-Print
Preview or be used to chedk the visual appeaanceof afigure.

Exporting Diagramsto other Applications

Mx GUI usesthe standard Windowscli pbcard to export diagramsto ather applicaions. To
export adiagram, left-click onceonthe badground d the diagram, and then pressctrl-c or
pressthe mpy iconf*. Thiscopiesthefiguretothe dipboard. Open ancther application,
such as Wordperfed, MS Word, Harvard Graphics or Visio and pressctrl-v (or seled the
paste menucommand a cli ck the pasteicon[3k). Partial figures may be mpied inthe same
way, by seleding only part of the diagram before pressng ctrl-c.

Diagrams may also be printed to a postscript file, if you have apaostscript printer driver
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installed. From the printer control menu, seled encgpsulated paostscript as the postscript
option, and ched the 'Print to fil € box.

Filesand Filename Extensions

Mx uses and creaes alot of different files, with spedfic filename extensions attached to
them. To save disk space some of them may be deleted. Table 2.2lists the fil enames and
their contents, and indicates whether they may be safely deleted. Typicdly one does not
want to delete data or useful drawing or script fil es. Malfunctioning scripts might be better
deleted. At thistime .prj files canna be read bad into the GUI.

Table2.2 Summary of filename extensions used by Mx

File extension Contents Delete

.dat MX data Probably not

.mx Input script Probably not

.mxd Mx path dagram Probably not

.mxo Text output If nolonger needed
.htm Hypertext output If nolonger needed
.mx| Frontend ouput Yes

.prj MX projed Probably not

.exe Exeautable Mx program No

.l Dynamic link library No

2.6 Running Jobs
Running Scripts

Many previous users of Mx and those working with nonstandard models (such as those
involving constraints or speaal fit functions) will want to be aleto runsuch models. The
Mx GUI has been designed to make working with scripts efficient. It lets you open script
fil es, edit them, andview output in either the manager or text or hypertext (HTML) formats.
In addition, if there ae arorsin the script, it will display them andwith a dick of abutton
will take youto the alitor window with the problem text highli ghted.

Let'stakean example script. Start the GUI and click the openicon 2. Choase twinpar . mx
and hit in the alitor window. The Mx statistica engine runsthejobin the bacground
andthen deliversthe output to the manager. We dont nead to bother with the detail s of this
particular job,it'sjust an example to show how several groupsappea. Youcan easily look
at the matrices in the different groups by seleding the groupin the midde panel and the
matrix in the right hand panel.

As we run more jobs, perhaps editing the script or seleding other scripts, the Projed
Manager fill s up with the new jobs. Thefit statistics from all jobs become visible in the
bottom panel when the[Statistics| buttonis pressed.
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Errorsin Scripts

To help debugging of Mx scripts, the line and column o the inpu file where an error
occurred is automaticaly sent to the GUI to speed up debugging of scripts. Let's ehow
this works with an example.

Edit adummy script by hitti ng the new icon “[3:. Typein the foll owing:
Title

Data Ngroups=1

Oops a mistake

Begin Matrices;

Hit and seewhat happens. Click the left mouse button onthe eror, and nde how the
editor window shows the Oopstext highlighted. Youare now in agood paitionto fix the
problem, if you are famili ar with the script language. A full description d the languageis
givenin chapters 3-5 andexamplesarein chapter 6. CoursesonMx arerun quteregularly;
consult http://views.vcu.edu/mx.

Sometimesit ishelpful tolook at thetext or HTML output fileto seefull detailsof theerror.
Click the right mouse button on the error to bring up the output file. With HTML, the error
isautomatically presented, with Text output it is necessary to scroll to the end of thefile.

Editing Mx Header Files

Mx provides a system for advanced users to make it easier for the beginning user to start
using the program. Using thisapproach to script writing can also makeit easier for all users
to change the script for other data sets or to change the number of variablesin the analysis,
which variables are analyzed, the number of factorsto be used, or even the type of model
to be fitted.

In the examples subdirectory, the files factor.mxt (template), factor.mxh (header) and
factor.dat (data file) illustrate how this can be used. Opening the header file, from the
MxProject-header_edit menu, the user can change the number of variables being analyzed,
or the number of factors being fitted by clicking on the relevant lines of the header filein
the header edit box. For a more detailed description of this example, see page 150. An
example of header and template files for fitting alternative genetic models to twin datais
described on page 151.

We expect this new feature to lead to a collection of header and template files that will be
added to the website http://www.vipbg.vcu.edu/mx in the future.

Using Networked Unix Workstations

Performance and Multi-Platform Environments

The difference in performance between high-end MS windows computers and Unix
workstations is narrowing al thetime. Indeed, the same hardware can be used for either
Unix or MSwindows so it might be argued that it has disappeared. However, it isnot very
cost-effective to supply every student and faculty member with the latest and fastest PC.



Introduction to the Mx Graphicd User Interface 31

Many institutions gill use amixed platform computing fadlity in which there ae powerful

Unix serversavail ablefor general use, along with PC computersthat have networked access
to these servers. The Unix macdhines often have large anounts of memory, high-speed disk
accessand may offer much faster CPU than is avail able for PC's. To fadlit ate the use of
these remote machines, Mx GUI has a networking comporent which al ows the user to
seled aremote Unix host to run Mx scripts.

The Host Options Panel

Figure 2.8 shows the Host Options Panel set for locd (on the PC on which Mx GUI is
running; left panel) and remote processng (right panel). By unchedking the locd host
chedkbox, the user can enter the |P addressof the Unix machine and their username and
passvord. MX is naot (yet) a standard part of the Unix operating system, so it must be
installed on the host in gquestion kefore remote accssto it will work. The files and
instructions for install ation are available & http://www.vipbg.vcu.edu/mxgui/unix.html.
As auser, you shoud make sure that your path onthe Unix hast includes the diredory in
which Mx-Unix has been install ed, which isusually /usr/Tocal/bin.

Backend Memory in KB |1 on Backend Memary in KB |1DE|

Host Mame or IP Address | Local Host
| Ielectru.vipbg.hﬁcu.edu

Loain Mame Fagsword Loain Mame Pazzword

I I IiDEUSEI I xxxxxxx

7 | o] 2] 7| =] [2]

Figure2.8 Host Options Panel set for locad PC use (left) and remote Unix use (right).

Running a Job Remotely

The foll owing steps are required to run ajob remotely:

n Make sure you have an acournt onaUnix host which has the Mx server install ed
n Go to the Host Options panel (Preferences-Host Options menu) and enter the
machine name, username and passwvord

Click Runin your diagram or script window

Enter any commands to change directory® onthe remote host and click ‘ Exeaute’
Click ‘Run Mx’

Click ‘RunMx’ againif it says Posgble Incompatible Remote Engine, Install New
Remote Engine (this error often occurs puriously)

n Wait for the jobto runandto be transferred bad to the GUI.

Transferring Filesto Unix Hosts
Runnng Mx GUI onaremote host has afew additional considerations. Foremost isthe use

® On Sun systems it may be necessary to change the shell with the mmand ksh to all ow more than ore
jobto berun per direcory
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of files, especialy the File= subcommand used in MX scripts. Any file mentioned in a
Fi1e=subcommand must be transferred to the remote Unix host (using e.g., ftp) in order for
the Unix host to accessit. For this reason, it is best not to put pathnames in the File=
subcommands, because of inconsistencies between the Unix filenaming system and the
windows filenaming system. It would become messy if the only place used for Mx files
was the root directory on the Unix host, so there are facilities for changing directory on the
remote host prior to running scriptsthere. Inthe Host Command window, the user can enter
aUnix command such as cd mymxfiles to change directory, before hitting the [Execute].

One exception to the need to transfer files to the remote host is the .dat file specified in a
diagram command. This file will be included in the script and automatically
transferred to the Unix host. For thisreason, it can be best to keep all thedatain the .dat file
itself and not to use the File= subcommand at all. In some circumstances this may be
inefficient, especially if the network connection is slow, as al the datawill be transferred
with the job --- this applies especially to large raw data files or large asymptotic weight
matrices. If several jobsareto be run using the same dataset, it may be more efficient to ftp
these files to the Unix host and return to using FiTe= in the script.

Increasing Backend Memory

The default amount of memory available for the Mx engine to store data, perform matrix
algebra and optimization is 100,000 wordsfor the PC version. This can beincreased when
necessary by changing the value in the Run Options panel (Figure 2.8). The Unix versions
have a default of one million words of memory and at present this cannot be altered. If a
larger Unix version is required, please email neale@vipbg.vcu.edu for a specia build.
Sometimes more efficient re-specification of a problem can free up workspace.

2.7 Advanced Features

In this section we consider some of the more advanced features of Mx GUI, including
adding non-linear constraints to diagrams, and the use of continuous moderator variables.

Adding Non-linear Constraintsto Diagrams

Inearlier sectionswe saw that it isstraightforward to make one path equal another by giving
it the same name. Itisalso simpleto forcethe estimate of apath to liewithin certain limits
by double-clicking the path and entering boundary constraints. Much less smple is the
addition of non-linear constraintswhich at thistime can be done only by directly editing the
script.
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IN Cco SI VO PC BD PA OA

o o O O O O O O

0.23 0.27 0.27 0.10 0.26 0.37 0.42 0.43

Appears OK ML ChiSq
Group Fit: 90.4152
Fits 90.415 (45.506, 104.864)
Probability 0.000
AIC 52.415 (7.506, 66.864)
RMSEA 0.108 (0.065, 0.119)
Degrees of freedom 19
Free narame ters 18

Figure 2.9 Higher Order Fador Model with norinea constraints imposed such that
the variances of F1 and F2 are constrained to equal 1.0(.24+.87 =1.0)

Figure 2.9shows adiagram with ahigher-order latent fador (H) andtwo first-order fadors
F1 and F2. Suppcse that we wish to constrain the variance of the second-order fadors to
equal unity. One simpleway to dothismight beto eliminate H and all ow thefadors F1 and
F2 to correlate, and give them error comporentsfixed to unity. However, suppcse that the
pathsfrom H were of substantiveinterest themselves, perhaps becaise of reportsfrom other
investigations. Thisexampleisfor ill ustration, so well doit the hard way with nonlinea
constraints. Thedata mme fromHorn & McArdle (1992 and concern the sub-scdes of the
WAIS intelli gencetest, taken by subjeds aged between 16and 28yeasof age. The tests
may be broadly caegorized as verbal (IN: Information; CO: Comprehension; Sl:
Simil arities; and VO: Vocabulary) or spatial (PC: Picture Completion; BD: Block Design;
PA: Picture Arrangement; and OA: Objed Arrangement).

The foll owing steps are necessary:

1. Draw diagram

2. Build script from diagram (To Script)

3. Edit script file:
a Increase NGroups by one to all ow for new constraint group
b. Edit in the constraint group wing MXx script language

4, Runthe job fromthe script

5. View parameter estimatesin the diagram

Themost difficult part of the sequenceis of course 3(b), where knowledge of the Mx script
language and the way that the Mx GUI credes <riptsisrequired. We now give abrief
description d the gpproadch used to implement the cnstraints for this example.

Because the matrix expresson for the mvariances of all the variables (bath latent and
observed) is(I-A ) * S* (I-A™)' we can compute this by equating matrices to those of the
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first group,and entering thismatrix formulain aAlgebrasedion. Moretricky isto extrad
the relevant matrix elements correspondng to the variances of F1 and F2 This can be
adhieved usingthe \part(A,B) functionwhich partitions matrix A ac@rding to therowsand
columns pedfiedinB. Matrix B must have four elements and these identify two corners of
the sub-matrix, so setting the dements of B to 9,9,10,10will extrad the 2x2 matrix from
element 9,9to element 10,10. We know that thisisin fad the sub-matrix that we need by
looking at the variable labels for matrix Sin group 1. Variables F1 and F2 appea as the
ninth andtenth elements of theli st of labels. A secondmatrix algebra statement can be used
to crede the sub-matrix and daceit in matrix T.

It remainsto equate the diagonal elementsof T to unity. Thiswe can do wsing the d2v matrix
function which extrads the diagonal of amatrix to avedor. It isthen simpleto request a
constraint between this vedor and avedor in which every element is 1.0, as shown in the
foll owing lines of MX script:

Title Add constraint to variances of F1 and F2
Constraint Ni=2
Begin Matrices = Group 1
P Full 1 4 ! for the partitioning part
UUnit 12! Two 1.0 elements to equate to variances
End Matrices
! deduce from labels for S above that F1 and F2 are variables 9 and 10
Matrix P 9 9 10 10 ! to be used for partitioning

Begin Algebra;

R= (I-A)~&S; ! computes covariance of all variables, latent and observed
T= \part(R,P);! computes the sub-matrix of R from element 9,9 to 10,10
End Algebra;

Constraint \d2v(T) = U ; ! constrains the diagonal elements to equal U

Option df=-1

! T add this df adjustment because really and truly all we have done

! is put the same constraint in twice, because the paths from H to F1 and
! from H to F2 are equal. A more efficient way would be to only constrain
! one of the variances (F1 or F2) but this is an illustration.

End

The constraint syntax above involvesthe= operator because wewant an equality constraint.
For nonlinear boundary constraints one could use the < or > symbolsinstead.

Once the script has been modified, care must be taken not to overwrite it with a new script
from the diagram. If the diagram is modified, it is necessary to go through steps 2-4 again
to run it, otherwisethe constraint group will lost. However, these steps are much easier the
second time because cut and paste can be used to get the constraint group from the earlier
script.
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A final remark concernsthe use of option df=-1. By default, Mx will add ore observed
statistic for ead nonlinea constraint imposed. Thisaddtion o astatistic isanalogous to
the lossof a freeparameter when two parameters are linealy constrained (equated) Mx
asumes that whatever nontlinea constraints you are using effedively reduces the number
of parameters (or equivalently increased the number of observed statistics) inthe sameway.
In this example we did a silly thing, becaise both constraints were identicd, so we redly
gained no information by adding the second constraint. The df=-1 option correds this
silli ness

Moderator Variables; Observed Variables as Paths

Aninteresting feaure of Mx isthat it allowsthe spedficaion d modelsthat can dffer for
every subjed inthe sample. In some sense, thisisthe extreme case of multi ple groups, and
it has ome interesting statisticd posshiliti es. For one, thistype of modeling is equivalent
to Hierarchicd Linea Modeling (HLM) as spedfied by Bryk and Raudenbush (1992 and
others. This asped of Mx has nat recéved much attention, bu perhaps that will change
now that the graphicd interfacefadlit ates the spedficaion d some of these models.

We will ill ustrate the method with an uninspiring example of interadiontermsin linea
regresson. This example has the advantage that we know the answer and can compare it
with results from standard methods. The standard model of linea regresson with
interadion that we shall useis

y = bx; +bx,+....bx X, +e

where b, istheinteradion parameter of interest. In apath dagram, it is posdgbleto model
these data by pre-computing x,; xx, and fitting a model like the one shown in Figure 2.10.
An aternative goproach would be to alow two pathways from x; to y, one having the
parameter b;, andthe other going through two paths, onewith the parameter b, andthe other
having the individual's data for x, onit. Thus, by path analysis, the model for y would be
equivalent to the model in the eguation. The questionis, how dowe get individual-spedfic
data orto the pathsin an Mx model ?
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covl3

varx2
varxl covl2 O cov23 varx1x2

a2 o

X1 X2 X1*X2
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Figure2.10  Linea Regressonwith InteradionModel with two independent variables,
X1 and X2 andtheir product X1*X2 and ore dependent variable .

Raw data is essential for fitting these ‘data-spedfic’ models. As described in the Mx
manual, two basic forms of raw data may be read by Mx: variable length (‘VL’"), and
redangular (‘Red’) . Redangular isgenerally much easier to generate, andexcept for spedal
cases such as many siblings in afamily or very serious misgngnessit is easier to use. A
.dat file with redangular data might look like this:

1
! Rectangular data file created by Jane Datapro on Sept 31 1997
! using program /home/janedata/mxstuff/makemx.sas

1

Data NInput=4 NObservations=0

Labels X1 X2 X2d Y

Rectangular

1.234 2.345 2.345 3.456

4,321 3.210 3.210 2.109

End Rectangular

The ... indicate the remaining records of the dataset. Note the valuable comments at the
start of the file - very useful for later retradng one's deps. The spedal fedure of this data
fileisthat the secondvariable (Mod) hasbeen included twice(Mod2isidenticd to Modfor
al cases). We aegoingto makeuse of thisvariabletwice- onceasanindependent variable,
and once & a moderator variable. In alinea regression we normally remove the main
effeds of avariable before testing for the presence of interadion, hence the dugicaion.
Again we shoud remember that this $mple exampleis for ill ustration, and that the same
thing could be adieved more eail y with standard software. Themore complex possbiliti es
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that such modeling encompasses could not be easily specified.

Close any diagrams that you have open and start anew diagram[g], hit and open
the nonlin.dat file from the examples directory. Highlight the X1, X2 and Y variables and
click[New]. Then draw a covariance path between X1 and X2 and causal paths from these
variablesto Y. Then add alatent variable M by drawing acircle and draw pathsfrom X1 to
it and fromit to Y. Select the path from the dummy variable to Y and then hit
again. Highlight the remaining unmapped variable, X2d and click [Map]. Thisvariable has
now been mapped to the path from M to Y. The path should be the mapped variable color
(blue by default) and there should be a diamond surrounding the path label to indicate that
it ismapped to avariable. Thetotal effect from X1 to Y now contains both the linear and
the interaction terms. Finally add means to the model; for raw data we must always have
amodel for the means. In the end your figure should look something like (topologically
equivalent to) Figure 2.11.

0.87

Figure2.11 Linear Regression with Interaction; a moderated regression approach.
Variables X1 and X1d are identical in the dataset. Each individual has a
different model because they have different values of X1d.

themodel and be patient; fitting model s of thistypeiscomputationally intensive. One
special thing to note about the printed output and the results on the diagramisthat the value
on the X2d path is that of the last caseinthefile. The results should closely approximate
the values used for simulation, namely b,=.5; b,=.4; b,=.3; and e=.36 More interesting
models would involve moderation of the effects of latent variables, and they may be
specified in exactly the same way.
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3

3.1

Outlineof M x Scriptsand Datal nput

What you will find in this chapter

u Genera rulesfor job structure and syntax
u Detail son hawv to read data and seled variables for analysis

Preparing Input Scripts

Comments, Commands and Numeric I nput

AN

Inpu files dhoud be prepared with the text editor of your choice If you wse a
wordprocesor (such as Word Perfed or MS Word) theinpu fil e shoud be saved in DOS
text (ASCII) format.

You may put comments anywhere in your inpu fil e using the charader "'
The MXx command rocessor ignores:

o All charactersfollowing ! on any line

» Blanklines

* Anything after column 1200

Linesin Mx scripts may be up to 1200 characters long on most systems; the IBM RS6000
compiler has an upper limit of 500 characters, which isthe limit for the AIX version.

The processor is also entirely insensitive to case, except for filenames under UNIX.
Essentially, Mx readstwothings: keywordsand numbers. Unlessexplicitly stated otherwise,
thefirst two letters of akeyword are sufficient toidentify it. Keywordsare separated by one
or more blank spaces. Once the program has identified a keyword you can extend it to
anything you like as long & it doesn't have a bank character in it, so Data and
Data silly words have the same effect.

Quite often, a keyword has the format KEY=123 where 123 is a humeric value to be input.
Thisiscalledaparameter. Mx ignoresall (including blanks) non-numeric charactersfound
between recognition of a parameter and reading a number, so that NI=100 and NInput_vars
a lot of words 100 have the same effect.

Note: The exception to this rule is when it encourters a #define’ d variable, which it will
accet instead of anumber.

Syntax Conventions

The syntax described for commands foll ows these anventions:

o dternatives are represented by /

e optional parameters or keywords are enclosed by { and}

» itemsto be substituted according to the spedfic gpplicdionare enclosed by < and >
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Job Structure

Mx has been written for multiple groups, since genetically informative data generally
comprise information on different types of relatives which form distinct groups. At the
beginning of an Mx script, you have to say how many groups there are with a #\group
statement. A group begins with atitle line that contains from 1 to 1200 characters’ for
reference. The second lineisthe Group-type line, and the group ends with an Output line.
What happensin between varies according to what type of groupitis. Currently there are
3 types.

» DATA - containing datato be analyzed

e CALCULATION - allowing matrix operations for output or to simplify structure

»  CONSTRAINT -for non-linear equality andinequality constraints between parameters

Any number of each type of group can be specified, in any order. Unless one of the
keywords Constraint or Calculation appears on the data line, Mx expects to read a Data
group. Effectively, there are 3 thingsto do:

*  Supply the data

»  Describe the model

* Request options

To do this, the input script will consist of groups, each having the following structure:

TITLE

DATA: indicate group type: data/cal cul ation/constraint

Read and select any observed data, supply labels

MATRICES: declare at |east one matrix

Specify numbers and parameters, starting values, equality constraints

MODEL : define matrix formula: covariance/means/threshold/compute

N o gk~ 0w NP

Request fit functions, statistical output and opti mi zation options, multiplefit mode, save
matrices and job specification
8. END command

Steps 1-3 supply data and are described in Section 3.1-3.5, steps 4-6 define the model
(Section4.1-4.6), and steps 7-8 requestsoutput (Section 5.1-5.4). Constraint and calculation
groups do not read any data, so they omit step 3.

’Or only 500 on the IBM AlX operating system
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Single Group Example
For example, an input file may look like this:

#Ngroups 1
Simple MX example file
Data NObservations=150 NInput variables=2
CMatrix 1.2 .8 1.3
Begin Matrices;
AFull 21
D Diag 2 2
End Matrices;
Specification A
12
Specification D
03
Start .5 all
Covariance model A*A' + D /
Options RSiduals
End

Thiswould fit, by maximum likelihood (the default) afactor model to a covariance matrix
calculated from 150 observations of two variables. The model is shown as a path diagram
in Figure 3.1. Details of this example will be found in the following sections.

Y1 Y2
0 yA

Figure3.1 Factor model for two variables. Free parameters are indicated by X, y and
z. Causal paths are shown as single headed arrows and correlational paths are shown as
double-headed arrows.
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#Define Command

Syntax:
#define <name> <number>
#define <$name> <string>

Number Substitution

Various commands and keywords used in Mx scripts sach for a number. During this
seach,if Mx encountersaletter it will read theword and chedk the dictionary for matching
#define' d words. If theword isfound,the gpropriate number is substituted. If it hasn' t, a
warning will be printed and the search for a number or a#define’ d variable will continue.
Care is neaded with spelli ng!

In multivariate modeling it is quite common that the same matrix dimensions are used in
many different parts of a script. For example, in an oHique fador analysis, with 10
observed variablesand 2fadors, the dimensions of the matrices needed to define the model
are dictated by these numbers. If matrix L containstheloadings, P the @rrelations between
the loadings, and matrix E the residuals, we would require L to be of order 10x 2, P to be
2x2 and E to be of order 10x 10. We might spedfy thisin Mx with a script of the form

Title - factor analysis
Data NInput=10 NObservations=100
CMatrix File=mydata.cov
Matrices
A Full 10 2 Free
P Stan 2 2 Free
E Diag 10 10 Free
Covariance A*P*A' + E /
Start .5 all
End

However, this script could be made more general with a couple of #define statements:

#define factors 2
#define vars 10
Title - factor analysis
Data NInput=vars NObservations=100
CMatrix File=mydata.cov
Matrices
A Full vars factors Free
P Stan factors factors Free
E Diag vars vars Free
Covariance A*P*A' + E /
Start .5 all
End

Gainissmall inthissimple model - we change two numbersto change the number of factors
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and number of observed variables, instead of seven. With more mmplex models, the use
of #define can make scripts much simpler and more versatil e.

String Substitution

If the word foll owing the #define command kegins with a $, the rest of theline (or upto a
comment charader ‘!") is taken to be the value of the #define'd variable. This type of
substitutionis espedally useful because it literally changesthe inpu line. For example, if
the coommand

#Define $var BMI
isfollowed by the command
Select $var -T1 $var -T2 ;
then the line will become
Select BMI-T1 BMI-TZ;

Note how the substitution has omitted the space darader foll owing $var in theinpu line.
If aspace tarader isrequired foll owing astring variable, two spaces soud beusedin the
inpu. To append the contents of a string variable to a mmand, it is Smply a matter of
entering the string variable name & the relevant pasition, for example, if $var is#define'd
as 4 the command:

Rectangular file=myfile$var.rec
will become

Rectangular file=myfiled.rec
Automatic #define

Two commands automaticdly #define variables. Firt, if the #repeat command (seepage
xX) is used, two variables are aitomaticdly defined as the number of the aurrent reped.
Repea_number is #defined as anumeric value, and $Repea_number isa dharader string
of the repea number in question. These feaures fadlit ate the use of the repea number in
scripts, for exampleto read in dfferent inpu files or to change the number of fadorsin a
model.

Sewnd,if the Definitioncommandisused in raw data analysis, any definitionvariablesare
automaticdly #define'd as -1, -2 etc. (correspondng to their position in the Definition
command line) to simplify spedficaion d matrices with definitionvariables. Therefore,
syntax of the form:

Definition age sex ;
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foll owed later in the script by a matrix spedficaion command:
Specify C age sex

would appropriately spedfy C as having ‘parameters’ -1 and -2 which correspondto the
definitionvariables Age and Sex.

#f, #Elsaif, #Else and #Endif Commands

Syntax:

#if <condition>
#elseif <condition>
#else

#endif

Condtiona compilation d parts of Mx scriptsis enabled through the #if, #elseif, #else
and#endif commands. The<condition> part of the cmmand wsesvariablesthat have been
#define' d as either strings (e.g. #define $model Onefac) or as numeric values (such as
#define nvar 3). Testsof numeric condtions may be =, >, or <, which may be optionally
precaded by ~ to indicae not equal, na greaer than (which is equivalent to lessthan o
equal to). For example, the following code might be used to dedare matrices diff erently
acording to the type of model required:

#if $model = orthogonal

S identity nfac nfac

#elseif $model = oblique

S symmetric nfac nfac

felse

Oops! Error: $model must be #defined as either orthogonal or oblique
fendif

Note the the #1 f command reeds to be acompanied by an #endif command and that the
condition operators have aspacebefore and after them. Commands of this type make it
possble to write Mx script ‘templates’ which contain code normally creaed by the more
advanced user and which dces not change from one use to the next, along with a‘ header’
filewhichthelessadvanced user canredlil y edit usingthe Mx GUI MxProjed-Header Edit
menu system. An example script pair of this gort is described on age 150.

#Repeat Command

Syntax:
#repeat <number>
#endrepeat

The#repeat commandisnormally used to read and exeaute the same script segment several
times. Although ddng so might seem futile, it is posgble that the script contains elements
that change eat timethe programisrun. One examplewould bewhere aSystem command
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isexeauted in a script - perhaps to simulate data with an external program which changes
the inpu data for the Mx script. A second example is where the aitomaticdly #define'd
variables $repea_number and repea_number, are used to make the script to read diff erent
data files on successve runs. Third, the $repea_number variable might be used in
combination with a condtiona statements (see dove) eq.,

#if repeat number = 1

! Lines of Mx script to be used the first iteration go here
#elseif repeat number = 2

! Lines of Mx script to be used the second iteration go here
#else

Lines of Mx script to be used for iterations 3 onwards go here
#endif

Notethat the#repeat command reedsto be acompanied by an#endrepeat commandinthe
samefile and nd inafinclude file. Also naethat the#define, #if and#repeat commands
can be used anywherein ascript. An example script using the#i f and#repeat commands
isdescribed on age 146.

System Command

Syntax:
System <commands to be executed>

The System command all ows the MXx script to exeaute external programs by cdling the
system. Under unix, the external programswill be runwith the user' sdefault shell. This
command can be useful to manipulate data between stacked problems, e.g., reformatting
data output by the first job in afile so that it can be read by the secondjobin that file.
Another usewould beto have an external programthat simulatesdata, andto cdl the system
to simulate data prior to runring an Mx script that usesthese data. In conjunctionwith the
#repeat command, multi ple simulations could be run. For example,

#repeat 200

System runsim

Title Mx script to fit model to simulated data
! rest of job goes here

End

#end repeat

would run an external program cdled runsim (under DOS/windows this could be abatch
file, or under unix it might be ashell program) and then runthe Mx script, and reped this
exercise 200times.
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M atrices Declar ation

Syntax:
Begin Matrices; or Matrices= {Group <n>}
<matrix name> <type> <r> <c> {Free/ Unique}

End Matrices;

Matrices must be dedared after reading any datafor the group,and before assgning values
or parameters to matrix elements. All dedared matrices initially have zero for eah
‘modifiable’ element. By default, all matrix elements are fixed. If the keyword Free
appeas, eadh modifiable dement has a free parameter spedfied, starting at the highest
parameter number yet spedfied below 10,000 If the keyword Unique is present parameters
are numbered from 10,000 onvards. Unique helps to kegp parameters from acddentally
being constrained with subsequent spedfy statements. Seepage ?for more detail s on
dedaring matrices.

Matrix Algebra

Syntax:
Begin Algebra;
<matrix name> = {funct} <matrix name> {operator <matrix name> };

End Algebra;

Algebrasedions provide asimple way to evaluate matrix algebra expresgons, as siownin
Appendix C.

In many cases bresking up a compli cated matrix algebra expresson into smaller parts can
improve readability or efficiency or bath. For example, the matrix formula
(I-A)*S*(I-A)"" will find the inverse of twice. When matrix A is smal the loss of
efficiency will be negligible - the extra time taken to re-program will be greater than any
gained in execution time. For large A, the component (I-A)* can be computed as an
intermediate step so that the cpu-intensive matrix inversionisonly carried out once and we
have acompact and readable script. Algebramay be thought of asaspecia form o f matrix
declaration. Each matrix that appears on the left hand side of the = sign is hewly defined
inthis group (it must not have been previously defined). Notethat matrix B, defined in the
first line of algebra, may be used in subsequent lines.
Begin Matrices;

A Full 10 10

S Symm 10 10

I Iden 10 10
End Matrices;
Begin Algebra;

B = (I-A) ;

C = B*S*B" ;
End Algebra;
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3.2 Group Types

Every group hes to begin with a Title line and a Group-type cmmand. In a data group,
these statements may befoll owed by reading of data. These mmmandsaredescribedinthis
sedion.

TitleLine

Thetitlelineis purely for the user's reference, it is printed when Mx prints the parameter
spedficaions and the parameter estimates for a group. It is most useful when there ae
multi plegroups. Thetitlelineisreaognized by itslocation(the beginning of agroup) rather
than by akeyword at the start of aline.

Group-typelLine

Syntax:
Data/Calculation/Constraint {NGroups=n NInput vars=n NObservations=n}

where Calculation defines a calculation group and Constraint a constraint group, the
default being aData group

Every group must have adataline. It has a number of parameters to indicate

i. what kind of group is being input

ii. if itisthefirst group, NGroups, the number of groups, and

iii. various characteristics (the number of input variables NInput vars and the number of
observations NObservations) of the datato be analyzed, if any.

The parameters may be specified in any order, and are summarized in Table 3.2. Note that
Data groupsmust haveNInput vars and NObservations keywords. Constraint groupsonly
requireNInput_vars, and Calculation groups need no parameters except NGroups if it isthe
first group.

Table3.2 Parameters of the group-type linein Mx input files.

Parameter Function Required for group(s)
Data Specifies a data group Data

Calculation Specifies a calculation group Calculation
Constraint Specifies a constraint group Constraint

NGroups Number of groups First group
NInput_vars Number of input variables Data, constraint
Nobservations Number of observations Data

Nmode Number of models Weighted likelihood*

* required for fitting mixture models only, see section 4.3 on page 76
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3.3 Commandsfor Reading Data

Covariance and Correlation Matrices

Syntax:
CMatrix/KMatrix/PMatrix {Full} {File=filename}

In adata group, a covariance matrix may be read using the keyword CMatrix. By default,
CMatrix expectsto read thelower triangle of an NInput vars x NInput_vars matrix, from
theinput file. If the keyword Full appears, then afull matrix will be read. The matrix is
read in free format, that is, the numbers are expected to be separated by one or more blank
spaces or carriage returns. If the keyword File appears, then Mx will read the data from

afile. Thislatter method is generally to be preferred, since it keeps the datain one place.
If the data are changed, it is not necessary to change every script that uses these data.

A FORTRAN format [in parentheses, e.g., (6F10.5)] for reading data must be thefirst line
of adatafile. If thefirst linejust has* or (*) on it, the data are read in free format, i.e.
numbers are separated by one or more spaces or new line characters.

RSN Correlation matrices (KMatrix) and matrices of polychoric or polyserial correlations
(PMatrix) areread in the sameway ascovariance matrices(CMatrix). Althoughthediagonal
elements of these matricesare al 1.0, and could in principle be omitted, they are needed for
MXx to read thefile correctly. See page 126 for an example of special methods required for
maximum likelihood analysis of correlation matrices.

Asymptotic Variances and Covariances

Syntax:
ACov/AVar/Alnv {File=filename}

In order to use asymptotic weighted least squares or diagonall y weighted least squares ( see
p. 85 itisnecessary to read aweight matrix. For compatibility with PRELIS (Joreskog &
Sorbom, 1986 1993, Mx expedsto receve aweight matrix multi plied by the number of
observations. If the File= option is used, a PRELIS output file (creded with the
SA=fiTlename or the SV=f1iTename PRELIS commands) may be read. By default, MX expects
to receive an asymptotic weight matrix (ACov) whose size depends on (i) NInput_vars and
(ii) whether acorrelation matrix or covariancematrix hasbeeninput. If NInput_vars=k,then
if CMatrix has been input, the number of rowsin ACov is

p=k(k+1)/2
or if PMatrix or KMatrix have been input, the number of rowsin ACov is
g=k(k-1)/2.

The weight matrices can thus be very large - of order
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p(p+1)/2 or q(g+1)/2

If you use PRELIS, please be sure to use PRELIS 2 instead of PRELIS 1, as the
off-diagonal elementsof theasymptoticwei ght matricesproduced by PREL1S 1 appear quite
inaccurate at the time of writing (PRELIS 1.20 and earlier). Later versions of PRELIS
output the file in binary format, which must be changed with the bintoasc.exe or
bintoggl.exe utility supplied with PRELIS.

An ACov line makes AWLS the default method of estimation for that group. If AWLS s
requested on the Options linein agroup without an ACov, and error will result. Similarly,
DWLS isdefault if Avar isread.

N Notethatinverti ng the asymptotic covariance matrix can take an appreciableamount of time
for large problems. Two facilities are available to combat this problem. First, theinverse
of the matrix can beread instead. A simple Mx job could be used to invert and save the
inverse, for example:

Commands to invert a 325x325 asymptotic weight matrix
Data Calculate NGroups=1
Matrices
P Symm 325 325
Compute P/
Matrix P File=weight.asy
Output MXZE=weight.inv

The inverse of the asymptotic matrix (AInv), saved in the fileweight.inv could be used in
place of the matrix itself, with acommand of theform: AInv Full File=weight.inv. The
Full keyword is essential here because Mx is agnostic about the symmetry of square
matrices created in calculation groups. It is safer to assume that it is not symmetric to
maintain consistency across applications. The second, alternative approach is to use the
binary save feature described on page 105, which saves the whole job specifications.

A common error in reading data with CMatrix or ACov commands is to read them as full
matrices when they are stored as symmetric, or vice versa. Mx attemptsto be abit smarter
about this process. If a user forgets to put the Full keyword on the CMatrix line, but Mx
detects an Mx-style datafile that was saved in full format, it will read it as full instead.

Variable Length, Rectangular and Ordinal Files

Syntax:
VLength/Rectangular/Ordinal {File=filename} {Highest <numlist>}

Mx will read two types of raw data for multivariate normal maximum likelihood analysis.
Rectangular readsregular data, i.e. where every observation has the same number of input
variables (NInput_vars ontheData line). Missing values may be specified with a. (dot) or
another code (seeMissing command on page 51). Thisisappropriateif therearerelatively
few missing data, or if missing data have been imputed.
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VLength is a variable length record reader, which allows reading of raw data where there
may be many missing values. The default (and mandatory) format for these dataisfree. A
line with comments or * can be placed at the start of thefile, but it will be ignored by Mx
except for printing awarning and thelineitself in the output file. Thestructureof aVLength
fileis:

» number of input variables (k)

» identification codes for the k variables

» oObserved datafor the k variables.

For every case, the number of input variables must be on aline by itself. Theidentification
codes must beintegersthat correspond to codes read by the 1Codes command (see page 83).
For example, afile might contain the following:

3

123 .33 .62 .95
2

231.4-2.2

1

2 .37

Thisexamplereads 3 variablesfor thefirst observation, with identification codes 1 2 3, and
datavalues .33 .62 and .95. The second observation has no datafor variable 1, but supplies
datafor 2 and 3, while the third supplies datafor variable 2 alone. By default, data of this
type are fitted using the raw maximum likelihood fit function (see page 88).

It is quite simpleto prepare VLength fileswith SAS or SPSS. However, caution should be
exercised with SASwhich usesa. for amissing value. Depending on the operating system
under which you are running M x, this dot may produce afileread error or beread asazero.
Here are afew lines of SAS code to output a Vi ength file from an array of two variables
V{2}, either or both of which may bemissing. Thethird and fourth linesneed to be modified
to declare the length of the array and to copy the required variables to the array into it.
Certain applications may also need to change the format of the PUT statement that writesthe
data values.

DATA ONE; SET ZERO;

COUNT=0; NVAR=2Z; /* Number of variables in total !!Change!! */
ARRAY V{2} AT1 AT2; /* Set up array for variables !!Change!! */
DO I=1 TO NVAR: /* Count the non-missing observations */

IF V{I} NE . THEN DO; COUNT+1; END; END;

FILE MXVLFILE; /* Filename for future Mx input !!Change!! */
IF COUNT NE 0 THEN DO; /* Write observations if there are any */

PUT COUNT;

DO I=1 TO NVAR;

IF V{I} NE . THEN PUT I @@; /* Write the identifiers */

END; PUT;

DO I=1 TO NVAR;

IF V{I} NE . THEN PUT V{I} 13.6 +1 @@; /* Write the data values */
END; PUT:

END;
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Note: format statements are not valid for either rectangular or VL files.

Similar to the rectangular command to read raw continuous data, the Ordinal file statement
reads in ordinal data from arectangular file. By default, a. (dot) character separated by
spaces is recognized as a missing value, and this default may be changed by inserting a
Missing command beforetheOrdinal statement. Ordinal datamust be specified by integer
categories, with the lowest category zero. The highest category in the ordinal data is
automatically detected by Mx, but in some cases, especially multigroup analyses, it is
necessary to override this default with auser specified value. Thelargest value in the data
file must not exceed the corresponding value in the highest statement.

Missing Command

Syntax:
Missing=<code>

The missing command may be used to supply acharacter string other than . (dot) to be used
for missing values, e.g. Missing=N/A. Notethat MX responds to the exact character string,
and not the numerical value of that string. For example, if Missing=-1.0 hasbeen specified,
then neither -1 nor -1.00 would be recognized as missing.

Definition Variables

Syntax:
Definition variable <label>

Specification <matrix name> {element Tist} label {element Tist}

This feaure dlows ‘multilevel’ statisticd analyses with VL or rectangular data files.
Essentially, some variables may be assigned as definition variables which can then be used
in constructing the model. Definition variables are automatically #define’d so that their
namescan beusedinSpeci fy statements. A matrix containing adefinition variable changes
for every case in the raw data file. See page 139 for an example that allows continuous
moderators - effectively as many groups as there are cases in the datafile. Labels should
be provided for all variables before using the definition statement.

Contingency Tables

Syntax:
CTable <r> <c> {File=filename}

Mx will read contingency tablesof order r by c. NInput_vars must be 2 for agroup reading
acontingency table. Both r and ¢ must be greater than 1 but they do not have to be equal.
A contingency table contains frequency data (or counts) such that each cell C; indicatesthe
number of observations falling in row category i and column category j. Normally, the
frequencies supplied should be greater than or equal to zero.
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If frequency dataare read directly into the script, they need to start on anew line, following
the CTable <r> <c>line.

Mx automatically handles incomplete ascertainment which the user can flag by supplying
anegative number for cellsthat have not been ascertained (see example on p. 92). Instead
of modeling means, the placement of thresholds on the underlying liability distribution is
specified with the threshold statement, as shown on page 75.

The ordering of the categories should follow the natural numbering of the rows and
columns, so that atable with astrong positive correl ation between the variableswould have
large frequencies on the leading diagonal. Supplying a CTable changes the default fit
function to the likelihood of observing the frequencies assuming a bivariate normal
distribution of liability underliesthe observed presencein acell. Seepage 91 for detailson
fitting structural equation models to contingency table data.

Syntax:
Means {File=filename}

A vector of means, length NInput vars may be read. When fitting models by maximum
likelihood, amatrix formulafor the predicted means may be provided. Thejoint likelihood
of the means and the covariancesis maximized, enabling tests of hypotheses about equality
of means across variables or across groups.

Higher Moment Matrices

Syntax:
Skewness/Kurtosis {File=filename}

Matrices of skewness and kurtosis may be read with these commands. These are provided
for future developmentsin Mx that will allow model fitting to thesetypesof datain addition
to means and covariances. Currently there is no facility to use matrices read in this way.
However, mode fitting with higher moments could be done with user-defined fit functions
(see page 92).

3.4 Labd and Sdlect Variables

Labeling Input Variables

Syntax:
Labels <1list of Tabels>

Labelsmay begivenfor the observed databy issuingal abe command, beforetheMatrices
command. These labels may be used to select variables, for example:
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Data NGroups=1 NInput vars=3 NObservations=171
CMatrix File=Cov.mat

Labels ALC1 ALCZ AGE

Select ALC2 ALCI /

would read the lower triangle of a 3x3 covariance matrix from the file Cov.mat, and label
thevariablesALC1 ALC2 and AGE. ThevariablesALC2 and ALC1 are then selected for analysis,
changing their original order. See also page 82 for details on labeling specified matrices.

Select Variables

Syntax:
Select <numlist or varlist> /

Variables may be selected for analysis using the Select command. The command may be
used to reorder data or to pick areduced number of variablesfor analysis. In either case, a
; or / must end the command. Select acceptsintegerswhich correspond to the order of the
input variable. More conveniently, Select will operate on variable labels (see page 52).
The command will work with raw data as supplied by the Rawdata or VLength commands
(see pages 88 and 49).

Select If

Syntax:
Select If <label> {< = > "< *= 7>} value/
where * denotes not.

Select If may be used in conjunction with raw data (VL or Rectangular) to select asubset of
thedatafor analysis. Thisfeatureisuseful to eliminate outliersformaraw dataset, if acase
number or id variable has been included. For example,

Rectangular File=mydata.rec

Labels casenum BMI skinfoldl skinfold2;

Select If casenum *=253;

Select BMI skinfoldl;

might be used to eliminate all cases where casenumber is 253.

Select with Variable Length Data

In combination with the VL or rectangular data, select changes the identification codes to
consecutive integers starting at 1. For example, if the following Select line was read:
Select 34 2/

aVlength record of the form:

4

1234 .1.2.3 .4

would be changed to:

3

123 .3 .4.2



Outline of Mx Scripts and Data Input

thustheobservation original ly numbered 3 hasbecome observation 1, observation numbered
4 has become observation 2, and observation numbered 2 has become observation 3. Select
will automatically reduce the number of datavectorsif there are no matchesfor a particular
datavector and the codesin the Select line. The final number of vectors and observations
used in the analysisis given in the output file.

Select cannot contain more numbersthan the NInput vars specified on theData line. To
do so would necessarily result in asingular correlation or covariance matrix. Likewise, the
same variable cannot be selected twice.

3.5 Calculation and Constraint Groups

Theuse of calculation and constraint groupsisvery similar the use of groupsthat read data.
All threetypes of group arefully command compatiblewith the exception of commandsfor
reading data, which can be used by data groups alone.

Calculation Groups

The keyword Calc on the Group-type line indicates that the group is used for calculation.
The calculated matrix formula from such a group is printed if the RSiduals command
appears on the Options line. There are no restrictions on the type and dimensions of a
matrix than can be produced with this command (other than memory limits). The result of
the calculation may be used in later groups by using the =%En syntax when specifying a
matrix, where nisthe number of the calculation group. Note that thereisastrict ordering
within the input file; results cannot be taken from a calculation that has not yet occurred.

The Calc group provides a facility for printing out results of matrix operations. Any

calculation group that is not followed by a constraint or data group is not calculated until
the end of optimization, thus avoiding unnecessary waste of computer time.

Constraint Groups

Constraint groups may be used toimpose nonlinear equality or inequality constrai ntsamong
the parameters. Three special operators may be used to impose constraints between
matrices. For example, supposewe wish toimpose the constraint that x>+y? =1 wherex has
parameter specification 1 and y has parameter specification 2. A constraint group to
accomplish this might be:

Constrain parameters to ensure that x*x+y*y=1
Constraint_group

Begin Matrices;

AFull 21

I Iden 11

End Matrices;

Specify A'1 2 ! Put parameters 1 and 2 in to A
Constraint A'*A=I; !Inner product works out x*x+y*y
End Group;
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If we wanted to impose the inequality constraint that x*+y? >1 instead, then we would use
the > symbol in the Constraint statement. Likewise, we could use < to specify aless than
inequality. Only one <, > or = symbol may be used in a constraint statement. To specify
range constraints such as .5< x*+y? <1 it is possible to specify both constraints within the
same constraint statement by concatenating them as two inequality constraints:
Constrain parameters to ensure that .5 < x*x+y*y <1
Constraint_group
Begin Matrices;
A Full 21
I Iden 11
HFull 11
End Matrices;

Matrix H .5
Specify A1 2 ! put parameters 1 and 2 into A

Constraint (A"*A_
H) < (I
A'*A); I Inner product works out x*x+y*y
End Group;

Note that the constraints are made element by element. Using option RS we can see the
results of imposing equality or inequality constraints.

Whenever MX encounters a constraint group, it increases the number of degrees of freedom
by the number of nonlinear constraints. Thisincrease in the number of statistics is based
on the assumption that each constraint identifies a parameter, which may not always be
correct. The DF parameter on the Options line (see page 95) may be used to correct for
failures of this assumption.

NPSOL, the optimization routine, treats constraintsin an intelligent fashion; if it finds the
derivatives of the constraint functions with respect to certain parametersto be zero, it does
not cal cul ate them during optimization. Thismeansthat if some of the specified constraint
functions are always zero, little additional computational cost isincurred.

Careisneeded to make sure that the constraints can be satisfied. If thereisno feasible point
for the constraints - for example, one of them alwaystakes thevalue .5 - an IFAIL=3 error
message isreturned. Oneway to avoid such errorsisto start optimization at a place where
the constraints are satisfied.
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4 Building Modelswith Matrices

What you will find in this chapter

How to declare matrices and |abel them

The structure of the different types of matrix
What the matrix operators and functions do
When and where to use matrix formul ae
Therole of different types of group

All groups, bethey congtraint, calculation, or data, require at least one matrix in order to do
anything. The next few sectionsdescribethetypes of matrix that may be used, the operators
that act on and between them, and ways of putting parameters and numbers into them.

4.1 Commandsfor Declaring Matrices

M atrices Command

Syntax:
Begin Matrices {= Group <n>};
<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}

<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}
End Matrices;
wheren is a previous group number

A group must have the 3-letter MAT command, followed by at |east one matrix definition.
Asused throughout this manual, we recommend using non-abbreviated commands, such as
Matrices.

Matrix names are restricted to one letter, from A to Z. The same letter may be used for
different matricesin different groups. If amatrix isdeclared twice, awarningisprinted and
only the second declaration is kept.

RSN Note that matrix definitions are group specific; for example, matrix A in group 1 does not
have to be the same type or size as matrix A in group 2.

If thekeyword = followstheBegin Matrices command, all matricesinthat earlier group are
automatically declared in the present group.
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Matrix Types
The type of a matrix may be one of the 12 forms described in Table 4.1, and its row and
column dimensionsare specified with integers. Oncethetypeand size of amatrix hasbeen
defined, it cannot be changed.

Table4.1 Matrix types that may be specified in Mx.

Type Structure Shape Number of
Free Elements

Zero Every element is zero (null matrix) Any 0

Unit Every element is one (unit matrix Any 0

Iden Identity matrix Square O

1Zero Identity|Zero partitioned matrix Any 0

Zlden Zero|ldentity partitioned matrix Any 0

Diag Diagonal matrix Square  r

SDiag Subdiagonal (zeros on & above diagonal) Square  r(r-1)/2

Stand Standardized (symmetric, oneson diagonal) Square  r(r-1)/2

Symm Symmetric Square  r(r+1)/2

Lower Lower triangular Square  r(r+1)/2

Full Full Any rxc

Computed Equated to formulain previous group Any 0

Note: number of free éements indicaes the number of elementsthat can be dtered by the
user, wherer isthe number of rows and ¢ the number of columns of the matrix.

Equating Matrices acr oss Groups

Syntax:
<matrix name> <type> <r> <c> = <matrix name> <group numbers
or

<matrix name> <type> <r> <c>

<special quantity> <group number>

Optionally, a matrix may be constrained to equal a matrix previously specified. For
example, we could use the command

A Symm 3 3 = Y2

to equate matrix A inthisgroup to matrix Y in group 2. Inthis example the current group
must be number 3 or greater.

Severa additional options allow constraints to other quantities found in previous groups,
such as the observed or expected covariance matrix. For example, the command
B Full 2 2 = %E1

equates matrix B in this group to the expected matrix of group 1.

The special codesfor constraining amatrix to equal those defined or computed in previous
groups are shown in Table 4.2. These add to the flexibility of Mx.
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Table4.2 Syntax for constraining matrices to special quantities in previous groups.
Symbol Matrix Quantity Dimensions
%0n Observed covariance (data) matrix NI xNI,
%En Expeded covariance matrix NIxNI,
Mn Expeded mean vedor IxNI,
%Pn Expeded propartions under bivariate normal NR,XNC,
AFn Function value 1x1

Note: NI, isthe number of inpu variablesin groupn foll owing any seledion; NR and NC
are respedively the number of rows and columns in a contingency table, and may be
requested only if groupn has sich atable.

Itisespedaly important to naethat noneof the%t, %0, %M, %F and%P equalitiesmay refer
to groups that appear after the current group. When matrices are anstrained to be equal
in thisfashion, the type and row x column dmensions of the ealier matrix areretained. If
the two spedficaions do nd agreg awarning is printed. Both the number of rows andthe
number of columns must be supgied for square matrices, but only thefirst isused to define
the size of the matrix.

Equating Matricesto Computed Matrices

Syntax:
<matrix name> computed {<r> <c>} = <matrix name> <group number>

When matrices are declared with theMatrices command, aspecial type, computed, may be
used to equate to amatrix which was defined within the al gebra section of aprevious group.
Row and column dimensions are set to those of the previously calculated matrix, and may
be omitted when declaring a matrix as computed.

Equating All Matrices acr oss Groups

Syntax:
Begin Matrices = Group <number>;

The usual equating of matrices across groupsis supplemented by a global facility. All the
matrices defined in an earlier group are made availableto the current group. Thisincludes
both matrices that are explicitly declared and those that are created in aBegin Algebra;
...End Algebra; section.

Free Keyword

All changeabl e elements of matrices areinitialized at zero and are fixed parameters, unless
the Free keyword is used, in which case each changeable element is specified asadifferent
free parameter. Examples of the results of using the keyword Free are shown in Table 4.3.
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Table4.3 Examples of use of the Matrices command to specify the dimensions of
different matrix types. Thekeyword Free following each command makes each modifiable
element in the matrix a separate free parameter, numbered in order as shown in the second
column. In the third column, values of elements are shown, with ? representing a free
parameter.

Example command Specification Values
Matrix

A Zero 2 3 Free 000 000
000 000

B Unit 2 3 Free 000 111
000 111

C Iden 3 3 Free 000 100
000 010
000 001

D Izero 2 5 Free 00000 10000
00000 01000

E Ziden 2 5 Free 00000 00010
00000 00001

F Diag 3 3 Free 100 700
020 07?0
003 007

G Sdiag 3 3 Free 000 000
100 700
230 0?70

H Stand 3 3 Free 012 17
103 71
230 71

I Symm 3 3 Free 124
235
456

J Lower 3 3 Free 100 00
230 70
456 ?

K Full 2 4 Free 12314 77
5678 7?7

More detail on specifying parametersin matricesis given in Sections 4.4 to 4.5.
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4.2 Building Matrix Formulae

Readers urfamiliar with matrix algebra may benefit from reading Appendix C, where
examples and exercises are given. Readers familiar with matrix algebra may wish to
examine Tables4.4and 4.5for the variety of avail able operators and functions, and wsethis
sedionfor reference

Matrix Operations

In ordinary algebra, operators sich as + -x and + have an arder of evaluation establi shed
by convention. Multiply and dvide aedore before alditi on and subtraction. Multi ply and
divide are dore in left-to-right order if they appea conseautively, as are aldition and
subtradion. We oould say then, that x and + have priority 1, and + and - have priority 2.
Default priorities can be cdhanged with the use of bradkets (') which spedfy that operations
inside the brackets are dore first. For example, a+bx c=a+bc whereas (a+b)x c= ac+bc.

A similar hierarchy has been establi shed for the matrix operatorsin Mx, and it too may be
revised by the use of bradkets. Table 4.4 shows the matrix operators and their (default)
order of evaluation. Matrix algebra is subjed to cetan rules of conformability -
requirements abou the size and shape of the matrices being multi plied etc. Theserulesare
listed in the right hand column of table 4, where r, denotes rows in matrix A and c,
columnsin matrix B. The number or rows of amatrix (r,) andthe number of columns of
amatrix (c,) are known asits dimensions. Two matrices A and B wherer,=rz and c,=Cg
are said to have the same dimensions.

Table4.4 Matrix operatorsavail ablein M x, together withtheir priority for evaluation.
See 4so Table 4.5for matrix functions.

Symbal Name Function Example Priority Conformability
, Inverse Inversion A 1 r=c

Transpose Transposition A’ 1 none
A Power Element powering A™B 2 none
* Star Multiplication A*B 3 C\=lp
. Dot Dot product AB 3 ry=rg and c,=Cg
@ Kron Kronecker product A@B 3 none
& Quadratic  Quadratic product A&B 3 CA=Fg=Cg
% Eldiv Element division A%B 3 ry=rg and c,=Cg
+ Plus Addition A+B 4 ry=rg and c,=Cg
- Minus Subtraction A-B 4 ry=rg and c,=Cg
| Bar Horizontal adhesion  A|B 4 rA=rg

Under Vertical adhesion AB 4 C\=Cg

A line has been drawn between the first two operators (Inverse & Transpose) and the rest
because inverse and transpose are unary operators, that is, they operate on one matrix. The
rest form a single new matrix from two matrices, and are thus binary operators. These
operators are now described in detail.
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Inverse”

Only sguare matrices may beinverted, kbut they may be dther symmetric or non-symmetric.
Theinverse of matrix A isusually written A™* and impliesthat AA=A* A =1 wherel is
theidentity matrix. Torequest aninversewith Mx, we usethesymbol ~. If theinverse does
not exist (possibly dueto rounding errors), Mx will terminate with an error message. Some
precautions can betaken to avoid this, such as supplying starting valuesthat allow inversion,
or putting boundary constraints on parametersto prevent their taking valuesthat would lead
to asingular matrix.

Transpose ’
Any matrix may be transposed. Thetranspose of A iswritten A’. The order of the matrix
changes from rxc to cxr, as the rows bemme the wlumns and vice-versa.

Power #

All the dements of amatrix may beraised to apower using the® symbad. Essentialy, this
operator worksthe sameway asthe Kronedker product (seebel ow), but elements of thefirst
matrix are raised to the power of thosein the secondmatrix instead of multiplied by them.
It is possible to use negative powers and noninteger exporents to indicate redprocd
functions and roots of elements, bu it is not posgble to raise anegative number to a
nortinteger powver. For example, the abe of every element of amatrix would be obtained
by A7B if B wasa 1x 1 matrix with 3asits only element.

For example, the matrix power A*B is ] ]
a’ ah b9 p"

a' al b' bl

ab
g h c9 ¢ d9 df
cdf ~ (7 | =
I c' ¢! d' d!

e f

ed eh fo fh

el el fl fl]

Multiplication *

* or ‘Star’ is the ordinary form of matrix multiplicaion. The dements of A(mxn) and
B(nxp) are combined to form the dements of matrix C(mx p) using the formula

C. = Zoq A X B,;- Matrices multiplied in this way must be conformable for

multiplication. This means that the number of columnsin the first matrix must equal the
number of rows in the second matrix.

For example, the matrix product A*B

| = |exg + dxi cxh + dxj| = |cg + di ch + d
I

e f exg + fxi exh + fx] ge + fi eh + fj

} axg + bxi axh + bxj ag + bi ah + bj
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Dot product .

Dot is another type of matrix multiplication, which is done element by element. For two
matricesto be multiplied in thisway, they must have the same dimensions. Elements of the
dot product are described by the formula C;; = A;xD;.

For example, the dot product A.D is

ab g h axg bxh
cd| . [i j| = |cxi dxj
e f k | exk fx|

Kronedker product @

Theright Kronecker product of two matrices A e B isformed by multiplying each element
of A by thematrix B. If A isof order (mxn) and B is of order (px q), then the result will be
of order mpxnq. There are ho conformability criteriafor thistype of product. In Mx input
files the symbol  is denoted with the symbol @.

For example, the Kronecker product A ® B is

-axg axh bxg b><h-
axi axj bxi bxj

ab
g h cxg cxh dxg dxh
cdl o |0 | = . . . .
i cxi cxj dxi dxj
e f

exg exh fxg fxh

Lexi exj fxi fxj |

Quadratic product &

Many structural equation and other statistical models use quadratic products of the form
ABA’, and the quadratic operator is both a simple and efficient way to implement
guadratics. Note that E can be any shape, but to be conformable for quadratic product the
matrix B must be square and have the same number of columns as the matrix E.

For example, the quadratic product E& B

g h
sk
]

a

ab] - ;

- [a2g+abi +abh+b?%]
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Element division %

% does element by element division. For two matricesto be divided in thisway, they must
have the same dimensions. Elements of the result, C are described by the formula
C;=A; = D;. If any element of D is zero, the corresponding cell in the result matrix is set
to 10®.

For example, the division A%D is

ab g h a+g b+h
cdl % |i j| = |c+xi d+j
e f kK | e+k f=+l

Addition +
Addition of matricesis performed element by element. For two matrices to be added, they
must have the same dimensions. Elements of the sum, C are described by the formula

For example, the sum A+D is

ab g h a+g b+h
cd|l + [i j| = |c+i d+]
e f k | e+k f+l

Subtraction -

Subtraction of matricesis performed element by element. For one matrix to be subtracted
from another, they must have the same dimensions. Elements of the difference, C are
described by the formulaC;; = A; - D;;.

For example, the difference A-D is

ab g h a-g b-h
cdl - |[i j| = |c-i d-j
e f k | e-k f-I

Note that in Mx there is also a unary minus operator, so that an expression such as -A is
legal. This operation changes the sign of each element of A.
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Horizontal Adhesion |

Bar alows partitioning of matrices. Itsoperationiscalled horizontal adhesion because A|D
isformed by sticking D onto theright hand side of A. For two matricesto be adhered inthis
way, they haveto have the same number of rows. If A (mxn) and D (mx p) are adhered, the
result C is of order (mx (n+p)).

For example, the operation A|D is

ab g h abgh
cd|l | [i j| = [cdi ]
e f k | e f k|

Vertical Adhesion _

Underscoreallows partitioning of matrices. Itsoperationiscalled vertical adhesi on because
A_D isformed by sticking D underneath A. For two matrices to be adhered in this way,
they must have the same number of columns. If A (mxn) and D (pxn) are adhered, the
result C is of order ((m+p)xn).

For example, the operation A_D is

—

_ab_
cd

gh e f

_ v = g h

e f k | i
Kk

Matrix Functions

A number of matrix functions, shown in Table 4.5, may be used in MX. These are useful
for in specialized applications involving user-defined fitting-functions (see p. 92).
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Table4.5 Matrix functions avail ablein Mx.
Restrictions are onrowsr and columns ¢ of input argument.

Keyword Function Restrictions  Result Dimensions
\tr() Trace r=c 1x1

\det () Determinant r=c 1x1

\sum( ) Sum None 1x1

\prod( ) Product None 1x1

\max( ) Maximum None 1x1

\min() Minimum None 1x1

\abs( ) Absolute value None rxc

\cos( ) Cosine None rxc

\cosh() Hyperbdlic cosine None rxc

\sin() Sin None rxc

\sinh() Hyperbdlic sin None rxc

\tan() Tan None rxc

\tanh( ) Hyperbdlic tan None rxc

\exp( ) Exporent (¢) None rxc

\In() Natural logarithm None rxc

\sgrt( ) Square roct None rxc

\d2v() Diagonal to Vedor None min(r,c)x1
\v2d() Vedor to Diagonal r=1orc=1 max(r,c)xmax(r,c)
\m2v() Matrix to Vedor None rex1

\veq ) Matrix to Vedor* None rex1

\vedh() Lower triangle to Vedor None rcx1

\stnd() Standardize matrix r=c rxc

\eval() Red eigenvalues r=c rxc

\eveq) Red eigenvedors r=c rxr

\ival() Imaginary eigenvalues r=c rx1

\iveq ) Imaginary eigenvedors r=c rxr

\mean() Mean of columns None 1xc

\cov() Covarianceof columns None cxC

\pchi() Probability of chi-squared r=landc=2 1x2
\pdfnor() Multivariate normal density r=c+2 1x1

\mnor() Multivariate normal integral r=c+3 1x1
\momnor() Moments of multivariate normal  rx1 rx1

\alli nt() All i ntegrals of multinormal

\aorder() Ascending sort order rx1 rx1

\dorder() Descending sort order None rxmax(1,c-1)
\sortr() Row sort None max(1,r-1)xc
\sortc() Column sort None Variable'
\part() Extrad part of matrix

*vec vedorizes by columns, in contrast to m2v, which vedorizes by rows.

"\part (A,B) takes two arguments. The dements of the 1x4 matrix B are used to define a
redangle within matrix A to be extraded.
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Functions, called with syntax of the form \ func(argument) differ from operators becaise
they take an argument enclosed by parentheses (). This argument may be asingle matrix
name, or a complex matrix formula. The agument is evaluated before the function is
applied, consistent with the rules for using bradets. Functions form a secondset of unary
operators (seepage 61). Descriptions of these functions foll ow.

Trace\tr()
The traceof amatrix is the sum of the dements onthe leading diagond, i.e.

> A

It isonly all owed for square matrices.

Determinant \det()
Properties of determinants, andways of cdculatingthem arediscussedin Appendix C. This
functionis cdculated for square matrices only.

Sum \sum( )
The sum of amatrix isthe sum of al its elements, i.e.,

Y A

i-1 j-1

Product \prod()
The product function d amatrix yields the product of all its elements, i.e.,
I111 A

i1 j-1

Maximum \max( )
The maximum function d amatrix yields a 1x1 matrix containing the maximum of all its
elements.

Minimum \min()
The minimum function of amatrix yields a 1x1 matrix containing the minimum of al its
elements.

Absolute value \abs()
The s functionreplaces all matrix elements with their absolute value.

Trigonometric functions\cos( ), \sin( ) etc.
These functions replace d matrix elements with their appropriate trigonametric
transformation, in radians.
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Exponent \exp() i}
Any matrix is alegal argument for this function which replaces ead element A; by .

Natural Logarithm\In()

Any matrix isalegal argument for this functionwhich replaces ead element A; by In A;.
If an element islessthan 1x10°° then the result isIn (1x103Y). Although error messages
would be more normal in such a situation, this behavior can be helpful in optimization.

Squar e Root \sgrt()
Any matrix isalega argument for this function which replaces eat element A; by \/KJ
If an element islessthan zero, afatal error occurs.

Diagonal to Vector \d2v()
Theleading diagona of any matrix is placed into a column veaor withmin(RbC) rows, i.e.
r or ¢, whichever isless. e.g.

ao0o0o a
if A=(0 b 0 0| then \d2v(A) = [b
00cO (o

Vector to Diagonal Matrix \v2d()
A row or column vector is placed in the leading diagonal of a square matrix. e.g.

a0o00o0
_ OboOO
if E=[a b c d] then \v2d(E) =
00cO
00O0d
Matrix to Vector \m2v()
A matrix is placed in a column vector, by rows. Thus
a
) ab b
if A= then \m2v(A) =
cd c
d

This is similar to the function \vec; which places the matrix into a vector by columns,
instead of rows.
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Matrix to Vector \vec()
A matrix is placed in a column vector, by columns. Thus

if A=

ab
d] then \vec(A) =

o T O 9

Notethat itismoreefficient to use \m2v(A) than \vec(A") and moreefficient touse \vec(A)
than \m2v(A"). Both functions work for matrices of any shape.

Matrix to Vector \vech()
All the elements on the diagonal and below are placed into a vector, by columns. Thus

a
) ab
if A= l then \vech(A) = |c
cd q

Like its counterparts \vec and \m2v, this function will operate on matrices of any shape,
terminating at the last row or column, whichever isthe smaller. Thus

A
ab c

if A={[c d| then \vech(A) =|e
e f d

.f.

Standardize\stnd( )
This operation converts a covariance matrix into a correlation matrix. Replacement of

elements is made according to the formula:

The diagonal elements of A have to be greater than zero, and A hasto be sguare.
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Real Eigenvalues\eval()
The real parts of the eigenvalues of a square matrix are placed in a column vector, in
ascending order of size, smallest first.

Real Eigenvectors\evec()

The real parts of the eigenvectors of a square matrix are placed in a square matrix, where
column j containsthe eigenvector corresponding to eigenvaluej, with eigenvalues sorted in
ascending order of size, smallest first (j=1).

Imaginary Eigenvalues\ival( )
Theimaginary parts of the eigenval ues of asquare matrix are placed in a column vector, in
ascending order of size, smallest first.

Imaginary Eigenvectors\ivec()

The imaginary parts of the eigenvectors of a square matrix are placed in a square matrix,
where column j contains the eigenvector corresponding to eigenvalue j, with eigenvalues
sorted in ascending order of size, smallest first (j=1).

Column Means\mean()
This function computes the means of the columns of a matrix.

Column Covariances\cov( )

This function computes the covariance matrix of the columns of amatrix. Thusif dataare
presented as one line per subject, with r rows for each of the ¢ variables, the output would
be of order cxc.

Probability of Chi-square \pchi(x)

Function \pchi computes the probability of a chi-squared with nu degrees of freedom. Its
argument must be a1x2 vector containing the chi-squared and degrees of freedom. It returns
alx1matrix. Thiscanbeuseful whenwriting parameter estimatesand fit statisticsto afile.

Multivariate Normal Density \pdfnor (A)

The function \pdfnor computes the multivariate normal probability density function (pdf)
given by themultivariate normal distribution. Intheunivariate case, thisisthe height of the
normal curve. Matrix A, theargument of thefunction, isanvar+2x nvar matrix, containing:
(first row) avector of observed scoresx;; (second row) avector of population means;; and
(rows 3 to nvar+2) the population covariance matrix . The pdf is

Izn):linlzexp _%(Xi - Hi)'z'l(xi - “i)

Multivariate Normal Integration \mnor ()

Thematrix function \mnor will compute multipleintegrals of the multivariate normal, up to
dimension 10. Itsinput is structured so that for n dimensional integration, the matrix has
n columns and n+4 rows. Thefirst n rows define the covariance matrix, row n+ 1 defines
the mean vector, thelast three are used to define the type of truncation experienced by each
variable. Thisis best described with an example. The script:
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Test multivariate normal integral function
Data Calc NGroups=1

Matrices
A full 1 2 ! Upper limits
B full 1 2 ! Lower limits

R Stan 2 2 ! Covariance matrix
Z Full 12 ! Means

Compute \mnor((R_Z_ A B T)) /
Matrix R .3

Matrix B 0 0

Matrix A 11

Matrix T 2 2

Option RSiduals

End

|
!
T Full 1 2 ! Type of integral
|
!

computes theintegral of the bivariate normal distribution with correlation .3 from0to 1in
both dimensions. The type parameters (matrix T) are flags that indicate the type of
truncation required:

» Ointegra from - to &

* lintegral fromb; to

* 2integral froma tob,

» 3integra from -« to « (this dimension isignored)

where a and b, are the elements of column j of matricesaand b.

Accuracy is set to six decimals by default. Lower precision may be set with Option
Eps=<value> though it shoud be noted that this optionwill betreaed globally, i.e., for all
such integralsin a particular run.

Moments of the Truncated Multinormal \momnor ()

The matrix function \momnor will compute moments of the truncated multinormal
distribution. Currently, it will work only with 'tail s of thedistribution,though seledionmay
be esent for some variables. Hereis abivariate example:

Test moments of truncated normal function
Data Calc NGroups=1
Matrices
R Symm 2 2 !covariance matrix
M Full 12 !Imeans
T Full 1 2 !thresholds
S Full 1 2 !selection vector
N Full 1 2 '# of abscissae
Compute \momnor((R M T S N)) /
Matrix R1 .51
Matrix M 0 0
Matrix T 1.282 1.282
Matrix S 11
Matrix N 16 16
Option RSiduals
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End

This script requests the covariances and means of individuals sel ected above the threshold
1.282inaN(0,1) bivariate normal distribution. It returnsthe covariance matrix in the first
n rows, and the means in row n+1.

Note: thisfunction can give incorrect results when the number of abscissae issmall, or the
threshol ds are extreme (more than 3 standard deviations from the mean). CPU timewill go
up with the number of abscissae, but 64 is the maximum (and it goesin jumps 16 20 24 32
48 64, along with some smaller jumps below that). Mx automatically assigns the number
of abscissae to: i) 16 if you enter O or less, ii) 64 if you enter 64 or more, and iii) the next
lowest value if you happen to chose an intermediate value (e.g. it will pick 24 if you enter
30).

All Intervals of the Multivariate Normal Distribution \allint()

It isoften necessary to computethe probabilities of all the cellsof amultivariate normal that
has been dliced by avarying number of thresholdsin each dimension. Thesethresholdsare
moreformally called hyperplanes. Whileit is possibleto usethe \mnor function to achieve
this goal, it can be more efficient and more convenient to use the \allint function. The
argument to the \allint function must be a matrix with as many columns as there are
variables, and with as many rows as the number of columns plus 2 plus the maximum
number of thresholdsto beevaluated. Thegeneral formis\allint(R X T A) whereRisthe
m x m covariance matrix of m variables, X is the mean vedor, T is arow vedor whose
elements t; spedfy the number of threshadsin dmensioni, and A contains the thresholds
andis of order (max(t;) x m).

\Al1int returnsthe propationsin all the cdls, cycling from lowest to highest with the last
variable in R changing most slowly. For example, the foll owing script:

#NGroups 1
#define nvar 2 I number of variables
#define maxthresh 3 ! maximum number of thresholds
Test of allint function
Calculation
Begin Matrices;
A symm nvar nvar
N full 1 nvar
X full 1 nvar
T full maxthresh nvar
End Matrices;

Matrix A1 0 1 ! identity matrix here
Matrix X 0 0 I zero means
Matrix N 2 3 ! first dimension has 2 thresholds (3 categories), second has 3
Matrix T
-1.282 -2.323 ! thresholds are -1.282 and 0 for first dimension,
0 0 ! and are -2.323, 0 and 1.282 for second dimension

10 1.282 !
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Begin Algebra;
C=\allint(A X NT) ;
End Algebra;
End Group

will return:
MATRIX C
This is a computed FULL matrix of order 1 by 12
[=\ALLINT(A X N T)]

1 2 3 4 5 6 7 8 9
1 0.0010 0.0490 0.0400 0.0100 0.0040 0.1960 0.1601 0.0400 0.0050
10 11 12

1 0.2450 0.2000 0.0500
containing the desired probabilities.

Ascending Order \aorder ()
This function gets the ascending order of acolumn vector. For example, \aorder(A) with

6 3
A =|1| would yield | 1
3 2

Descending order \dorder ()
Thisfunction getsthe descending order of acolumn vector. For example, \dorder (A) with

.6 1
A =|.1| would yield | 3
3 2

Sort Rows\sortr()

Used to sort acolumn vector or matrix by rows. If avector, the vector elements themselves
are sorted. If amatrix, the first column is taken to be the sort order - and must contain a
permutation of the integers 1 to the number of rows, as might be extracted using, e.g.,
\aorder() above.

Sort Columns\sortc()
This function works the same way as \sortr() but by columns.

Extract Part \part(A,B)

Thisfunction extractsarectangular sub-matrix of matrix A (formerly thiswaspossible only
by pre- & post-multiplying by elementary matrices). Onehasto be very careful toinitialize
matrix B before this statement is given, because the result dimensions are needed to check
syntax. To pre-initialize B you would use the following job structure
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Title
Calculation NGroups=1
Begin Matrices;
A Symm 3 3
B Full 4 1
End Matrices; I <- End matrix definitions with this statement
Matrix A
1
23
456
Matrix B2 13 3
Compute \part(A,B) / ! <- Compute statement *after* matrix statement
Option RSiduals
End

Theformat for matrix B isrow, column, row, column so in this exampl e the rectangle from
2,1 (row 2, column 1) to 3,3 will be extracted, giving

235

456

Note that the elements of B may define any two opposite corners of a submatrix of A. To

some extent, the \part() function is binary, but we prefer to list it with the other matrix
functions.

4.3 Using Matrix Formulae

A matrix formulaisaseguence of matrix names and matrix operatorsterminated by a semi-
colon. For example
A*B + \m2v(C);

Covariances, Compute Command

Syntax:
Covariances/Compute formula;

The covariance command uses the matrices specified following theMatrices command and
special symbols to perform operations or functions on or between them. A Covariance
statement may contain a single matrix and no operations, or it could be very complex. The
command may extend over several lines and must end in a ; or /. Compute is the
recommended keyword for cal culation groups, to make reading scripts easier for humans.

The primary method of carrying out matrix algebrais within an algebra section (see page
46). Matricesthat appear on the left hand side should not already exist in that group.

M eans Command

Syntax:
Means A formula;
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The Means command operates in the same way as the Covariance command. It exists to
facilitate the modeling of means. All the matrix operators and functions (Section 4.2) may
be used just as when specifying amodel for covariances. A ; or / must end the command.
Currently, Mx will do nothing with model sfor meanswhen applyingthefunctionsLS, GLS,
AWLS, DWLS. Only theML, US and RM fit functions make use of models for means.

Threshold Command

Syntax:
Threshold A formula;

The Threshold command operates in the same way as the Means to specify thresholds. It
enables modeling of thresholds when fitting to contingency table data. All the matrix
operators and functions (Section 4.2) may be used just as when specifying a model for
covariances. A ;or / must end thecommand. Threshold cannot be used with any fit function
other than contingency table ML, which is used when CTab1e data have been supplied (see
chapter 5).

Specia restrictions apply to the dimensions of the matrix calculated in the Threshold
command. The result must have 2 rows and must have at least d columns where d=max
((r-1),(c-1)), in other words, at least one less than the number of rows or the number of
columns in the contingency table, whichever isthe greater. Thefirst (r-1) elements of the
first row of the matrix will contain the thresholds that separate the rows. The first (c-1)
elements of the second row of the matrix will contain the thresholds that separate the
columns. These elements are unstandardized row and threshold estimates, which may be
standardized by dividing by the square root of the product of the two diagonal elements of
the expected covariance matrix calculated by the Covariance or Constraint statement. Use
of unstandardized threshol dsall owsthetesting of model sthat predict differencesinvariance
between groups, but have equal thresholds.

& Theuser should take careto supply starting values for threshol ds that increase from left to

right in both rows of the matrix calculated by the Threshold command. Ideal starting values
are those that, when standardized, mark the z-scores on the normal distribution
corresponding to the cumulative frequencies of the normal distribution of the row totals
(first row of the calculated matrix) or the column totals (second row of the calculated
matrix). For example, if the following contingency table was supplied as data:

CTable 3 2

20 180 40

360 20 180

then appropriate starting values for 2 row thresholds would be -.67 and +.67 (z-scores
corresponding to the lower 25% and 75% of the normal distribution), and -1.28 would be
appropriate for the starting value of the column threshold (z-score corresponding to the
lower 10% of the normal distribution). Therefore if the threshold model was simply T, we
would declare

T Full 22

and use

Matrix T -.67 .67 -1.28 0

toinitializeit.
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Weight command

Syntax:
Weight <formula> ;

where formulais alegal matrix algebraformula

The fundamental assumption of fitting a model to a population is that there is only one
model. However, the population may consist of a mixture of groups which differ in the
parameters or the entire structure of the model. In M X, the weight command, coupled with
the Nmode1 parameter, allow analysis of such mixtures when the raw data are available.
NMode1 controls the number of models suppased to exist in the popuation. The predicted
means and covariances are simply verticaly stadked in the usual matrix expresson for the
means and covariances. For example, if threevariableswere being studied with ore model,
the predicted mean vedor would be of order (1x3) and the predicted covariance matrix
would be (3x3). If two models are being used, the predicted mean vedor shoud be (2x3)
and the predicted covariance matrix (6x3). MX chedks that the size of the predicted
covariance andmean vedorsagreewiththeNMode1 andNInput (including any changes made
with Select/Definition statements). Weight allows modeling of the likelihoodthat a
particular observed vedor is a member of a particular model class The weight matrix
expresson shoud evaluate to a vector of order (N\Mode1x1). The log-likelihood for a
particular vedor then becomes:

Nmodel

Nmode 2 In(w L)

i=1

InL

where w, isthe weight, L, isthe likelihood undyr the i™ model.

Often, theweights used will refled simple propartions, and wsualy Xw;, = 1. (seepage 141
for an example). Sometimes, covariates may be used to compute the weight applied to a
particular model. Anexampleof suchweightingisquantitativetrait loci analysiswherethe
probability that apair of siblings have 0, 1 or 2 alelesin common at a particular place on
the genome can be used to weight their likelihood under three models (Eaves et al., 1996).

Frequency Command

Syntax:
Freq <formula> ;

where formulais alegal matrix algebraformula

For maximum likelihood analysis of raw continuous data, it is possible to enter aformula
for the frequency of the individual observations. For a constant frequency that does not
change across the individual cases, this formula could be a scalar (1x1) matrix with the
weight in it. More commonly it is desired that the frequency changes across the
observations, in which casethe use of definition variablesto assign variablesread in asdata
to the elements of matrices may be used.
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4.4  Putting Numbersin Matrices

This section describes three methods of entering numbersinto matrices (see Section 4.5 for
how to specify elements of matricesto befree, fixed or constrained parameters). In Section
3.1, we saw how matrices could be declared asone of 11 types, such asidentity, symmetric,
diagonal or full (see Table 4.1), and how their dimensions (rows, r and columns, c) were
specified. Oninspection of thetable, we seethat typesZero, Identity Identity|Zeroand
Zero|Identity (IZ) have no free elementsat all. For example, there is nothing more to
know about an 17 matrix which has 2 rows and 4 columns. It looks like this:

1000
0100
and it cannot be changed at all. If it was altered, then it would no longer be an 17 matrix.

All six remaining matrix types have modifiable elements which may be altered with the
commandsMatrix, Start or Value. Thenumber of modifiable elementsvariesaccordingto:
*  The number of rows and columns in the matrix

*  Thetype of the matrix

All modifiableelementsof amatrix areinitialized at zero. Theorder of elementsinamatrix
isleft toright, by rows. For example, asymmetric (3x 3) matrix would be read as:

1

23

456

See Table 4.3 for more examples on the patterning of matrices.

Matrix Command

Syntax:
Matrix <matrix name> {File=filename} <numlist>
where <numlist>isa freeformat list of numbers.

Note that different syntax isrequired in multiple fit mode:
Matrix <group number> <matrix name> {File=filename} <numlist>

TheMatrix command suppliesalist of valuesfor the modifiable elements of amatrix. The
list length required varies according to matrix type, and size as described at the start of this
Section, on page 77. For example, suppose we specify adiagonal matrix A with 3rowsand
3 columns. Thefourth columnin Table 4.1 showsthat the number of free elementsisequal
tor for diagona elements, so we supply r elements. The command lines

Matrix A .3 59

or, equivaently

Matrix-I-would-Tike-to-change-is A

0.3D+00 5 9.00000000

would result in matrix A as:
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300
050
009

TheMatrix command operates regardless of whether el ements have been specified asfixed
or free parameters.

Matrix will read its elements from a file with a FORTRAN format on thefirst line. Such
files may have been produced by an earlier run of MX, or by another program. LISREL
matrix output files (produced by commands such as gamma=filename on the LISREL OU
line) are fully compatible. The files must contain at least as many numbers as required to
fill the changeable elements of the matrix specified (see page 77).

Mx aways expectsaformat, soa* should be supplied for matricesin free format (numbers
separated by blanks and carriage returns).

Start and Value Commands

Syntax:
Start/Value <value> <element Tist>/ All
where <element 1ist> consists of matrix elements (e.g. A 1 2 3) and may include the T0

keyword

In alarge matrix, it is not convenient to provide avaue for al the dements of a matrix,
when only afew need to be modified. Under these drcumstances, it is easier to explicitly
change elementsby name. Elementsmay bereferred to by upto threesubscripts, acarding

to the syntax
A {<group>} <row> <col>

If the matrix youwish to refer toisin the aurrent group, the group number may be omitted.
The numbers <group> <row> <col> may be separated by any number of non-numeric or
blank charaders, sothat, for example, to pu .5inrow 2 column 3 d group IsA matrix, you
could enter:

Value.5 A 123

will work the same &

Value.5 A(1,2,3)

N.B. It isonly possible to modify matrices declared in the current or previous groups.
Value andStart reaognize #define’ d variables (seepage 42). For example. We could have
the statements

#define first 1

#define rowsinA 6

#define colsinA 10

at the top of the script, and then

Value 1.5 A first 1 1 to A first rowsinA colsinA

would set 1.5 to al the fixed (non-free) elementsof A, from A 1 1toA 6 10.
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The difference between Start and Value lies in their treatment of elements when the
keywordsALL or TO are used (- isasynonym for T0). With the keyword ALL, Start assigns
astarting value to every free parameter specified at that point in theinput file. Value does
the opposite -- it assignsits value to every fixed matrix element specified up to that point.
Although Start doesthe same thing if the TO keyword is specified, i.e. only apply itsvalue
to free parameters, Value behaves differently. It will assign avalueto all elementsin the
same specified range, free parameter or fixed.

The T0 keyword should be used only to specify arange of matrix elementswithin the same
matrix.

45 Putting Parametersin Matrices

Parall €l to the placement of numbersin matricesdescribedin Section 4.4, therearefacilities
for putting parametersin matrices. Note also that all modifiable elements of a matrix can
be specified asdifferent free parameters using the keyword Free after the matrix isspecified
(see Section 4.1), and that building models with thisin mind can be much faster and more
flexible (see Chapter 1).

Pattern Command

Syntax:
Pattern <matrix name> {File=filename} <numlist>
where<numlist>isalist of 1'sand0's.

Note that different syntaxis required in multi ple fit mode:
Pattern <group number> <matrix name> {File=filename} <numlist>

ThePattern commandisasimplemethod that hasthe same syntax asthe LISREL command
onwhich it was based. Following the Pattern command,the user must provide the mrred
number (seeMatrix command page 77) of 1'sand Osfor that matrix. A 1 (or any non-zero
value) indicates that the dement is a free parameter (which may be mnstrained to equal
ancther freeparameter - seethe Equate command on page 80), and a O indicates that the
element isfixed.

Fix and Free Commands

Syntax:
Fix/Free <value> <element Tist>
where<element Tist>isalist of modifiable matrix elements

The Fix and Free commands operate directly on specific matrix elements or sets of matrix
elements. Fix makes a parameter fixed (if it was Free before) and Free makes an element
afree parameter to be estimated. Matrix elementsarereferred to by group, row and column
as described in page 78. The keywords TO and ALL may be used to specify ranges of matrix
elements to be fixed or freed. See page 105 for aternative methods to fix parameters.

For example, suppose in group 1, matrix A was defined as symmetric, with 4 rows and
columns. Initially it would be patterned with zeroes throughout. The command
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Freeal2l-al43
would give the following pattern:

36
4 7
58
80

if this command was followed by

Fix Al42

the parameter specification would become:
36
40
58

6 080

Insymmetric matrices, referencesto theupper trianglearelegal ;anything doneto an element
one side of the diagonal (A;) is done to the corresponding element on the other side (A;).

Equate Command

Syntax:
Equate <matrix> {<gp>} <r> <c> <matrix> {<gp>} <r> <c> ...} }

In order to constrain matrix elements to equal one another, the Equate command may be
used. Itsprimary purpose isto specify equality constraints among parameters, but it can be
used to copy anumeric value from one matrix element to another. Thereisabig conceptual
difference between the first element specified in alist and the others. The fixed or free
status of thefirst element is given to the remaining elementsin thelist, bethey fixed or free.
If thefirst element is afree parameter, the same parameter is copied to the other elements.
If the first element is fixed, then awarning message is printed, to the effect that all other
elementswill be fixed. Thevaluein thefirst element is then passed to the other elements
inthelist. TheEquate command may be used within matrices, or across matricesin the same
group, or across matrices in different groups. Note that it is not possible to use Fquate to
make an immovable element (such as an element of a matrix specified as type 1D, or an
off-diagonal element of a diagonal matrix) into afree parameter.

For example, given matrices specified in group 1 asfollows:
Begin Matrices;

A Symm 3 3 Free

B Full 2 4

I Identity 6 6
End Matrices;
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the following Equate statements are legal:

Equate A1 1B(2,2) B 14

Fquate B2 1A 123

Equate BANANA 2 2 APPLE 1 11

However, the following areillegal:

Fquate A1 1122 (9

Equate I55B 11 (b)

Fquate A12C11 (¢

Fquate A4 4B 11 (d)

Equate A22G4 11 (e

They fail because: | isan identity matrix (a& b), C has not been specified (c), A does not
have 4 rows and columns (d), and it is not possible to refer to an element of a matrix in a
later group ().

For large models with many constraints it is often more efficient to use the Specification
command, or to seek repetitive structuresin the model matricesand use partitioned matrices
(see Chapter 1), or both. The kronecker product can be particul arly useful when specifying
repetitive partitioned matrix structures.

Specification Command

Syntax:
Specification <matrix name> a { b {c}}
where a, b and ¢ are not necessarily distinct integers.

Note that different syntax isrequired in multiple fit mode:
Specification <group number> <matrix name> a { b {c}}

Following the Specification command, the user supplies alist of numbers that variesin
length according to the dimensions and type of the matrix (see Section 4.4). If azero is
supplied, it indicates that the element is to be fixed. Non-zero elements refer to free
parameters, and the same number refersto the same parameter. For example, the command
Specification A

123000

000321

would be equivalent to the statements

Pattern A
111000
000111
Equate A1 1A?2
Fquate A1 2 A2
Equate A1 3 A2
The second method becomes tedious and error-prone in large models.

6
5
4

Note that the Specification and Pattern commands cannot be mixed in the same Mx job.
Thisisfor safety, because the opportunities for user error are too large.
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Boundary Command

Syntax:
Bound Tow high <parlist> / ALL
where<parlist>isalist of matrix elementsor alist of parameter Specification numbers.
Boundary Constraints
By default, parameters to be estimated are constrained to lie between -10000 and +10000.
These limits can be increased or decreased with the Bound command. Boundaries may be
supplied more than once for any parameter, but only the last Bound statement referringto a
particular element isused. For example the statements
Boundary -1 1 all
Boundary .35al46alb6
would change the limitsfor all parametersto -1 and +1, except those (if any) in elementsA
14 6andA 15 6. TheTO syntax may be used to specify ranges within matrices, so that
Boundary 0 1 X 1 2 to X 16
would make parametersin all elementsbetween X 1 2 and X 1 6 lietake values between
zero and one. If the Specification command has been used to specify parameters in
matrices, then it may be easier to refer to parameters with these numbers in a Bound
command. Thus
Specification A
0246
2067
Boundary 0 10 2 4
would be permitted as amethod of bounding parameters 2 and 4 to lie between zero and ten.
Linear and Non-Linear I nequality Constraints
See page 54 on the use of constraint groups to implement inequality constraints.

46 Labd Matricesand Select Variables

Labeling Matrices

Syntax:
Labels Row/Column <matrixname> <label-1ist>

After matriceshavebeen declared, whether withinaMatrices or Algebra section, labelsmay
be given for the row or column (or both) of any matrix that has free elements. Matrices
without freeelements(Zero, Identity, Identity|Zero, andZero|lIdentity andUnit) are
never displayed so labels provided for these matrices will not appear on the output. The
label-list contains|abel s separated by blanksor carriagereturns. Labelsmust not beginwith
a number and may be up to 8 characterslong. More characters can be read, but Mx only
regards the first eight as significant, and will only print the first eight on the output.

Labels may be given for the observed data by issuing al abel command before the matrices
command, as described in Section 4.6.
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| dentification Codes

Syntax:
ICodes <numlist>

where <numlist>isa number list of length NInput vars.

The ICodes command may be used in conjunction with the VL or rectangular datato specify
anon-standard structure of the expected covariance matrix. It may be thought of asaselect
command which operates on the predicted covariance matrix and predicted mean vector.
By default, the identification codes for the covariance matrix are1 2 3 4... For example,
if NInput vars=3 then by default the expected covariance matrix has a structure like this:

V2
C23 V3

From which structure it would be possible to read datain aVLength file that had forms:

—_

N

w

N
—
N

w
—
w

w
N
w

3.1.2.3
any of these could bereordered. For example, if thefollowing VL ength datawereinput:

!\)% R WMNNF,L NN WRF N
o N

31.9 .4
Mx would generate a covariance matrix of the form

3 1
3 V3
1{C, V,

if means are being estimated, they will also be selected appropriately, in this case selecting
Hs,l4; from an initial vector (L, K, Hg)-
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The ICodes command all ows the default order 1 2 3... to change, making an infinite
variety of inpu data vedors readable. The repetition d a number is most useful for
pedigrees of variable structure, for example, if the model generatesthe mvariancebetween
two parentsandtwo chil dren, datathat come from famili eswith morethan two chil dren may
be handed. In this case, the ICodes command would be:

ICodes 1 2 3 3

Andthusthe mvariance matrix looks like this;

F M C G,

F Vﬁ

M [ Cry Vi

Cl CFC CMC Vc

C, Cec Cuc Cec Ve

If the following VLength data were read:

3

333 .2 .4 .6

then Mx would crede the foll owing covariance matrix for this data structure:

C1 CZ C3
C1 VC
C2 CCC VC
C3 CCC CCC VC

The fad that two 3s have been given all ows the generation o the expeded covariance
matrix between any number of individuals with code 3.
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5 Optionsfor Fit Functionsand Output

What you will find in this chapter

Details on the built-in fit functions

How to use other fit functions

How to increase or decrease the output
Confidence intervals and standard errors

Power calculations

Changing the technical optimization parameters
Fitting submodels with multiple fit

Writing matricesto files

Saving jobs and results to binary files

How to create RAMpath diagrams

5.1 Optionsand End Commands

Syntax:

Options <multiple> <fitfunc> <statout> <optimpar> <write> End \

where <multiple> starts multiple fit mode, <fitfunc> specifies the fit function, <statout>
requests statistical output, <optimpar> requests optimization parameters, and <write>
specifies the filenames to write matrices to files

The Option lines of Mx allow the specification of a wide variety of keywords and
parameters to control the type of fit function used, the amount of output requested, file
names for result matrices, and many others. TheOption command does not signify the end
of a group, so several Option lines may be given within any group. Option commands
should follow Model or Covariance statements, and should not be followed by Bound
commands. To end agroup, the End Group; command is used, for example,

Option Mxa=Afile.out
Option RSiduals NAG=30
End Group;

5.2 Fit Functions; Defaults and Alter natives

Thefit function for agroup is automatically set according to the type of datathat are read.
For example, if covariance matrices alone are read, the default is maximum likelihood.
Table 5.1 shows the default fit functions selected by Mx for a given datainput. Note that
the method may change between groups. If afunction that does not asymptoteto y* (e.g. RU
or RM) isused in any group, then no y? probability is given at the end of optimization. In
general, the default fit function is appropriate for the data supplied. Mx does not provide
for atering the input data from one type to another (e.g. converting a covariance matrix to
acorrelation matrix). However, itisasimpletask to write aseparate Mx script to makethis
conversion.
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Tableb5.1 Default fit functions according to the type of data that have been read.

Input data Default fit function
CMatrix, KMatrix or PMatrix ML

CMatrix, KMatrix or PMatrix with ACov AWLS

CMatrix, KMatrix or PMatrix with AVar DWLS

Rawdata, VLength or Rectangular RM

CTable ML,

CMatrix - covariance matrix; KMatrix/PMatrix - correlation matrix; ACov - asymptotic
covariance matrix; Avar - asymptotic variance matrix; Radiata - Raw data; VLength -
variable length data; Rectangular - rectangular file; CTable - corntingency table;

ML - maximum likelihood AWLS - asymptotic weighted least squares;, DWLS - diagonal
weighted least squares; RM raw maximum likelihood ML - maximumlikelihoodassuming
bivariate normal li ability.

Standard Fit Functions

Thereareseveral goodintroductionsto the propertiesof diff erent fit functions(e.g Joreskog
& Sorbom, 1989 Bentler, 1989. Controversy existsabou therel ative meritsof thediff erent
methods in the faceof assumptionviolations (seeKaplan, 1990, andit seenswisefor the
user totrea thisinformationin the sameway asawhitewinefromthe Loire (drink yourgest
available). Currently, maximum likelihood (ML) is showing robustnessin the face of
violations of the assumptions of multi variate normality. Asymptotic weighted least squares
(AWLYS) generally performs better in the presence of kurtosis, but can be & least as badly
aff eded by skewnessas ML. Seehowever, simulationwork by Rigdonand Ferguson(1997)
for problems with tetrachoric correlations.

In the foll owing sedions, the cdculation d the fit functions is described, where Sis the
ohserved covariance matrix, X is the expected covariance matrix, tr(A) indicates the trace
of and |A| indicates the determinant of matrix A. S and X are of order p and df is one less
than the sample size used to calculate S.

Least Squares LS
The unweighted least squares fit function is calculated by the formula:

LS - df (LZZ)Z)

Maximum Likelihood ML
When model fitting to covariance matrices, the maximum likelihood fit functionis

ML = df (InjZ] -In|S] +(tr (S7Y)) -p)
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and thisis modified when both a mean vector x and a model for the means | (see page 74)
are supplied, this function is augmented to become

MLc,y = df (InlZ] -In|S| +(tr S2°%) pa (X W)/ Z7Hx -p) +1)

In order for the ML fit function to be calculated, ¥ must be positive definite. If, during
optimization, the determinant of Sislessthan 10°°then Mx uses apenalty function or other
methods to try to steer optimization back towards a positive definite solution. The penalty
functionis

-30
100[ p2+1033(—10 ‘|S|)]
=

If the starting values begin optimization in this region, it is difficult for the optimizer to
escape this high plateau, so optimization may fail. To avoid this, starting values may be
revised or the LSML fit function may be used to obtain sensible starting values for ML
estimation. LSML first fits the model by least squares, then by maximum likelihood.

Generalized least squares GL S
Generalized least squaresisbased on the principlesof Aitken (1934-35); see Browne (1974)

_Q-1yn2
GLS:tr(I S2)

GL S operates for covariance matrices only.

Asymptotic weighted least squares AWLS
Asymptotic weighted least squares follows from work by Browne (1982, 1984) and others.
Effectively, the variance covariance matrix of the observed summary statisticsisused as a
weight matrix W. Formally the fit functionis

n i n Kk
AVVLS:ZEEE(S E)lekl(skl kl)

i=1 j=L k=1 11

By default, if a correlation matrix (KMatrix or PMatrix) is supplied, the above formulais

modified to
n i-1 n k-1
AWLS,y = 2221' 2%‘(, EIWik(Sy -5 +2(L %)
i j =

The term %(1—):“)2 exists to constrain the elements of the diagonal to equal one. If the
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model failsto meet this constraint, thefit function isinflated. MX prints the amount of the
fit function that is dueto this component of model misspecification. The second termisnot
calculated (and does not contribute to the fit function) if the keyword Diagonal appearson
the Option line.

An aternative approach to maintaining a diagonal of ones would be to standardize the
expected covariance matrix before calculating the AWL Sfit function. Mx does thisif the
keyword Standardize appearsontheOptions line. Some carewith starting valuesisneeded
here, because the solution for a model standardized in this way is necessarily not unique.
A third approach would be to use a nonlinear constraint group (see Section 3.5) that
constrains the diagonal elements to equal unity.

Diagonally weighted least squares DWLS

Diagonally weighted | east squaresisasimplified form of AWL Sfor usewithlarge problems
where the AWLS matrix becomes unmanageably large. It is a compromise with less
statistical validity than AWL S and should be used with caution. Select doesnot work with
DWLSto discourageitsuse. Thefit function for DWLSissimply:

DWLS = 3 IS, -5 Wy (S, -%)

i-1j-1

whereW |sad|agonal matrix of variances of the observed covariances. Y 12‘4 _, isreplaced
by Y. ZZJ ln‘ acorrelation matrix is supplied as data.

Least Squares- Maximum Likelihood LSML

Thisfit function starts with unweighted least squares, and takes parameter estimates from
the solution as starting values for maximum likelihood estimation. This method is useful
to avoid havingto specify starting valuesthat generate apositive definite covariance matrix.
Its disadvantageis that it consumes more computer time than would supplying appropriate
start values and using ML alone. Though more robust to bad starting values, it is not
infallible; optimization is not (yet) an exact science.

Maximum Likelihood Analysis of Raw Continuous Data

When we have asample of complete multinormal data, the summary statistics of meansand
covariance matrices are sufficient statistics to obtain maximum likelihood estimates of
parameters (see the keyword ML above). It iscommon practice to remove from analysisany
subject that has missing data. However, there are occasionswhen missing dataresultinthe
omission of asignificant amount of datafrom analysis. If the number of types of missing
datais small, for example, if there are really two sub-populations, one that has data on 6
tests, and onethat | acks data on the fourth test, then covariance matrices could be computed
separately for the two popul ations and model sfitted separately to the different groups. Mx
isflexible, allowing different groups to have different numbers of input variables.

This multi-group approach breaks down if the number of sub-populationsis large and the
sample size for each group istoo small to estimate a positive definite observed covariance
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matrix (this happensif the number of variables exceeds the number of subjects). For this
reason, a number of methods of handling incomplete data are provided in Mx. RM (raw
maximum likelihood) isreally an extension of the multigroup method described above, but
calculatestwicethe negativelog-likelihood of the datafor each observation. Theprocedure
followsthetheory described by Langeet al., (1976). If thereare k observed variablesinthe
set, the normal probability density function of an observed vector x; is

Iznzlinlzexp 7%()(1 - Hi)'zfl(xi - 1)

where X is the population covariance matrix and |, is the (column) vector of population
means of the variables, and |£| and £ ! denote the determinant and inverse of the matrix X,
respectively. Thefit function isthus:

RM = -klog(2n) +loglZ| + (X, - ;) Z 1 (X, - H;)

If there are incompl ete data, a separate group could be constructed for each different type
of datavector. Thiscould berather tedious for anything beyond avery few types of vector,
so Mx provides a second, more general approach. The approach is to create a variable
length record or rectangular file (page49). Thisallowsthe use of the abovefit function, but
with avariable length observed vector x. The appropriate mean vector | and covariance
matrix X is automatically created by Mx for each observation. To save on computer time,
the creation of p and X (and importantly £ 1) isdoneonly if avector isdifferent in structure
from the previous vector. Therefore, considerable CPU-time saving can be obtained if
sorted data are supplied to Mx. An example script can be found on page 138. Individua
likelihoods and related statistics can be written to afile (see p. 107).

Maximum Likelihood Analysis of Raw Ordinal Data

Data anaysis proceeds by maximizing the likelihood under a multivariate normal
distribution model. In order for this to take place, it is necessary to supply both a matrix
formula for the covariances and a matrix formula for the thresholds. The covariance
formulamust result in a matrix which is square, symmetric @ and has the same order asthe
number of variables read in from the Ordinal file. The threshold statement must yield a
matrix which has the same number of columns as the number of variables being analyzed.
The number of rows of this matrix must match the maximum category of all of the variables
in the datafile, or if the highest statement is used, the largest value in the argument to this
command. This maximum category of all is known as maxcat.

For avector of observed ordinal responsesy = (Yo, V1, --- Ym), thelikelihood is computed by
the expected proportion in the corresponding cell of the multivariate normal distribution.
Let the highest category of variable j be denoted by hj, and let ti; denote the ™ threshold of
variablei. The expected proportion in the categories of y is computed as:

B fhea tym+1¢(x),dx
t, J2, Jim,

8 |f the matrix is not symmetric, only the lower triangle will be used, but the use of non-symmetric
predicted covariance matrices is confusing and is not generally encouraged
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wheret, j= - =, t;;= o, and ¢(x) isthe multivariate normal probability density function (pdf),
given by
2| ™ exp -2 (x, 1) Tx, - )

inwhich X isthe predicted covariance matrix of the variables, ; isfixed at zero for all i.

Toillustrate in atrivariate case, the two vectors of observations
021
and
1
would have likelihoods computed as:
[™ f = ;%, (%, %5 X,), EX X,

2, Jt

If the third variableis binary, then the upper limit onintegrationwould bet3, = «. For the
semndvedor of observations, two measures are misgng so the likelihoodsimplifiesto the
single integral:

[ (x5), e,

3,

Tests of mean dff erences between popuations may be caried ou by adding a vedor of
constants to ead row of the threshald matrix. This may be is easiest to do via the
Kronedker product of a 1x mvedor of freeparameters with a Unit column vedor that has
maxca elements. This formulationis a parametric model for the distribution d ordinal
resporses. The parameters of the distribution are those that influence the predicted
thresholds T and the predicted covariance matrix X.

An espedaly important feaure of the maximum likelihoodraw data gproach is that it
provides anatural method d handling misgng datathat are so commonin longitudinal and
multi variate studies. In theory, data that are missng completely at randam (MCAR) or
missngat random (MAR) are crredly handed by thisprocedure andwill provideunhbiased
maximum likeli hoodestimates as long as the asaumptions of the multivariate normal hald
(Little& Rubin, 1987. Thisisentirely analogoustothe mntinuows case. Failuretoinclude
casesthat contain misgng observationscanlead to biasin parameter estimates. Elimination
of such cases will amost alwayslead to larger confidenceintervals onall parameters.

A further advantage of the raw data goproach is that it provides a natural way to exploit
moderator variables, using the definiti on variable methods described on ges35and 139.
At thistimeit isonly posgbleto model binary variablesvia path dagramsin the graphicd
interface becaise the GUI aways generates a script with asingle vedor of means, and nd
amatrix of threshalds. Inthe cae of binary variables, the methodwill work from diagrams
becaise Mx treasthe mean and threshold statements equivalently.

An example of data analysis using this method may be found onthe Mx website &
http://views.vcu.edw/mx/examples/ordinal
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Contingency Table Analysis

Mx has a built-in fit function for the maximum-likelihoodanalysis of 2-way contingency
tables. Two-way tables are inherently bivariate, so we ae implicitly fitting a 2x2
covariance matrix to the cdl frequencies, and estimating a tetrachoric or paychoric
correlation. Figure5.2showsa contour plot of the frequency distribution d two variables,
Xand.

Surface and contour plots of bivariate normal
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Figure5.2 Contour plot showing abivariate normal distributionwith correlationr=.9
andtwo threshaddsin the X andY dimensions.

For anr by ¢ contingency table, there ae assumed to ber-1 row thresholdsand c-1 column
thresholds that separate the observed caegories of individuals.

Twicethe log-likelihood d the observed frequency datais cdculated as:

InL .. = 2n. Ini——
cr i=1 j=1 ! n__pij
where n; isthe observed frequency in cell ij, p; isthe expeded propationin cel ij, and n,
is the total number of observations in the cntingency table. The expeded propationin
eat cdl is cdculated by numericd integration o the bivariate normal distribution,
performed by subroutine BIVNOR (Schervish, 1984. For example, the expeded propattion
with individual 1 lying in the cdegory between threshdd a and threshold b and with
individual 2 lying in the cdegory between threshold ¢ and threshold d would be given hy:

Ly, = fab fc o (v,v,), dv,dv,

where ¢ denates the multinormal probability density function, and v; is the liability of
individual 1.

Sincen; isnot estimated, the number of degrees of freedom associated withanrxctableis
rc-1. If zcdlshave nat been ascertained, the number of degrees of freedomisreduced by
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z. In order to compute an approximate x> statistic, twice the likelihood of the data under the
model is subtracted from the likelihood of the observed data themselves, calculated as

C o o
INLero = 2 2 2nijln{ﬂ}
i n

r
i=1 j=1

See page 75 for detail s on specifying thresholds for model sfitted to contingency table data,
and page 128 for an exampl e script.

Non-random Ascertainment

Mx will automatically cal cul ate an ascertainment correctionwhilecal cul ating thelikelihood
of theincompletely ascertained data. For example, if we ascertain a sample of 60 probands
from hospital records and examinetheir spouses, of whom 10 are observed to have the same
disorder, then a 2x 2 contingency table would be supplied as follows:

CTable 2 2
-1-1
50 10

The -1 inthecellsof thefirst row indicate that subjects were not ascertained in these areas.
Thelikelihood of the observed data must be corrected for the incompl ete ascertainment of
subjects for study. Effectively, aswe omit certain classes of person from observation, so
the likelihood of observing the remaining individuals increases. Mathematically this is
expressed by dividing the likelihood by the proportion of the population remaining after
ascertainment. We obtain this by subtracting the proportionsin all omitted classesfromthe
total population proportion (i.e. 1.0). In our example, assuming that individual 1 hasto be
above threshold, the proportion omitted is

A - f _‘J‘ _tofo (Vi V), v, vy + f _tooft v (V1.V,), AV, dvy

wheret isthe ascertainment threshold, v, and v, are theliability values of individuals 1 and
2, and ¢ is the multinormal probability density function. The likelihood corrected for
ascertainment would simply be the likelihood as obtained before, but divided by 1-A .

User-defined Fit Functions

If the User-defined keyword appears on the Options line, the fit function for the group is
to be user specified. In order for this to be the case, the matrix expression given as the
model (Constraint or Covariance command) must evaluateto ascalar. Thereare no other
rules. Any of the automatically defined fit functions LS, ML, AWLS etc. could be specified
as user-defined functions, but it isgenerally less efficient to do so. User-defined functions
are recommended only when the built-in functions are not suitable. A simple exampleis
shown on page 147.



Options for Fit Functions and Output 93

5.3 Statistical Output and Optimization Options

Inthis Sedionwediscuss ®me of the statisticsthat Mx will compute automaticaly. While
the range of these statisticsislimited, the user shoud ndethat it isquite straightforward to
compute his or her own functions of the parameters or goodress of fit statistics using
cdculation groups (see Sedion 3.5for syntax and page 118 for an example script that
computes gandardized estimates).

Standar d goodness-of-fit output

At the end d optimization, Mx prints the value of the fit function,which is asymptoticaly
distributed as x* when the fit function is maximum likelihood and the data ae wvariance
matrices. Similar distributional propertiesarethought to hdd for generali zed least squares,
the contingency table likelihoodfit function, and asymptotic weighted least squares. For
these functions, the degrees of freedom and probabilit y are printed, together with Akaike's
Information Criterion, computed as ¥*-2df. The degrees of freedom are cdculated as the
number of observed statistics minus the number of observed statistics plus the number of
non-linea constraints. To be judged agoodfit, models shoud have anonsignificant chi-
squared (p>.05). With large samplesizes, significant chi-squared can comefromrelatively
trivial failures of the model; alternative cmparative fit statistics (seep. 100) can be used
for these caes. Confidenceintervals onthe goodressof-fit * may be printed using option
Cl.

User-defined fit functions and raw data maximum-likelihood are not treaed as being
distributed as chi-squared, so the probability is not computed by default. However,
sometimes the user-defined fit-function will indead be gpropriately distributed, so the
option ISCHI can be used to override this default behavior. An example where thiswould
beappropriateiswheretheval ue of twicethelog-li kelihoodfrom asaturated or super model
-2In L had been entered asauser-defined fit functiongroup,and ogion d used to adjust the
degrees of freedom to the diff erence between the models.

RMSEA

Root Mean Squared Error Approximation, @ RMSEA (Steiger & Lind, 1980 McDonald,
1989, isagoodressof-fit index which isautomaticdly printed by MXx after fitting amodel
that resultsin a di-squared goodressof-fit. The primary aim of this gatisticisto provide
ameasure of fit that isrelatively independent of sample size. Essentially, it is aweighted
sum of discrepancies. Vauesbelow .10indicate agoodfit, and values below .05indicae
avery goodfit. Theindex iscomputed by

RMSEA = /(3?-df)/n / df

for the single groupcase. Inthe multigroupcase, adifferent formulaisused. Foll owing an
unpubi shed manuscript by Dr. Steiger, theindex iseff ectively multi pli ed by the square-root
of the number of groups, when the same number of variablesisanalyzed in eat group. Mx
al so makesadjustmentsfor diff erent numbersof variablesbeingineach group,althoughthis
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is highly experimental at present. For now, it is sufficient to note that the multigroup
RMSEA iscorrected fromtheoriginal formula. RM SEA should beviewed skeptically when
the groups do not have the same number of variables.

Suppressing Output

Syntax:
Option NO Output

Before describing ways in which Mx output can be increased, we note the valuable option
NO_Output which prevents printing of all output for agroup. This option should be used by
the ecol ogically-minded as often as possible. Even the environmentally unconscious may
find it useful to reduce their disk-space usage, but some caution should be taken not to use
it too frequently since valuable information that could reveal misspecification of the model
might be missed.

Appearance

Syntax:
Option NDecimals=n or Width=m

wheren isthe number of decimal places, and m is the number of columns

By default, Mx will print most numberswith three decimal places, or useexponential format
if therearevery small or very large numbersinamatrix. Y ou may overridethisdefault with
the NDecimals keyword, where NDecimals=n will print n decimal places of precision.

Mx prints up to 80-columns of output, which is suitable for viewing on an 80-column
display or legal/letter/A4 paper (in portrait orientation) with a 10cpi font. Thisdefault may
be changed with the option Width=m where m is the number of columns desired. At the
present time, the NDecimals and Width parameters cannot be used together (sorry).

Residuals

Syntax:
Option RSiduals

The Rsiduals keyword requests that the observed matrix, the expected matrix, and the
residuals (observed - expected) be printed. In calculation and constraint groups, only the
expected matrix is printed, since neither has any data. Note that RSiduals isthe only way
to print the observed matrix, and may be especially useful if the Select command has been
used. When means have been supplied, the observed and expected mean vectors will be
printed. Expected meansalso appear when using maximum likelihood with raw data. With
contingency tables, Mx prints the observed and expected frequencies and their difference.

Under asymptotic weighted least squares Mx prints two types of residual matrix. First, it
prints the unweighted difference between the observed and expected correlations or
covariances. Second, it prints a weighted residual matrix, which is calculated from the
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formula (see page 86):
n k-1
WReg = gg(aj _Zij)Wi},il (Sg ~2y) +%(1 -Z,)?

The sum of these elements gives the fit function for the group (neglecting any penalty
function for the diagonal of a correlation matrix). Note that not all elements will be
positive, but that their sum is necessarily non-negative. Quite often, inspection of the
weighted residuals will give a clearer idea of the cause of model failure than consideration
of the unweighted residuals alone.

Adjusting Degrees of Freedom

Power

Syntax:
Option DFreedom=n
wheren isthe adjusted number of degrees of freedom

If a correlation matrix is read instead of a covariance matrix, the number of statistics
provided is usually less than when variances are also given. The amount of the reduction
ininformation depends on the structure of the data. For example, if MZ and DZ twins have
been measured on one variable, there are four statistics that are necessarily equal (the
variances of twin 1 and twin 2 in the MZ and DZ groups). Only one of these statistics
confersany information (it scalesthe size of the MZ and DZ covariances), so three degrees
of freedom arelost, and DF=-3 should be placed on the Options line. For multivariate twin
data, DF=-3k should be used, where 3k is three times the number of variables on which each
twin is measured. We can extend this idea to m groups of pedigrees of size n, each
measured on k variables, in which case df=-k(mn-1) should be used.

Calculations

Syntax:
Option Power=alpha,df
wherealpha isthe probability level of thetest, and df arethe associated degrees of freedom

Power cdculations are useful in awide variety of contexts, espedally experimental design
and getting grants. For theoreticd work, orce one has established that it is posdble in
principleto deted an effed, anatural questionis‘what are the chances of finding it with a
sample of x many subjeds? The usua way to approach this problem is to simulate data
with aset of fixed parameter values, cdled the‘true model’. Thesesimulated data aethen
used asdatato which afalsemodel isfitted. Thefalse model would namally be asubmodel
of the true model, for example with a parameter fixed to zero instead of the value used in
the true world model. The size of the dchi-squared from this false model, given the sample
size, indicaesthe power of thetest. The Power command usesthis y? and the user-supplied
significancelevel o (alpha) and degrees of freedom (df) to compute the power of the study
torgect the hypothesis. In addition, the program computesthe total sample sizethat would
be required, given the current proportion of subjectsin each group, to reject the hypothesis
at various power levels from .25 to .99. See page 114 for an example application of this
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method in the context of the classical twin study.

Confidence Intervals on Parameter Estimates

Syntax:

Interval {@val} <Matrix element Tist>

where val isthe desired percentage of the confidence interval;

e.g., Interval @80 will give 80% confidence intervals (default is 95%)

This command requests confidence intervals on any matrix element. Usually one would
request an element that is a free parameter, but it is also possible to request confidence
intervals on computed matrices that are functions of free parameters. This alows
confidence intervals on indirect effectsin structural equation modelsto be computed. Mx
computes the upper and lower confidence intervals by conducting an optimization in n
parameters for to find each interval. For long-running jobs involving many parameters or
cpu-intensivefitting functions, optimizationsto find confidenceinterval son parameterswill
greatly increase the time taken to execute thejob. Therefore, we recommend that Intervals
be requested only when the script is thought to be working correctly.

Therelative meritsof likelihood-based confidenceinterval sversus standard errors based on
asymptotic theory of the parameter have been discussed by Meeker and Escobar (1995) and
Neale & Miller (1997). In brief, standard errors have the advantage of being fast to
compute, but have several undesirable statistical properties. First, the distribution of the
parameter estimate is assumed to be normal, whereas we have shown that it may not be
(Neale & Miller, 1997). Second, t-statistics computed by dividing the estimate of a
parameter by its standard error are not invariant to transformation (Neale et al., 1989;
Kendall & Stuart, 1977). That is, if we estimate a? instead of ain amodel, then a test of
whether parameter a is significant will not give the same answer. For positive values of a
thelikelihood-ratiotest that a=0 will givethe sameanswer, regardl ess of whether the model
was parameterized in terms of a or a2 Third, mindless use of the standard error can give
nonsensical values if the parameter estimate is bounded. For example, a residual error
variance may be theoretically bounded at zero, yet the standard error would imply lessthan
zero as a lower bound on the estimate. With bounded parameters, Mx will not report
infeasible values for the likelihood-based confidence intervals, although it should be noted
that confidence intervals that rest on parameter boundaries may not yield a decreasein fit
corresponding to the required amount for the interval in question. Finaly, the only major
drawback to confidenceinterval sistheadditional computationtimerequired. Ascomputers
become faster and cheaper, this problem will diminish.

The procedure that MX uses to find confidence intervals is described in Neale & Miller
(1997). Thecentral ideaismoveaparameter asfar away as possiblefromitsestimate at the
optimal solution (i.e., its maximum likelihood estimate (MLE) if thefit functionisML) for
agiven amount of increase in the fit function. For example, 95% confidence intervals are
found by moving the parameter away from its MLE to a place where the fit function
increases by 3.84 chi-squared units. Note that this moving away is done with all the other
parametersin the model still freeto vary. Obviously, stepping away fromthe MLE in small
increments and re-optimizing would be very cpu-intensive, requiring moptimizations over
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n-1 parametersfor an mstep search on an n parameter model. Instead, Mx usesamodified
fitting function that is afunction of the differencein fit between the MLE solution and the
new solution, and the value of the parameter. Essentially, the parameter (or matrix element)
in question is minimized (lower bound) or maximized (upper bound) subject to the
constraint that thefit of the model isacertain amount worse than at the maximum likelihood
solution. Aswe know, optimization isnot an exact science, and there can be problemsin
conducting the search to find the confidence intervals, just as optimization may not be
successful when fitting a model. To combat this problem, Mx uses two main strategies.
First, if NPSOL returned an IFAIL of 4 (too few iterations) or 6 (Hessian accuracy
problems) then it will repeat the optimization from thefinal point, up to a maximum of five
times. Second, the user is notified of such difficulties with the Lfail and Ufail columnsin
the output. For example, output might be

Confidence intervals requested in group 3
Matrix Element Int. Estimate Lower Upper Lfail Ufail
A1 1 1 9.0 0.6196 0.5575 0.6879 00 00
c 1 1 1 9.0 0.0000 0.0000 0.0000 12 03
E 1 2 3 9.0 0.1735 0.1541 0.1961 00 65

Inthiscase the atemptstofindthe Cl'sonA 1 1 1 appear successful. To find the lower Cl
onC 1 1 1,two refitting attempts were made, and the final solution received IFAIL=1
which is probably the right answer. For the upper Cl on C 1 1 1, three refits were
undertaken, and the solution was IFAIL=0, again probably the right answer. Thelower CI
onkt 1 1 1, seemsto be fine, but the upper one definitely shows signs of difficulty, with 5
attemptsand still an IFAIL of 6. Onewould do well to check this upper confidenceinterval
by removing the Interval commands and fixingthevalueof £ 1 2 3 at .1961 to see whether
the fit function deteriorated by 3.84 chi-squared units. It is easy to perform such atest for
afree parameter in matrix element £ 1 2 3, using the statement

Drop @.1961 E 1 2 3

just before the End of the last group.

It is more difficult to test the accuracy of the Cl if the matrix isa computed matrix. Inthis
case, one way to do it would be to add a constraint group to the job, like this:

Constraint group to fix E 1 1 1 at .1961
Constraint
Matrices = Group 1
K full 11
Z full 14
End Matrices;
Matrix K .1961

Matrix 2232 3 ! to get the submatrix of E from element 2,3 to element 2,3
Constraint \part(E,7) =K ;
End Group

Again, the decrease in fit due to this constraint should be examined by subtracting the y?
goodness of fit found in the unconstrained model from the fit found with the constraint in
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place. Should the difference not be approximately 3.84, one might wish to establish the
confidence interval manually by trying different values than .1961 in Matrix K (or Drop).

Standard Errors

Syntax:
Option SErrors

This option is being phased out in favor of confidence intervals (see p. 96).

Mx uses the numerical estimates of the hessian matrix of the parameters to provide
approximate standard errors on the parameters. While it gives estimates consistent with
those of other programs under a variety of conditions, this option is not reliable. Under
these circumstances, standard errors may appear much too small. The sameistrueif the
function precision is low (which may happen if, e.g., the fit function involves numerical
estimation of integrals). The problem issometimes overcome by altering the error function
precision parameter, withOption Err=value. By default it isset closeto machine accuracy;
setting it to 1° (or larger) may correct problems with totally unrealistic estimates of
standard errors.

Standard errors do not work correctly when non-linear constraints are imposed with

constraint groups.

Again, assessing significance and standard errorsdirectly through changesin the model can
provide more robust estimates. It ispossibleto get Mx to doing thisfor you, but it requires
some subtle programming (see example conf.mx). We hope to implement the method in a
more user-friendly way soon.

Randomizing Starting Values

Syntax:
Option THard=n
wheren is a positive integer

If the parameter THard is set using TH=n where n is a positive integer, Mx will generate
random starting values for all parameters and attempt to fit the model again. This attempt
islikely to fail if no bounds are specified, because the default boundaries are -10000 and
+10000, and the random valueswill be random from within these bounds. Most optimizers
fail if starting values are too far away from the final solution; Mx has shown greater
tolerance than LISREL in this respect.

Testing Identification

THard can be very useful when exploring the identification of structural equation models.
If data are generated with particular fixed values for the variable parameters (®,), then
optimization fromadifferent set of starting values(®,) should give asolution of theoriginal
values (®,). Thiscan be tested a number of times using THard. If sensible bounds are not
givenfor the parameters, thistest will likely fail because ®, will not berecovered. Thekey
to underidentification is finding a solution that fits perfectly, but with a parameter vector
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other than @,. If this is the case, the hypothesis that the model is identified has been
falsified. Finding a number of solutions at @, does not prove identification of the model,
it merely increasesthe support for the hypothesisthat it isidentified. Of course, thismethod
doesnot show that the model has been specified correctly; acompletely misspecified model
may beidentified. SeeOption check below for another method.

Automatic Cold Restart

Syntax:
Option THard=-n
wheren is a negative integer

During optimization, an estimate of the covariance matrix of the estimated parametersis
constructed. Sometimes, this covariance matrix is inaccurate and optimization fails to
converge to the correct solution, a problem that is usually flagged by an IFAIL parameter
of -6. Option TH=-n can beused torestart the optimizationn timesformthe current solution,
but with the parameter covariance matrix reset to zero.

Jiggling Parameter Starting Values

Syntax:
Option Jiggle

Prior to optimization, parameter start values can be jiggled. Jiggling replaces each
parameter start valuex; with x.+.1(x+.5). Thisoption can beuseful to nudge Mx away from
asaddle point which can betroublesome when using numerically estimated derivatives. An
example of acommon saddle point is when parameters are started at or very near to zero,
and the estimates x and -x have the same effect on the function value. Such situations are
common in structural equation model s which feature quadratic formsin their expectations;
the ACE genetic model is one such example.

When used in conjunction with a negative THard parameter, jiggling will occur each time
therefitisattempted. Thismay cause estimatesto drift fromtheir initial values, especially
if the parameter concerned has no effect on the fit function.

Confidence Intervals on Fit Statistics

Confidence intervals on the chi-squared statistic are obtained using a single parameter
optimization method (Steiger and Lind, 1980). The 100(1-a)% confidence limits for the
noncentrality parameter lambda of ay? df,|lambda distribution are obtained by finding the
values of lambda that place the observed value of the Chi-sguare statistic at the 100 (a/2)
and 100(1-a/2) percentile points of ay? df,lambda distribution.

Y ou can check the Mx results with the useful link at

http://www.stat.ucla.edu/cal cul ators/cdf/ncchi 2/nechi 2cal c.phtml

by entering the chi-sq and df and the p level (.95 or .05) to find the upper and lower bounds
for 90% confidence intervals.
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These confidence intervals on the chi-squared are used directly to compute the confidence
intervals for the AIC and RMSEA statistics.

Comparative Fit Indices

Syntax:
Option Null=<y®>,<df>
where ¥ and df are the statistics of a null model

Users may supply the results of fitting a null model (usually a simple diagonal model of
variances, but others are possible) with the nu11 command which will extend the output in
the following way:

Fit statistic Estimate

Tested Model fit >>>>>>>>>>>>> 4.73426

Tested Model df >>>>>>>>>>>>>> 4.00000

Null Model fit* >>>>>>>>>>>>>> 1563.94400

Null Model df* >>>>>>>>>>>>>>> 6.00000

Normed fit Index >>>>>>>>>>>>> 0.99697
Normed fit Index 2 >>>>>>>>>>> 0.99953
Tucker Lewis Index >>>>>>>>>>> 0.99929
Parsimonious Fit Index>>>>>>>> 0.66465
Parsimonious Fit Index 2 >>>>> 0.02940
Relative Non-centrality Index> 0.99953
Centrality Index >>>>>>>>>>>>> 0.99961
*User-supplied null-model statistic

They are calculated as follows:

NFI = (F-F)/Fy Bentler and Bonett,1980
NFI, = (F\-F)/(F-df;)
TLI =((F/dfy) -(F/df))/((F/df,) -1.0) TuckerandLewis,1973
PFI = (df /df )NFI Mulaiket.al.,1989
PF1, =2NF1(df,)/(p(p-1))
RNI = ((F~df,) -(F;-df))/(F-df,) McDonadandMarsh,1990
Cl =exp(-.5((F;-df;)/N)) McDonal d,1989

whereF, and F; arethe goodness-of -fit (chi-squared) statistics respectively obtained under
the Null and Tested model, and which have dfy, and df; degrees of freedom. N isthe total
sample size (over al groups) and p is the number of free parametersin the model. Tanaka
(1993) discusses their relative merits, and Williams & Holahan (1994) conducted an
empirica study which gave support to the use of AIC in many contexts. Marsh et al. (1997)
favor TLI as acomparative fit statistic. Clearly, no fit statistic isideal in all situations.

Automatically Computing Likelihood-Ratio Statistics of Submodels

Syntax:
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Option ISSAT or
Option SAT=y¢*,df

When fitti ng multi ple model sto the same data, it iscommonto want to know the diff erence
in fit, the difference in degrees of freedom, and the probability associated with these
differences. Option Issat spedfiesthe airrent model asamodd against which subsequent
modelsfitted in the same runwill be compared. Thismodel does not have to be saturated,
in the sense of having a freeparameter for every observed statistic; it merely hasto be a
supermodel against which subsequent submodelswill be mmpared. In addition, thefitting
function being used shoud be asymptoticaly y? distributed, ar be a-2 1og-li kelihood.Most
Mx fit functions are of thistype, bu user-defined fit functions may nat be.

Sometimesfitting asaturated model at the start of asequenceof analysesiscomputationally
burdensome. Asan dternative, the goodressof-fit chi-squared and degrees of freedom of
a supermodel may be diredly entered using Option SAT. All subsequent models will be
compared against this supermodel.

Check ldentification of Modéel

Syntax:
Option Check

By default, Mx does not test identification d models via examination d the rank of the
hessan matrix of parameter estimates. Option check doesthis, but it shoud be noted that
theresultscan give dther false positives or false negatives. Whilethisisto some extent true
of programs that use exad derivatives, it is more true of Mx which uses numericdly
estimated derivatives. When Option check isinvoked, Mx computes the égenvalues and
eigenvedors of the hessan matrix, and wses this information to assesspotential areas of
underidentificaion. As gated elsewhere - espedally in Joreskog's ealy papers - a better
procedure isto attempt to find alternative sets of parameter estimates that give an equally
good fit to the data (which is proof of underidentification). Mx provides Option TH=to
facilitate this proof. Identification should be tested on theoretical grounds whenever
possible (see texts by Neale & Cardon (1992, p.104); Bollen (1992) and Pearl (1994) for
discussion of these methods.

Changing Optimization Parameters

Mx uses NPSOL, written by Walter Murray and Philip Gill at Stanford University, to
perform numerical optimization in the presence of general linear, non-linear and boundary
constraints. Mx attempts to choose suitable values for the parameters that control
optimization, taking into account the number of parametersto be estimated, the numerical
precision of the function value, and so on. However, the enormous variety of types of
optimization tasks that can in principle be requested with MXx means that the automatic
selection of these parametersis not alwaysideal. In addition, difficultiesin optimization
may reguire examination of the optional output that NPSOL can generate. Mx allowsthe
user to print these data and to alter the parameters as needed. There are also facilities for
automatically performing some of the solutions of optimization difficulties suggestedinthe
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NPSOL manual (see also routine EO4UCF in the NAG manual).

In general, parameters have been set for NPSOL on the cautious side, so that many of the
warning messages about IFAIL parameters being non-zero are spurious. This seems better
than being misled by the program giving the wrong answer without warning.

®  |FAIL=1 (code GREEN), most likely, the correct solution.

®  |FAIL=4 (code BLUE - it ran out of breath), for which the Iterations=n may be used.

®  |FAIL=3 (code RED - bad news) occurs in connection with constraints, normally they
have been misspecified so that they are impossible to satisfy. Sometimes they are
possible to satisfy but the starting values make it difficult for the optimizer to find a
region where they are satisfied. IFAIL=3 can always be cured by making certain that
the starting values satisfy all non-linear constraints, the command Fix all placed near
the end of the script is usefu in this regard.. Printing the residuals in the constraint
groups often helps.

m  |FAIL=6 (also code RED - take note) isthe most tricky. Sometimesit occurs because
of ill-conditioning of the Hessian, which can be verified by examination of the NAGDUMP
output file (see page 102). A solution here may be to use the TH=-n which requests
optimization from the aurrent ‘solution’ with the Hessan reset to the identity matrix,
n times. On ather occasions, it may appea because of insufficient numericd predsion,
yet still be & theright place If aparameter in your model isnaot identified, IFAIL=6is
quite likely.

Appropriate choiceof starting valuesisalwaysrecommended. Many users gart parameters
at zero becaise thisis the default value of freematrix elements. In pradice Mx attempts
to avoid so ddng by starting any parameter in the range -.01to .0lat .01. The user can
asgst this processwith the Jiggle option to further nudge the parameter value away from
apossible saddle point at zero (see page 99). But best of al is areasonable guess at the
parameter estimates that satisfies any non-linear constraints.

Setting Optimization Parameters

NAG=n, Default: NAG=0

If this statement appears on the Options line, the technical output from NPSOL is printed
in afile called NAGDUMP.0UT. The value n controls the Major Print Level, the higher the
number the more verbose the output file. Minimum output is written with NAG=1 and
maximum is written with NAG=30. MX printstheinitial and final value of the function. If
option DB is present (seebel ow) more detail ed information onthe parameter estimates will
be printed. Mx rescdesall functionsto 1.0to asdst general optimization, so the function
value printed by NPSOL isapropation d thisinitia value.

Feasibility=n, Default = .00001

Will control the Nonlinea Feasibility Tolerance i.e. FEAS=r defines “the maximum
acceptable absolute violationsin linea and norinea constraints at a ‘feasible’ point; i.e.,
alinea constraint is considered satisfied if itsviolation daes not excead r” (NAG, 1990.
It has no effed if there ae no norinea constraints.
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Iterations=n, Default = 100
Controls the number of mgjor iterations. Should be increased if IFAIL=4 error messages
occur.

Linesear ch=r, Default = .9 if no non-linear constraints are present, otherwise, .3
Linesearch tolerance.

Optimality=r, Default = 1® where n is approximately In(F, ) where F, is the function
value at the starting values
Sets the optimality tolerance, a parameter controlling the accuracy of the solution.

Stepsize=r, Default = 10000
Infinite step size.

Function precision=r, Default = 1™® where n is approximately In(F; ) where F, is the
function value at the starting values

Specifiesfunction precision. Ingeneral thisshould be set at alower value than the required
precision of the solution.

Obtaining Extensive Debug Output: DB=1

If the parameter DB=1 is set on the output line, together with NAG=n wheren is greater than
zero, additional information will be written to the NAGDUMP . OUT file. For each evaluation of
the function to obtain the gradient of the parameter vector, the fit function value for each
group, the total fit function, and the values of all the parameters are printed. On each
evaluation of the function to obtain the constraint functions, the values of all the parameters
and the constraint functions are printed. Note that the order of the parametersin the vector
corresponds to the order used by NAG during optimization and not the order of parameter
specifications given by the user, or printed by Mx. Note also that using this option for
problems with more than a few parameters can result in enormous NAGDUMP.OUT files.
Examination of the first and last few iterations can be very helpful in identifying errant
parameters whose extreme values may be causing floating point errors that make the
program crash.

5.4 Fitting Submodels: Saving Matricesand Files

One of the powerful features of Mx isitsability to start again whereit left off. Anexample
of this has already been described on pages 98 and 101 above, where repeated attempts to
optimizeare made either fromthe current solution or from randomized starting values. Here
we describe how repeated fits may be made from the solution, allowing for changesin the
model. Thiscan bedone manually, writing out matricestofiles, or automatically within the
samerun, usingtheMultiple command, or fromasaved binary file. For large problems, use
of binary files can save alot of time.

Fitting Submodels using Multiple Fit Option

Syntax:
Option Multiple
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If the keyword Multiple isincluded on theOptions line, the next Mx input file is assumed
to have aspecial form. It will consist of a single group, ending with an Options line. The
only commands that may be used under theMuTltiple option areSpecification, Pattern,
Matrix, Value, Start, Equate, Fix, Free and Options. Data may not be changed,
matrices may not be added, and the matrix formulae specified in the Covariance or Means
statement cannot be altered. At some timein the future, these restrictions may be lifted.

There is no group structure to the input stream following an Multiple command; all
modifications to the model must refer to matrices with a number identifying the particular
group in which the matrix is to be found. This changes the usua form of the
Specification, Matrix and Pattern commands to include a group specification, which
must be placed directly after the keyword, before the letter indicating the matrix. Thus
Specification A

becomes

Specification 2 A

if A was specified in group 2. As an example of the use of this command, consider the
simplefactor model presented on page41. We could test the significance of the covariance
of the two variables by fixing parameter #2 to zero. Obvioudly this could be achieved by
modifying the entire input file and running it separately, but the following will fit both
modelsin one run.

Simple MX example file
Data NGroups=1 NObservations=150 NInput vars=2
CMatrix

1.2 .81.3
Matrices

AFull 21

D Diag 2 2
Model A*A" + D /
Specification A 10
Specification D 0 3
Options Multiple RSiduals

End
Specification 1 A1 2

End

Considerable computer time can be saved using Multiple, since the solution of a model
often has parameter estimateswhich are close to those estimated under nested model s of the
sametype. Ingeneral, we recommend fitting model s starting with the simpl est, and working
up to more complex models. When working from complex to simple, the Drop command
(see next section) can be useful. If you have morethan asingle set of nested modelsto test,
saving the general model in an Mx binary save file (see page 105) can save considerable
time and effort.

Multiple fit mode has always made revising the model and refitting from earlier solutions
easy to do by changing the parameter contents and values of matrix elements. It is now
possible to change matrix formulae and other characteristics of a group, using the #group
3 syntax. Optionsor matrix formulae supplied after this command would apply to group 3.
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For example, suppose that after fitting amodel --- perhaps one that took daysto run --- we
might discover that we had accidentally forgotten to request residuals from group 5. If, in
anticipation of this or similar errors, we had issued a save command:

< usual model commands >

Option Multiple

End !<- end statement of last group

Save incase.mxs
End

It would be possible to retrieve the solution, add the appropriate option, and re-run:
Title - revise options to see residuals

Get incase.mxs

#group 5

Option RSiduals

End

This type of strategy may be useful to obtain additiona fit-statistics for null-model
comparisons.

Dropping Parametersfrom M odel

Syntax:
Drop {@value} <parnumlist><elementlist>

where<parnumlist>isalist of parameter numbersasusedintheSpecification command,
and @value isan optional valueto fix at, and Matrix element listisalist of matrix elements

Quite often, equality constraints between parameters lead to model specifications with the
same parameter in many different matricesor several groupsor both. Fixingall occurrences
of the parameter with the Fix parameter can be time-consuming and error prone, so theDrop
command may be used instead. By default, all parameters whose specification number
matches a number in the list following the Drop command will be fixed to zero. For
example:

Drop 5 8 7

Drop 11 to 20

Drop X 2 13

would fix to zero all occurrences of parameters5, 8, 7, 11 through 20 and all occurrence of
whichever parameter isspecifiedinelement X 2 1 3. Notethat matrix addresses cannot be
used in this command. It is possible to supply an optiona value to the drop command, so
that for example

Drop @.5 2 3

would fix al occurrences of parameters 2 and 3 to 0.5.

Reading and Writing Binary Files

Syntax:
Save <filename>
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Get <filename>
where <filename> is the name of the file to be saved or retrieved - the extension .mxs is
recommended

When the multiple fit option is implemented (see page 103) the entire input job
specifications, data, and estimates may be stored in binary format for rapid retrieval and
estimation in subsequent fitting of submodels. Note that Save must follow the entire job
specification. Thusfor example the following would save the results of fitting the model,
together with the complete model specification, in the file acesave.mxs:

I Mx commands for first job precede this line
Option Multiple

End

Save acesave.mxs

I First command in multiple fit number 1

Fix all

End

The Fix ALL command simply stops the optimizer from trying to improve on the current
solution by fixing all the parameters. To usethisbinary savefilein another command file,
we could use the following:

Title - using a binary file

Get acesave.mxs

Free A1 23

End

By retrieving abinary file, Mx isautomaticaly in the Multiple fit mode, so modificaions
can be made to the model and a further series of hypotheses tested. If Get isused in a
separate job, atitle line is required before this datement. Normally, parameter estimates
after model fitting are stored, bu if it is desired to save the user's darting values, it is
possble to set the number of iterationsto zero, useMultiple, and Save the starting values.

Writing Matricesto Files

Syntax:
MXa= <filename>

where a isthe single-letter name of the matrix to be written, or one of 4 %M %P %V

Mx will write matrices to files with this command. The first line has header information,
including the group number, the matrix name, type and dimensions. The matrix elements
are then written in FORTRAN format (6D13.6). Thisfileformat isfully compatible with
LISREL, so matrices output by Mx can be read in as starting values for LISREL and vice
versa (see page 77). If the matrix name is %E, the expected covariance matrix will be
written to thefile. If the matrix nameis %M, the expected mean matrix will be writtento a
file. For groups with raw maximum likelihood fit functions, %P will write a series of
columnsof information about thelikelihood of individual pedigrees(seepage 107). Finally,
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itisalso possibleto savea VL file, with the %V keyword. Whilethisis not normally useful
(since it would recreate the original data file), following the select command it can be
advantageous. Subsequent reading of the sel ected data can be faster than reading the whole
dataset and performing selection again.

Formatting and Appending Matrices Written to Files

Syntax:

Option Append

Option Format=(F)

whereF isalegal FORTRAN format

The default 6D13.6 format used by MXx to write matrices to files may be changed with
Option FORMAT. It is best to consult a FORTRAN language reference manual for full
details on legal formats. In brief, the general form for numbersis Fw.d where F indicates
floating point, w is total width, and d is the number of digits after the decimal point. A
commadelimited list of formats may be provided. Spaces may beinserted with the syntax
nx wheren isthe number of spaces provided, and parentheses may be used to repeat format
specifiers. For example, 6(F5.2,2x) would be used to write numbers in 5 spaces with 2
decimal places, and followed by 2 spaces. After writing 6 such numbers, anew linewould
be used to write subsequent numbers.

Option Append causes all matricesto be appended to existing files of the samename, if they
exist. Theformat isonly written once, if the file does not previously exist.

Writing Individual Likelihood Statisticsto Files

Syntax:
MX%P= <filename>

A valuablefeature for identifying outliers and possible heterogeneity in raw dataisto save
theindividual likelihood statisticsto afile. Thesedatamay subsequently beinspected with
other software to produce half-normal plots and the like. The syntax for this follows the
writing of amatrix to afile, but we separate it because of the complexity of the output. For
each vector in the rectangular or V. datafile, Mx outputs eight columns of data:

1. -2InL thelikelihood function for that vector of observations

2. the square root of the Mahalanobis distance, Q = (x- )’ T (x- L)

3. aestimated z-score Z = ((Q/n, )ML/3) - 1 + 2/(9n;)) (9n, /2)(.5) where n; isthe number
of individualsin the ith data vector

4. the number of the observationin the active (i.e. post selection) dataset. Note that with
selection this may not correspond to the position of the vector in the datafile

5. the number of data pointsin the vector (i.e. the family sizeif it is a pedigree with one

variable per family member)

the number of timesthelog-likelihood wasfound to beincal cul able during optimization

000 if the likelihood was able to be evaluated at the solution, or 999 if it was

incalculable

No
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8. themodel number if there ae multi ple model s requested with the NModel argument to
the Dataline

Results from all raw data groups are written to the same file (the beginning of another
groupsinformation can be seen from a change in the cae number). Thethird itemin the
listisespedally useful for deteding outliers when there ae missng data, being relatively
independent of the number of data pointsin the vedor in question (Johnson & Kotz, 197Q
Hopper & Mathews, 198). Of two formulaefor computing the z-score (the other being Z,
=(2Qi)*- (2n; - 1)) wefoundZ to be much closer to anormal distribution. Half-normal plot
of this datistic shoud (for multivariate normal data) show a dosefit of eat data point to
its expeded value.

Anocther valuable role for this output isto pinpant particularly nasty outliers that prevent
optimization from succeeling, usually causing an IFAIL=-1 problem. Seaching through
the saved individual likelihoodfil efor thestring' 999' (note the leading andtraili ng blanks)
will find cases where the likelihood could nd be evaluated for the particular set of
parameter estimatesin use.

Creating RAMpath GraphicsFiles

Syntax:
Draw= <filename>

Structural equation models may be specified very simply in terms of three matrices. The
first matrix S, issymmetric and specifiesall thetwo-headed arrows between all thevariables
(both latent and observed) inthediagram. Thesecond matrix A, isasymmetric and specifies
al the single-headed arrows between al the variables in the model. Causal paths from
variable | to variable j are specified in element A;. For example, apath from variable 1 to
variable 4 would be represented in element (4,1) of thismatrix. Thethird matrix F, isused
to filter the observed variables from the latent variables for the purpose of model fitting.
The development and application of this approach is succinctly described in the RAMpath
manual (McArdle & Boker, 1990).

Iff you specify amodel with these three matrices, F, A and S, then RAM path graphicsfiles
may be written and saved to afile with the Draw command. Thisfile, largely consisting of
aRAMpath input_model command, may be used as input for RAM path to draw adiagram
of your model to view or to produce publication-quality output on a postscript printer.
Conversely, the command save_mx in RAMpath will generate an MX script. The Mx
graphical interface, currently in apha-test, provides an aternative to using RAM path.

% |ff with two f's means ‘if and orly if’
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6 Example Scripts

What you will find in this chapter

m  Example scripts
m  Brief description of the models and methods being used

There are very many different ways of setting up any particular model in Mx. Aswith any
programming, thereisacompromi se between compactnessand comprehensibility that isset
by the individual user. The most compact files are often the least comprehensible; the
longest ones may be prone to typographical errors, and can be very boring to check.
Judicious use of comments can make for a brief but comprehensible input file.

6.1 Using Calculation Groups

The examplesin this section do not fit models; matrix formulae are ssimply evaluated and
the results are printed.

General Matrix Algebra

Suppose we wish to find the inverse of the symmetric matrix:

1
23 2.
34 45 3.

The following input file could be created:

TitTe: Inverting Symmetric 3 x 3 example file
Calculation NGroups=1
Begin Matrices;

A Symm 3 3
End Matrices:;
Matrix A

1.

.23 2

.34 .45 3.
Begin Algebra;

B=A";
End Algebra;
Options MxB=inverted.mat

End

The output matrix inverted.mat contains the nine elements of the matrix B, which isthe
inverse of A.
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Asortative Mating ‘D’ Matrix

Multi variate phenaotypic asrtative mating (Van Eerdewegh, 1982, Vogler, 1985 Carey,
1986Philli ps et a., 1988 Fulker, 1989 leads to a predicted covariance matrix between
husbands and wives phenotypes of the form:

RwDR,| Ry

Thusthe matrix D can be obtained fromR,, *"MR,, ", whereM =R,, DR,, , the off-diagonal
block of correlations between phenotypes of husbands and phenotypes of wives. The
following Mx input file will calculate matrix D.

#define nvar 3
Calculation of full D matrix, 3 phenotypes husband & wife
Calculation NGroups=1
Begin Matrices;
A Symm nvar nvar ! Covariance of wives' variables
B Symm nvar nvar ! Covariance of husbands' variables
C Full nvar nvar ! Covariance between husband & wife variables
End Matrices;
Matrix A
1
4.9
3511
Matrix B
1.2
A2 1.
.3 .47 .9
Matrix C
40102
.05 .3 .12
.22 11 .5
Begin Algebra;
D= A™*C*B™ ;
End Algebra;
End

The relevant part of the output file looks like this:
CALCULATION OF FULL D MATRIX, 3 PHENOTYPES HUSBAND & WIFE
Matrix A
1.0000
0.4000 0.9000
0.3000 0.5000 1.1000
Matrix B
1.2000
0.4200 1.0000
0.3000 0.4700 0.9000
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Matrix C
0.4000 0.1000 0.2000
0.0500 0.3000 0.1200
0.2200 0.1100 0.5000
Matrix D
0.4302 -0.2854 0.1497
-0.3471 0.7770  -0.5237
0.1361 -0.4908 0.7829

Pear son-Aitken Selection Formula

Thisexampleisalittle more complex. In 1934 Aitken generali zed Peason's formulaefor
predicting the new mean and variance of variable when seledion is performed on a
correlated variable. Aitken'sdelightful paper showshow seledion onavector of variables,
X, leadsto changesin the covarianceof correlated variables X, that are not themselves
seleded. If the origina (pre-seledion) covariance matrix of Xg is A, and the original
covariancematrix of X isC, andthe cvariancebetween X, and X isB, thentheoriginal

matrix may be written
A|B
Bl C

if selediontransforms A to D, the whole new matrix is given by:

D ‘ DA'B
BAD |Cc-B(Al-ADA B

Likewise, if the original meansare (x_:x,)’ and seledion modifies x, to X,, the vedor of
means after selection is given by:

X, +A B (XX

where (x.-x) is the deviation of the means of the selected variables from their original
values.

#Ngroups 1
Pearson Aitken Selection formulae
! Idea is to give original means and covariances, and get new ones

Calculation

Begin Matrices;

A Symm 2 2 ! Original covariances of selected vars

B Full 2 2 ! Original covariances of selected and not-selected vars
C Symm 2 2 ! Original covariances of non-selected vars

D Symm 2 2 ! Changed A after selection

S Full 21 ! New means of selected vars (assume initially zero)

N Full 2 1 ! Original means of not-selected vars

End Matrices;
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Matrix A 1. .7 1.

Matrix B .6 .42 .42 .6

Matrix C 1. .352 1.

Matrix D 1. .4 1.

Matrix N 3 4

Matrix S 2 1

Begin Algebra;
V= D| D*A™*B_ ! Note that underscore above is UNDER operator

B'*A™*D| C-B"*(A-A™*D*A")*B ; ! not A with a horizontal bar over it

M= N + AT*B*S ;

End Algebra;

End

The new covariance matrix and mean vector are printed as the matricesV and M.

6.2 Model Fitting with Genetically Informative Data

The examplesin this section demonstrate el ementary use of Mx tofit modelsto datainthe
form of variance-covariance matrices.

ACE Genetic Moddl for Twin Data

If data are collected from identical or monozygotic (MZ) twins and from fraternal or
dizygotic (DZ) twins, it is possible to estimate parameters of a model that includes the
effects of additive genes (A), shared or family environment (C) and random or unique
environment (E). This model is shown in Figure 6.1 as a path diagram.

Figure6.1 ACE genetic model for twin data. Path model for additive genetic (A),
shared environment (C) and specific environment (E) effects on phenotypes (P) of pairs of
twins (T1and T2). The parameter a.isfixed at 1 for MZ twinsand at .5 for DZ twins. All
latent variables have a variance of 1.0.
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Theapproach used here generalizesto the multivariate case, by increasingnvar and twonvar
and the datafiles. Heath et al. (1989) allow for phenaotypic interaction, but thisis left for
alater example (p. 120)

#Ngroups 3
#define nvar 1 ! number of variables
#define twonvar 2 I two times nvar

! ACE model fitted to the Heath et al (1989) data on alcohol consumption
G1: model parameters
Calc
Begin Matrices;
X Lower nvar nvar Free
Y Lower nvar nvar Free
7 Lower nvar nvar Free
W Lower nvar nvar Fixed
HFull 11
QFuUlT 11
End Matrices;
Matrix H .5
Matrix Q .25
Begin Algebra;
A= X*X'
C= Y*Y" ;
E= 7*7" ;
D= WW"
End Algebra;
End

genetic structure

common environmental structure
specific environmental structure
dominance structure

G2: Monozygotic twin pairs

Data NInput-vars=twonvar NObservations=171
Labels Alc tl Alc t2

CMatrix

1.28 0.766 1.194
Matrices= Group 1
Covariances A+C+D+E | A+C+D
A+C+D | A+CHDHE
Options RSiduals
End

G3: Dizygotic twin pairs
Data NInput vars=twonvar NObservations=101
Labels Alc_tl Alc t2
CMatrix
1.077 0.463 0.962
Matrices= Group 1
Covariances A+C+D+E | HOA+C+Q@D _
HEA+C+QED | A+C+D+E ;
Start .6 All
Options Multiple RSiduals
End
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Power Calculation for the Classical Twin Study

Our next example uses the same model as in the precaling sedion, bu in this case we
cdculate the power of the dasdcd twin study to deted the dfeds of common
environmental variation. The particular case we wish to examine is where the true
popuation variance mmprises 20% additi ve genetic, 30% shared environment, and 50%
random environment variance, but we fit amodel without shared environment variation to
simulated MZ and DZ covariance matrices. This example is discussd in some detail in
Nede & Cardon(1992; here we reproducetheir results with a simple script.

There are two stagesto the power calculation. First, fixed values of the parametersa, c and
earegiven,andatwo-groupMx script simply cdculatestheexpeded covariancesunder the
model, and savesthemto twofil es, mzsim.cov and dzsim.cov. Thenext problem (preferably
inthesameinpu file, though thisisn't essential) fitsamodel of additi ve genetic andrandam
environmental varianceonly. The complete inpu file looks like this:

! A C E model for power calculation

#Ngroups 3

! Step 1: Simulate the data

! 30% additive genetic  (.54772=.3)
! 20% common environment (.44722=.2)
! 50% random environment (.70712=.5)
G1: model parameters

Calc

Begin Matrices;

X Lower 1 1 Fixed
Y Lower 1 1 Fixed
7 Lower 1 1 Fixed
HFull 11

End Matrices;
Matrix X .5477
Matrix Y .4472
Matrix 7 .7071
Matrix H .5

Begin Algebra;
A= X*X'
C= Y*Y" ;
E= 7*7" ;
End Algebra;

End

G2: MZ twin pairs
Calc NInput vars=2
Matrices= Group 1

! genetic structure
! common environmental structure
! specific environmental structure

Covariances A+C+E | A+C

A+C

| A+CHE

Options MXZE=mzsim.cov

End
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G3: DZ twin pairs
Calc NInput vars=2
Matrices= Group 1
Covariances A+C+E | HEA+C
HeA+C | A+C+E ;
Options MXZE=dzsim.cov
End

! Step 2: Fit the wrong model to the simulated data
#Ngroups 3
G1: model parameters
Calc
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Fixed ! common environmental structure
Z Lower 1 1 Free ! specific environmental structure
HFull 11
End Matrices:;
Matrix H .5
Begin Algebra;
A= X*X'
C= Y*Y' ;
E= 7*7" ;
End Algebra;
End

G2: MZ twin pairs

Data NInput vars=2 NObservations=1000

CMatrix Full File=mzsim.cov

Matrices= Group 1

Covariances A+C+E | A+C
A+C | A+C+E ;

Option RSiduals

End

G3: DZ twin pairs
Data NInput vars=2 NObservations=1000
CMatrix Full File=dzsim.cov
Matrices= Group 1
Covariances A+C+E | HEA+C
HoA+C | A+C+E ;

Start .5 All
Options RSiduals Power= .05,1 ! .05 sig Tevel & 1 df
End

Therelevant part of the output is at the end, where we see that for the specified sample sizes
of 1000 pairs each of MZ and DZ twins, the ¥? goodness-of -fit is 11.35, as found by Neale
& Cardon (1992):
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Chi-squared fit of model = 11.349
Degrees of freedom = 4
Probability = 0.023

Akaike's Information Criterion = 3.349

Power of this test, at the 0.0500 significance level with 1. df is 0.920572
Based on your combined observed sample size of 2000.

The following sample sizes would be required to reject the hypothesis:

Power Total N

.25 290.
.50 677.
.75 1223.
.80 1383.
.90 1852.
.95 2290.
.99 3238.

Because we requested that this datistic be treated as ay? for 1 degree of freedom for the
purposes of cdculating power at the .05level of significance (Power=.05, 1), the output
gives the power of the test given the particular sample sizes (and MZ:DZ sample size
propartions), followed by the sample sizes that would be required to oltain certain
commonly used levels of power. The power is quite high (.92) with 2000 p@irs. The
required sample sizesto read certain power levelsfrom .25to .99are dso shown.

RAM Specification of Model for Twin Data: Graphics Output

Hereisatwo groupexample, aphenatypic interadion PACE model (seepage 120for more
detail ), spedfied using the threematrix approach of McArdle & Boker (1990. Detail s of
this method,and the syntax of the Draw command can be found on jpge 108.

The title for the diagram is taken from the titl e of the groupin the Mx inpu file, and the
labels for the variable ae taken from labels of the columns of the S matrix. The draw
commandsin thisfil e producetwo fil es, mx.ram and dz.ram. | dont likethe way RAM path
drawsinteradion ketween the phenctypes, but thereisa cetain irrefutablelogic in having
causal arrows always going out the bottom of avariable andinthetop. You can easily edit
the RAMpath file to get rid of the @ signs if you like. Note that spedfying models ala
RAMpathisdidacticdly very clea but computationall y inefficient, sincethe inverse of the
maximally dimensioned A matrix isrequired.

! Phenotypic interaction PACE model, Heath 1989
! Demonstration of RAM specification and output
Group 1: MZ twins
Data NGroups=2 NInput vars=2 NObservations=171
CMatrix Symm File=alcmz.cov
Matrices
S Symm 8 8
I Iden 8 8
A Full 8 8
F Zlden 2 8
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End Matrices;

Matrix S

1

O O O = OO

0

OO O/ OO

OO OO O

OO OO

O O O

1
0
0

0
0

Label row a al
Label col a al
Label row s al
Label col s al

Specify A

0

_ O O O O O
RN OO O OO
O WO OO oo

0

Start .6 A

0

0

0

OO OO O oo

1

OO O O O OO
~NW OO OO O oo
— O OO OO o oo

2

0

cl el a2 c2 e2 pl p2
cl el a2 c2 €2 pl p2
cl el a2 c2 €2 pl p2
cl el a2 c2 e2 pl p2

OB OO OO oo

A7 3

I This is where the parameters are

Covariances F*(I-A) *S*(I-A) "*F';
Options RSiduals Draw=mz.ram

End

Group 2: DZ twins
Data NInput vars=2 NObservations=101

CMatrix Symm File=alcdz.cov

Matrices
S Symm 8 8
1 Iden 8 8
A Full 8 8 = Al
F ZIden 2 8

Matrix S

1

o O

5001

O O O O

Bound -.9

1
0

OO O =

1

OO OO

OO OO

1
01
00
00
9

.9

Bound 0 512
Covariances F*(I-A)™*S*(I-A)""*F';
Options RSiduals Draw=dz.ram

End

0
0
9

0
3
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Cholesky Decomposition for Multivariate Twin Data

Any positive definite matrix may be transformed to a product of alower triangular matrix
and itstranspose, i.e.

Y =1L

This Cholesky decomposition is unique for a given positive definite matrix X, except for
transformations of sign obtained by multiplying by diagonal matrices with elements set to
-1 or 1. It hasasimple graphic representation as a path diagram (Figure 6.2) where the first
latent factor loads on al variables, the second on al variables except the first, the third on
al variables except the first two, and so on.

Fl FZ
b b b
11 b21 b3l 22 b32 33
Yl Y2 Y3

Figure6.2 Cholesky or triangular factor model for three variables Y1, Y2 and Y3

In multivariate genetic analysis, a Cholesky (triangular) decomposition of separate genetic
and environmental covariance matrices is possible. Thus the additive genetic, shared
environment and random environment factors in the simple ACE model (Figure 6.1) have
amultivariate counterpart where the phenotypes P, and P, are replaced by vectors of
observed phenotypes, and thelatent variablesA, C and E arereplaced by vectors of factors.
The path coefficients a ¢ and e are replaced by triangular matrices of factor loadings
according to the Cholesky decomposition. Our aimisto produce a script that is very easy
to modify when the number of variables analyzed changes.

Here we use an input file that calculates the genetic, shared and random environmental
factorsin thefirst group that generates genetic, shared and random environment covariance
matrices It isthen asimple matter to form the expected covariance matrices for twin data
as partitioned matrices containing linear combinations of these matrices. It is then
simplicity itself to fix a parameter to zero, as only one character has to be changed from a
1toa0. The exampleincludes datafrom individualswithout cotwins (group 2), aswell as
MZ (group 3) and DZ (group 4) twin pairs. Estimates from amodel such asthis depend on
the size of the observed variances, and can be difficult to interpret. Estimates of the
proportion of variance and covariance dueto each source can be obtai ned using the element
division operator (%) (group 5).
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! Trivariate Cholesky 'Independent Pathways' model

! Data are Extraversion, Neuroticism and CESD Depression
#Ngroups=b

#Define nvar 3

#Define twonvar 6

#Define nunmatched 449

#Define nMZ 456

#Define nDZ 357

G1: model parameters
Calculation NGroups=5
Begin Matrices;
X Lower nvar nvar Free ! genetic structure
Y Lower nvar nvar Free I common environmental structure
/ Lower nvar nvar Free I specific environmental structure
HFull 11
End Matrices;
Matrix H .5
Start .6 All
Begin Algebra;
A= X*X'
C= Y*Y'
E= 7*%7" ;
End Algebra;
End

! Now get to the actual data, and use the results of calculations
G2: Unmatched twins

Data NInput vars=nvar NObservations=nunmatched

CMatrix Symm File=endun.cov

Matrices= Group 1

Covariances A+C+E ;

Option RSiduals

End

G3: MZ twins with cotwins

Data NInput vars=twonvar NObservations=nM/
CMatrix File=endmz.cov

Matrices= Group 1

Covariances A+C+E | A+C

A+C | A+C+E ;
Option RSiduals
End

G4: DZ twins with cotwins
Data NInput vars=twonvar NObservations=nDZ
CMatrix File=enddz.cov
Matrices= Group 1
Covariances A+C+E | HRA+C _
HeA+C | A+C+E ;
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! By using the Kron operator every element of G is multiplied by .5
Option RSiduals
End

G5: Calculation of standardized solution
Calculation
Matrices= Group 1
I Iden nvar nvar
Begin Algebra;

P= A+C+E;

G= \sqrt(1.P)*A;

K= \sqrt(I.P)*C;

L= \sqrt(I.P)*Et;
End Algebra;
Option RSiduals
End

PACE Mode: Reciprocal Interaction between Twins

Figure 6.3 shows a path diagram similar to the ACE model for twin data. Thereisnow a
path (1) from the phenotype of a twin to that of his or her cotwin. This is reciprocal
interaction between dependent variables. It can easily be shown (see appendix D) that a
matrix representation of this process isto usetheformulation (I -B)™*, where B isamatrix
whose element by, represents the causal effects of variable k on variablej. Inthis case, the
parameter | has been bounded to lie between -1 and 1, though thisis not necessary.

—
—
A 4

Figure 6.3 PACE model for phenotypic interaction between twins. Path for additive
genetic (A), shared environment (C) and specific environment (E) eff ects on phenotypes (P)
of pairsof twins(T1land T2). Pathi modelsdirect phenotypic effects of atwin on hisor her
cotwin. The parameter o isfixed at 1 for MZ twinsand at .5 for DZ twins.
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!Phenotypic interaction
#Ngroups 3
G1l: model parameters
Calc
Begin Matrices;
X Diag 1 1 Free
Y Diag 1 1 Free
Z Diag 1 1 Free
P Full 2 2
I Iden 2 2
HFull 11
End Matrices;
Specify P
04
40
Matrix H .5
Start .6 All
Bound -.99 .99 4
Bound 0 5123
Begin Algebra;
A= X*X'
C= Y*Y'
E= 7*%7" ;
B=(I-P)";
End Algebra;
End

G2: female MZ twin pairs

model, fit to Heath 1989 data.

genetic structure

common environmental structure
specific environmental structure
interaction parameters

Data NInput vars=2 NObservations=17/1

Labels alc_tl alc t2

CMatrix Symmetric File=alcmz.cov

Matrices= Group 1

Covariances B &(A+C+E | A+C _

A+C
Option RSiduals
End

| A+C+E)

G3: female DZ twin pairs
Data NInput vars=2 NObservations=101

Labels alc_tl alc t2

CMatrix Symmetric File=alcdz.cov

Matrices= Group 1

Covariances B &(A+C+E | HOA+C _
HeA+C | A+C+E) ;

Option RSiduals
Options NDecimals=4
End
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Scalar, Non-scalar Sex Limitation and Age Regression

The model and datain this section were taken from Neale & Martin (1989) who fitted a
model of scalar sex-limitation to data from 5 groups of twins who reported subjective
impressions of drunkennessfollowing achallengedoseof alcohol. Themodel hereinvolves
additive genetic, shared and random environment components (A, C and E; see example on
page 112, and Figure 6.1, but allows these to differ in their effects on the phenotypes of
malesand females. Inaddition, the regression of the phenotypes on Ageismodeled, so that
there are parametersfor the variance of age ( ai) andfor theregressions(s). A path diagram
of the model is shown in Figure 6.4.

PTl Age PTZ

Figure6.4 Model for sex limitation and age regression. Sex-limited additive genetic
(A), shared environment (C) and specific environment (E) effects on phenotypes (P) of pairs
of twins(T1and T2). The parameter o isfixed at 1 for MZ twinsand at .5 for DZ twins.
Either y or # may be estimated with data from twins, but not both.

Note the use of boundary constraints to prevent the estimation of parameters of opposite
sign in the two sexes.

! Age correction
! Sex limitation model
#Ngroups 7
G1: female model parameters
Calculation
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Free ! common environmental structure
Z Lower 1 1 Free ! specific environmental structure
S Lower 1 1 Free I effect of age on phenotype
V Lower 1 1 Free I variance of age
HFull 11
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End Matrices;
Matrix H .5
Begin Algebra;

A= X*X'

C= Y*Y' ;

E= 7*7" ;

G= S*S'

End Algebra;
End

G2: male model parameters
Calculation
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Free I common environmental structure
Z Lower 1 1 Free ! specific environmental structure
S Lower 1 1 Free ! effect of age on phenotype
V Lower 1 1 Free ! variance of age
HFull 11 =H1
Begin Algebra;
A= X*X'
C= Y*Y'
E= 7*%7" ;
G= S*S'
End Algebra;
End

G3: Female MZ twin pairs
Data NInput vars=3 NObservations=43
CMatrix Symmetric File=drunkmzf.cov
Labels age drunktl drunkt?
Matrices= Group 1
Covariances V*V | S*V | S*V
S*V | A+C+E+G | AHCHG
S*V | A+C+G | AHCHEHG
Option RSiduals
End

G4: Female DZ twin pairs
Data NInput vars=3 NObservations=44
CMatrix Symmetric File=drunkdzf.cov
Labels age drunktl drunkt?
Matrices= Group 1
Covariances V¥V | S*V | S*V
S*V | A+C+E+G | HEA+CHG
S*V | HRA+C+G | A+C+E+G
Option RSiduals
End
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Gb: Male MZ twin pairs
Data NInput vars=3 NObservations=42
CMatrix Symmetric File=drunkmzm.cov
Labels age drunktl drunkt?
Matrices= Group 2
Covariances VXV | S*V | S*V
S*V | A+C+E+G | A+C+G
S*V | A+C+G | AHCHEHG
Option RSiduals
End

G6: Male DZ twin pairs
Data NInput vars=3 NObservations=38
CMatrix Symmetric File=drunkdzm.cov
Labels age drunktl drunkt?
Matrices= Group 2
Covariances V*V | S*V | S*V B
S*V | A+C+E+G | HEA+C+G
S*V | HRA+C+G | A+CH+E+G ;
Option RSiduals
End

G7: Female-Male DZ twin pairs
Data NInput vars=3 NObservations=39
CMatrix Symmetric File=drunkdzo.cov
Labels age drunktl drunkt?
Matrices= Group 1
J Computed 11
Computed 1 1
Computed 1 1
Computed 1 1
Lower 1 1 = X2
Lower 1 1 =1Y2
Lower 1 1 = 72
11
11

A2
C2
E2
G2

— T o= N

Lower = S?
W Lower = V2
Covariances
VAW | S*V | T*W _
S*V | A+CHE+G | HB(X*N™))+Q@A(Y*0"))+(S*T"))
TAW | HE(N*X"))+Q@(O*Y " ))+(T*S™) | J+K+L+M
Start .5 All
Start 1I0V1I11V211
Bound 05123678
Option RSiduals
End
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Multivariate Assortative Mating: Modeling D

In this section we return to the transformation of the data described on page 110. The
guestion is now, how do we fit a model with parameters in the D matrix, so that we can
explore the significance of marital assortment both within and between variables. For
example, is there selection of wealthy men by attractive women, or is it just that
attractiveness and wealth are correlated, and partners choose each other on the grounds of
wealth alone? Neale & McArdle (1990) published atransformation of the matrix equation
on page 110 which allowed thefitting of LISREL and COSAN modelsto marital data. The
LISREL implementation of the model is not straightforward, involving phantom latent
variables (Rindskopf, 1984). However, the model is very easy to implement in MX, asis
shown below. We have already shown how estimates of parametersin the D matrix may
be obtained directly; herewe show how totest specific hypothesesabout direct and indirect
homogamy. Phillips et a. (1988) reports data on general intelligence, educational level,
extraversion, anxiety, tough-mindednessand independencein both husbandsand wives. The
first diagonal element of D thereforerepresentsdirect homogamy for intelligence; by fixing
this parameter to zero we test the statistical significance of the process.

#Ngroups 1
Assortative mating: Phillips data, Test that D 1 1 is zero
Data NInput vars=12 NObservations=334
CMatrix File=asmat.cov
Begin Matrices;
H Symm 6 6 Free
W Symm 6 6 Free
D Full 6 6 Free
End Matrices;
Start 1. H11H22H33H44H55H66
11IW22W33WA44WHEEW66

Start 1. W
FixD11
Covariance
H | HD'"*W_
WXD*H | W /
Option RSiduals
End

6.3 Fitting Modelswith Non-linear Constraints

Principal Components

Any symmetric matrix C may be decomposed to aproduct ABA’ whereB isareal diagonal
matrix and A isareal orthogonal matrix, i.e. AA’=l. The elementsof B are eigenvalues of
C and the columns of A arethe eigenvectorsof C. In generdl, if we fitted amodel ABA'
where A was full and B was diagonal, it would be underidentified, since there would be
more parametersin the model than in the observed covariance matrix C. However, we can
supply the identifying constraints that A is orthogonal. In the Mx input file, these
constraints are imposed in group 2, by setting AA’-1=0. Thisisnot an efficient method of
obtaining eigenvalues and eigenvectors of a matrix, but it does highlight non-linearly
constrained optimization. For eigenvalue and eigenvector functions, see Table 4.5.
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#Ngroups 2
Principal components ABA' with constraints to keep A orthogonal
Data NInput vars=3 NObservations=100
CMatrix Symm
1.
.6 .9
A2 7
Matrices
A Full 3 3
B Diag 3 3
Covariances A*B*A'/
Specification A1 23456789
Specification B 10 11 12
Start 1.0 A(1,1) A(2,2) A(3.,3) B(1,1) to B(3,3)
Option LS
End

Here is the constraint A*A'=I
Constraint NInput vars=3
Matrices

A Full 33 =A1

I Identity 3 3
Constraint A*A'=I /
Option LS
End

Analysis of Correlation Matrices

As Lawley and Maxwell (1971 ch. 7) pointed out, it is incorrect to analyze correlation
matrices by maximum likelihood asif they were covariance matrices,. Incorrect analysis
leads to biased estimates of the confidence intervals (even the likelihood-based confidence
intervals supplied by Mx). Likewise, the goodness-of-fit statistics can be biased, with
corresponding bias in the tests of hypotheses that use the likelihood ratio test. These
problems are limited to the analysis of correlation matrices using the maximum-likelihood
method and do not apply to asymptotic weighted | east squares. The easiest way to avoid this
problem - and one that we most strongly recommend - is to fit models to covariance
matrices (or raw data) wherever possible.

If it is necessary to fit a model to an observed correlation matrix (perhaps because the
correlation matrix is the only available data, possibly published without variances or
standard deviations) then Mx can be used for correct analysis. The maximum-likelihood
fit function for covariance matrices assumes that the diagonal elements of the covariance
matrix arefreetovary. If they areall constrained to equal unity, then amodified fit function
isrequired. A simple way to implement this alternative fit function in Mx is to add a
constraint group which forcesthe diagonal elementsof the correlation matrix to equal unity,
but which does not contribute to the fit function. To illustrate the effects of correct vs.
incorrect analysis, we use the data of Lawley and Maxwell (1971). Ninetests of cognitive
ability were administered to seventh and e ghth grade students by Hol zinger and Swineford
(1939). The model has three-factors and is shown in Figure 6.4.
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ST_CURVE

O O O

0.39 0.58 0.15

ADDITION

CNT_DOT

Figure6.5 Three factor model of 9 cognitive ability tests (Lawley & Maxwell, 1971)

Lawley and Maxwell (1971) Analysis of correlation matrix
#Ngroups 2
#include lawley.dat
Begin Matrices;
A Full 93
E Diag 9 9 Free
R Stan 3 3 Free
End Matrices;
Label Row E
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Col E
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Row A
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Col A Visual Verbal Speed
Specify A
1300
1400
5

0
6
7
8

cCo oo o
OO
Lo o oo

1
2
22 0 21
Start .5 all
Intervals A4 2A52A62
Covariance A&R + E.E:
Options RSidual Multiple
End Group
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Constraint Group to make unit diagonal of predicted cov matrix in group 1
Constraint
Matrices = Group 1
BUnit 1 9 ! Matrix of 1's
End Matrices;
! use the \d2v function to extract the diagonal to a vector
Constraint B = \d2v (A&R + E.E') ;
Option df=-9 ' Eliminate degrees of freedom credit for constraints
Option CI=90
End Group

The output with the @nstraints gives confidenceintervals on the loadings from the verbal
fador to the verbal tests:

Matrix Element Int. Estimate Lower Upper Lfail Ufail
A1 4 2 95.0 0.9081 0.8284 0.9727 00 00
A1 5 2 9.0 0.8674 0.7774 0.9310 00 00O
A1l 6 2 9.0 0.8241 0.7240 0.8913 00 00

To compare these results with the incorred results that do nd include the nonlinea
constraint group, the seaond group was deleted, and NGroups was reduced to 1. This
incorred analysis gives much larger confidenceintervals on the parameters:

A1l 4 2 950 0.9081 0.7334 1.1178 00 00
A1 5 2 9.0 0.8674 0.6877 1.0816 00 00
A1l 6 2 9.0 0.8241 0.6402 1.0425 00 00

Giventhat these mnfidenceinterval srepresent approximately 1.96timesthestandard errors
reported by Lawley and Maxwell, bah sets of results closely agreewith theirs.

Fitting a PACE Modél to Contingency Table Data on MZ and DZ Twins

In order to fit amodel with additi ve genetic, commonandspedfic environment comporents
to categoricd data wll eded fromtwins, we aefacal with two passbiliti es. One, we could
use PRELIS or simil ar software to estimate tetrachoric or polychoric correlation matrices
and asociate asymptotic weight matrices, or two, we could fit diredly to the contingency
tables. Only thelatter approachis siitablefor models of phenatypicinteradion ketweenthe
twins. Phenaotypic interadionlealsto dfferent variances between MZ and DZ groups, or
in the cae of categoricd data, to propationate group differences in the threshalds. This
example uses a simple PACE model (seethe example shawn on age 120 fitted to 2x2
cortingency tables oltained from MZ and DZ twin pairs. There is noinformation onthe
total variance in these data; but there is information onthe relative magnitude of the
variancein MZ and DZ groups (viathe thresholds). Therefore, it isnecessary to constrain
thetotal varianceprior tointeradion to urity. Thisisdoreinthefourth group. Thresholds
are mnstrained equal aaossgroups.

#Ngroups 4
Categorical data analysis. PACE model
Calculation
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Begin Matrices;

X Lower 1 1 Free
Lower 1 1 Free
Lower 1 1 Free
Full 2 2
Iden 2 2
Full 2 1

HFull 11

End Matrices:;

Specification P 04 40

Boundary -.99 .99 4

Specification T 56

Matrix H .5

Start .6 All

Begin Algebra;

A= X*X'
C= Y*Y'
E= 7*%7" ;
B=(I-P)";

End Algebra;
End

genetic structure

common environmental structure
specific environmental structure
interaction parameters

— = TN =<

G2: Monozygotic twin pairs

Data NInput-vars=2

CTable 2 2

File=usmz.ctg

Matrices= Group 1

Thresholds T /

Covariances A+C+E | A*C _ A+C | A+C+E ;
End

G3: Dizygotic twin pairs

Data NInput vars=2

CTable 2 2

File=usdz.ctg

Matrices= Group 1

Thresholds T /

Covariances A+C+E | HeA+C _ HBA+C+| A+C+E ;
End

Constraint group to ensure a*a + c*c + e*e = 1
Data Constraint NInput=1

Matrices= Group 1

I Identity 11

Begin Algebra;

S= (A|C|E);

End Algebra;

Constraint I = S*S' ;
End
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Twins and Parents; Cultural and Genetic Transmission

Themodel described hasbeen devel oped extensively intheunivariate and multi variate cae
(Eaves et a., 1978 Fulker, 198; Nede & Fulker, 1984 Vogler, 1985 Fulker, 1988
Philli ps et al., 1988 Cardon, Fulker & Joreskog, 1991,Nede & al., 199). In order to
preserve consistency withthe ACE model presented for twin dataal one, the same separation
of environmental effeds is made here, following the last of the referenced papers instead
of the ealier treaments. A path dagram of the model is shown in Figure 6.6.

Figure 6.6 Model of mixed genetic and cultural transmisson for data olleded from
twins andtheir parents. Phenatypes of a husband and wife (P, and P,,) diredly affed the
shared environment of their children (C;, and C;,). Assortative mating, represented by a
copath (i) based on plenotypes generates covariance between the latent variables of the
parents. The alditive genetic and shared and spedfic environmental effeds (parameters
a, ¢ and e) and the wvarianceof A and C (parameter s) are assumed to be equal aaoss
generations. Genetic transmisson from parentsto dff spring is fixed at one half.
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The development of acovariance structure model for thisdesign isnot simple. We describe
two approaches: (i) direct use of RAM theory in which all variables in the model are
represented in two matrices, and the Pearson-Aitken selection formula (see page 111) is
used to handle assortative mating, and (ii) an computationally efficient approach that
progresses in a stepwise fashion from the top to the bottom of the diagram. Approach (ii)
isrecommended for general use except where fast hardware gives approach (i) comfortably
quick turnaround.

RAM Theory Approach

Asdiscussed on page 108, structural equation models may be specified very simply interms
of threematrices. Thefirst matrix, S, issymmetric and specifiesall the two-headed arrows
between al the variables (both latent and observed) in the diagram. The second matrix, A,
is asymmetric and specifies all the single-headed arrows between all the variables in the
model. Causal paths from variable i to variable | are specified in element A;;. Thethird
matrix, F, isused to filter the observed variablesfrom the latent variables for the purpose
of model fitting. Thisexampleisarelatively inefficient approach to fitting this model, but
it illustrates the flexibility of Mx to implement theory-driven models explicitly.

! Rose social fears data
! Full 9-Phenotype model for all pedigree types
! P->C transmission & P--P assortment

#Ngroups 6
Gl - covariance in the absence of assortative mating
Calculation

Matrices
A Full 17 17
I Iden 17 17
S Symm 17 17
End Matrices;
Specification
00000

DO O OO OO OO
DO O OO OO OO
DO O OO OO OO
DO O DODODODOO OO
DO O OO OO OO

O OO OO DO D —
OO OO O OO O ON >
D OO OO OO OO W
O OO OO OO O O
O OO OO OO DN O
O OO OO OO O WO
O OO OO O OO
OO OO O NNNO O
O OO OO OO WD O
O OO OO OWD OO
O OO OO RO O OO
O OO OO WDO OO O

OO OO PO o
OO OO PO o
OO OO O oo
OO OO O oo
OO O O O OO
OO OO O oo
[en B en B e B e B e B > B an
OO O O O OO
OO OO O oo
OO OO O oo
OO OO O oo
OO OO O oo
OO OO O oo
OO O O O OO
OO O O O OO
[en B en B e B e B e B > B an
OO O O O OO
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Labels Row A
11 2 3 4 5 6 7 8 91011 1213 14 15 16 17
PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Labels Col A PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Value 0.5 A 126 A 129 A166A 169
Specify S
0

OO OO OO O oo
OO OO OO o oo
OO OO OO oo
OO OO O oo

O O O O OO

O O O o O

OO O O OO
OO OO OO
OO OO OO
OO OO O oo

000
Labels Col S
Labels Row S
Start 1.0 S 6
Begin Algebra;

R = (I-A) &S ;
End Algebra;

End

— O O O O O OO

W CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
W CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
1111S1414S51515S 1717

0
0
0
0
0
0
0
C
R

IO O o o oo

wn = =
© T T
o NN
[ e i
o
w = =

Group 2 - Calculations
Calculation
Begin Matrices;
X IZero 2 17
R Comp 17 17 =R1
Y ZIden 17 15
Z Zlden 15 17
I Iden 2 2
M Symm 2 2
End Matrices;
Specify M0 7 0
Start .1 M2 1
Begin Algebra;
A= X*R*X' I covariance matrix of parents
B= X*R*Y ! covariance of parent phenotypes with other variables
C= I*R*." ; ! covar. of variables that are not parents' phenotypes
D= (A+M) | (AHM)*A™*B
((A+M)*A™B) " |C-B"&(A*(I-(A+M)*A7)); ! handle the effects of assortative mating
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End Algebra;
Options RSiduals
End

Group 3 - Constraints on kids' G-E variance and covariance
Constraint
Begin Matrices:
E Computed 17 17 = D2
C Stan 2 2
F Full 2 17
Constraint \vec(F&E)=\vec(C) /
Specify C 8
Matrix F
00000 O
00000 O
Labels Row F P
Options RSiduals
End

00
00
HP H EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ

Group 4 - MZ twins & their parents
Data NInput vars=4 NObservations=144
CMatrix File=usfearmz.cov
Matrices

C Computed 17 17 = D?
F IZero 4 17
Covariances F*C*F'/
Options RSiduals
End

Group 5 - DZ twins & their parents
Data NInput vars=4 NObservations=106
CMatrix File=usfeardz.cov
Matrices

C Computed 17 17 = D?
F Full 4 17
Covariances F*C*F'/

OO OO
O O O O
OO OO
OO OO
OO OO
OO O O
O O O O
oo o o
O O O O

0000
0000
0000
0000
Options RSiduals IT=500

End

Group 5 - Summarize parameter estimates
Calculation
Matrices
PFulll8
Compute P/
Labels Col P A C E Q ResGs ResCt Mu S
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Specification P 12345678
Start .7 P11P13

Start 5P 15

Start 1 P16

Start .1 P14P 18

End

Computationally Efficient Approach

It is posgble to get much faster turnaroundwith computationall y efficient approaches to
structural modeling of twins and their parents. In ou second script the model for mixed
genetic and cultural transmisgonwas edfied interms of the wvariances as derived from
therulesof pathanalysis. Thisisthe‘correlational model’ describedin Nede ¢ d. (1994
but simplified with the dgebra syntax. Ingroup l1al the model parameters are dedared in
separate matrices. In additionto the A, C and E matrices for additive genetic (A), shared
environmental (C) and urique ewironmental (E) fadors, parameters for the residua
additi ve genetic variance (R,), the residual common environmental variance (R.) and the
genotype-environment covariance (s) are spedfied in matrices G, R and S. The genetic
transmisson paths are fixed to .5 (matrix H). Separate altural transmisgon paeths are
estimated for the maternal (m) and the paternal (p) effedsin matricesM and F. The matrix
B controls the cmmon environmental residual variance and refleds thus the shared
environmental effeds of nonparental origin. Asrtative mating is modeled as a cpath
(Eerdewegh, 1982 in matrix D. Matrix P representsthe within personcovariance Finally
the model all ows for non-additi ve paths (N), bu they cannat be estimated simultaneously
with the altural transmisson peths in the twin-parent design. The matrices dedaration
sedion is ended with the End Matrices; statement, and followed by starting values and
boundiry constraintsfor the parameters. Expresgonsfor the expeded correlationsbetween
the relevant family members (spouses, father-child, mother-child, MZ twin and DZ twin)
are given in the multi statement algebra sedion, indicated by the Begin Algebra; End
Algebra; commands.

Themodel isnat identified withou norlinea constraints on certain parameters. These ae
spedfied in groups 2to 5. The within person ptenatypic varianceis equated to the sum of
al genetic and environmental componentsin group 2.Group 3equatesthe genetic variance
in children to that of the parents. Similar constraints on the genotype-environment
covariance and the environmental variance ae cdculated respedively in groups 4 and 5.

The observed data ae suppied andthefit functionis cdculated in group 6for MZ twins
andtheir parents and group 7for DZ twins and their parents. The expeded covariance of
these groups is a simple combination d the expeded covariances for the respedive
relationships, as cdculated in group 1, wing horizontal and verticd adhesion. The only
diff erence between the two groupsisthe expedationfor the cvariancebetween twin 1and
twin 2.

Modificaions to the Mx code ae relatively simple to make. Additionally, fadliti es for
droppng parametersto fit reduced model s or for adding diff erent data summaries makethis
example a convenient starting point for comprehensive analyses of data from all types of
nuclea family and twin and parent data.
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! Rose Fear data: Social phobia
! Twins and parents: Genetic and cultural transmissio
I P--P assortment

#Ngroups 7

G1: Model parameters
Calculation
Begin Matrices;

D Full nvar nvar free ! assortative mating paths

n model.

(Rp)

nce (Ra)

iance (Rc)

|
P Symm nvar nvar free ! within person covariance
A Low nvar nvar free ! additive genetic paths
C Low nvar nvar free ! common environment paths
F Full nvar nvar free ! paternal cultural transmission
M Full nvar nvar free ! maternal cultural transmission
G Symm nvar nvar free ! additive genetic covaria
S Full nvar nvar free ! A-C covariance
R Symm nvar nvar free ! common environment covar
E Low nvar nvar free ! specific environment paths
N Low nvar nvar ! non-additive paths
HFullll1 ! scalar, .5
I Iden11 I ddentity matrix
B ldenll ! common env residual variance

End Matrices;

Matrix H 0.5
Start 1.
Start 1.
Start

Start

Start 1
Start .707 E 11
Bound 0 1 D111

— o e e

1
1
1
1
1

oo o
X O > G U

Begin Algebra;
W= P*D*p" ;
= G*A" + S*C'
O= (P*F'+ W'*M")*C'+ (I+ P*D")*T'*(HRA') ;
Q= (P*M'+ W*F')*C'+ (I+ P*D)*T'*(HOA") ;
= A*S*C'+ C*S'*A" .
U= A&G+ C&R+ J + N*N'
V= HEA*(G+ H@(T&(D'+D)))*A'+ C&R+ J+ HOHE@N*N' ; !
End Algebra;
Option Rsiduals
End

G2: Phenotypic Variance Constraint
Data Constraint NInput=1
Matrices= Group 1
Constraint P- (A&G+ C&R+ E*E'+ A*S*C'+ C*S'*A'+ N*N'
End

Mother-Father Cov
Genotype-Phenotype Cov
Father-Child Cov
Mother-Child Cov

MZ Twin
DZ Twin

)/
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G3: Genetic Constraint

Constraint

Matrices= Group 1

Constraint G= (HR(G+ HR(T*(D'+D)*T")+ 1)) /
End

G4: A-C Constraint

Constraint

Matrices= Group 1

Constraint S= (HQT*(M'+ F'+ D*P*M’+ D'*P*F')) /
End

G5: Common Environment Constraint

Constraint

Matrices= Group 1

Constraint R= (M*P*M'+ F*P*F'+ M*W*F'+ F*W'*M'+ B) /
End

G6 - MZ Twins and parents
Data NInput=4 NObservations=144
Labels DAD 1 MOM 1 T1 1 T2 1
CMatrix File=usfearmz.cov
Matrices= Group 1
Covariance ( P

—~ ~

End

G/ - DZ twins and parents Rose Fear Factor 1
Data NInput=4 NObservations=106
Labels DAD 1 MOM 1 T1 1 T2 1
CMatrix File=usfeardz.cov
Matrices= Group 1
Covariance ( P

| W

WP

0] Q'

0] Q'
Option Rs1dua15 Multi
End

! Re-fit model with father-child and mother child cultural transmission set equal
Fquate F1 11 M111
End
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6.4 Fitting Modelsto Raw Data

When models are fitted to raw data, it is normal to provide a model for the means as well
as for the covariances. Otherwise, there is little difference in the approaches. Mx
computes minus twice the log-likelihood of the data, with an arbitrary constant that is a
function of thedata. Thusthere isno overall measure of fit, but there arerel ative measures
of fit, since differencesin fit function between submodels are distributed as 2.

Estimating M eans and Covariances

This section demonstrates maximum likelihood estimation using compl ete, balanced raw
data. A Cholesky decomposition (see Figure 6.2) is used for the covariance structure, and
the means are estimated separately. Alternative models for covariances or means or both
could be used if desired.

ML fitting to raw data simulated
with SAS, whose PROC COR COV gave:

1

1

!

| VARIABLE N MEAN STANDARD
! DEVIATION
I Pl 1000 0.00182388  0.98499439
7 1000 -0.98608262  1.40083917
| P3 1000 2.05400385  1.79139557
1

| COVARIANCE MATRIX

! P1 P2 P3

I Pl 0.970214 0.506058 0.620529

7 0.506058 1.96235 0.807754

1 P3 0.620529 0.807754  3.2091

! Cholesky for covariance structure
ML example, calculation of likelihood for each observation.
Data NInput vars=3 NObservations=1000 NGroups=1
Rectangular File=mlped.raw
Begin Matrices;
M Full 1 3 Free
S Lower 3 3 Free
End Matrices;
Matrix_Start values S
1
.6 .8
.6 .0 .8
Means M /
Covariances S*S' /
End
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The relevant part of the output from this job shows good agreement with the SAS resuilts,
calculating means and covariances in the usual fashion, as would be expected for a sample
sizeof 1000. Theestimates of the variancesare slight underestimates sincethe ML estimate
of avarianceisbiased, having denominator ninstead of n-1. Multiplying the ML estimates
by 1000/999 we recover the calculated covariances precisely.

ML EXAMPLE, CALCULATION OF LIKELIHOOD...
Matrix M
This is a FULL matrix of order 1 by 3
0.0018 -0.9861 2.0536
Matrix S
This is a constrained a FULL matrix of order 3 by 3
0.9692 0.5056 0.6199
0.5056 1.9604 0.8069
0.6199 0.8069 3.2059

Variable Pedigree Sizes

When there are many different possible configurations of data, it is most convenient to use
a variable length data file (see page 49). This information can be read by Mx and the
likelihood of the datamay be calculated for any structural model for the covariancesand the
means. In this example, a Cholesky decomposition (see Figure 6.2) of the expected
covariance matrix is specified in Group 1.

' ML fitting to variable length data
! Cholesky decomposition for the expected covariance matrix
! Also matrix expression for means
! - 1in this case just a simple vector with free parameters
Variable pedigree size ML example

Data NInput vars=3 NObservations=1000 NGroups=1

VLength File=unbal.raw

Begin Matrices;

M Full 1 3 Free

S Lower 3 3 Free

End Matrices;

Start .7S11-S533

Means M /

Covariances S*S' /

End

Typical lines of the datafile unbal.raw look like this:
f 2 0.5550 -1.1114

? 23 1.6442 -0.1319 3.609508

? 23 -0.2145 -1.2193 5.011667

? 23 2.2274 -1.9423 0.714351
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There can be problems when beginning to fit models to VL data. One acommonly
encountered dfficulty isthat at the starting values, thelikelihoodis eff edtively zero for one
or more pedigrees. Since Mx is going to try to take the logarithm of the likelihood,some
corredive adionisrequired. During iteration a penalty functionis used, bu this doesn’t
help the cae where there ae poa starting values. To help guide the user to the problem
withthe starting values, M x printsout 3 columns of information: the observed and expeded
means, and then the standardized dff erence between them. Now if these diff erences are
large (say more than 3for any variable), it would be agoodideato change starting values
of either the means (to make the expeded ores closer to the observed) or the variances (to
makethe standardized dff erencelesy. If the starting valuesof the meansare very bad, then
it would make sense to change them; however, if they are nat, the eror may occur with
ancther vedor in the dataset, in which case modifying the starting values to increase the
expeded variances shoud help. If not, examinethe expeded covariancematrix; sometimes
large expeded covariances can make particular pairings of scores rather unlikely. It is
usually better to supdy starting values that spedfy adiagonal variance-covariance matrix,

since the overdl likelihoodis smply the product of the likelihoods of the individual

variables. If ead o these likelihoods is reasonable, e.g. a standardized dfferenceof less
than 2,thenthe overall li kelihoodwill nat produceproblems unlessthe number of variables
in the vedor islarge.

Definition Variables

For example: suppcse that the variances of and covariance between two variables vary as
afunction d age. A traditional approach to this problem might involve splitti ng the sample
into two groups, yourng and dd, and fitting a two-group model. Comparison d the fit
statistic obtained when the wvarianceis constrained to be equal in the two groups to that
obtained when ead group tesitsown covariancestructure provides atest of heterogeneity.
But what if we want to use dl the information onage, which is a continuots variable,
instead of an arbitrary cutoff for yourg vs. old?

We can use the observed age variable to define the mvariance structure for that particular
observation. That is, we want to fit amodel of the form

y, = Lf+Xage

where L and X are lower triangular matrices, f isavedor of independent randam variables
with mean zero and urit variables, and age isavedor with age as ead element. Thusthe
covarianceof y; will be

Cov(y,,y;) = LL’+XRX’

where R isadiagonal matrix with age as all elements. A script to fit thismodel is shown
below. Let variables1, 2and 3correspondto verbal 1Q, quantitative 1Q, and age, which we
read fromfileiq.vl. Mx usesthedefinition keyword to identify variablesthat are to be;
they are extracted from the dataset so modeling is restricted to the other variablesV and Q
(seefigure 6.7).
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Figure6.7 Definition variable example.

Title - verbal and performance IQ covariance as a function of age
Data NInput=3 NGroups=1 ! Single group example with 3 variables
Labels Verbal Quant Age
VL file=IQ.VL
Definition variables Age / ! This variable is referenced as -1 in
! specification statements
Matrices

L Lower 2 2 Free ! Triangular matrix of paths from factor Fi to variable 0]
X Lower 2 2 Free ! Triangular matrix of paths from factor Ai to variable 0j
RDiag 22 I Matrix for variances of Ai Tatent variables

M Full 1 2 Free I Matrix for estimating means

Means M / ! Formula to compute mean vector

Covariance L*L' + X*R*X' / ! Formula to compute covariances

Specify R -1 -1 ! Place definition variable on the diagonal elements of R

Matrix M 100 100
Matrix L 15 0 15
Matrix X 3 0 3
Option RSiduals
End

Starting values for means
Starting values for constant covariance component
Starting values for age-dependent covariance component

|
|
!
! Request some output
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Internally, Mx will recal cul ate the predicted covariance matrix for every observation™. The
usual raw data log-likelihood function is computed for every vector of observations, but
using the appropriate covariance matrix for this group. If we were to assign one and zero
to the age variable in accordance to our cutoff approach, we would get the same results as
the two-group heterogeneity method.

Apart fromthishandling of continuousheterogeneity, we should be awarethat considerably
more complex models may be attacked. All thetoolsof Mx matrix functions and operators
may be used to define linear and non-linear functions of the definition variables and model
parameters.

Using NM odel to Assess Heter ogeneity

Mx has special features for assessing possible mixtures of distributions. Almost all
structural equation model smaketheimplicit assumptionthat one model describesthewhole
population. In readlity, the population may consist of several subpopulations. This type of
analysis requires the raw data to be analyzed, and thus assumes a multivariate normal
distribution of each of the component subpopulations. Thelikelihood functionis modified
for this type of mixture. Let L, be the likelihood under model 1 and L, be the likelihood
under model 2. In both cases, this likelihood is computed with the multivariate normal
probability density function, as described on page 70. The overall likelihood is computed
asaweighted sum of thelikelihoods for each model, and the log-likelihood isthelogarithm
of this overall likelihood. Mx lets you enter any matrix formulafor the weights; here we
illustrate the method with a simple proportion.

Suppose that the population consists of a mixture of two groups, one with population
covariance matrix

and the second with covariance matrix

>, =
2|21

Using SAS, adata set of 500 pairs of scores for each of the two groups was simulated. In
addition, two further scores were added to the dataset: (i) a measure of group membership,
being N(0,1) for thefirst group, and N(1,1) on the second - anormally distributed indicator
with a1 standard deviation difference between the groups; and (ii) akey variable scored 0
for the first group and 1 for the second. The observed covariance matrices for the two
groups and the recovered estimates for a variety of models are shown in Table 6.1. Firgt,
the results of fitting a model with no heterogeneity. The covariance is estimated at .47
which is approximately half way between .2 and .8 simulated for the two populations.

1911 fact, it only does this if the definition variables have different values from the preceding case, so
sorting may improve performance if the definition variables are quasi-continuous or ordinal.
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Sewmndare the results of attempting to deted this heterogeneity with a simple model that
tries to estimate the propartions in the two samples. There is evidence of heterogeneity
here, because thefit function hasimproved compared to model 1. However, the parameter
estimates recovered are not goad estimates of the popuation statistics, particularly for the
low correlation group,whose propationis estimated at only .27 d the popuation. Better
estimates are recovered when the true popuation popationis used (Fixed Heterogeneity
model). Therefore, without external indicaors, it seems dangerous to draw conclusions
abou the propartions in the popuation, uress smple sizes are much larger than they are
here. TheFixed Indicaor model usestheinformationfromtheindicator variableto partially
discriminate between the popuations. A better fit is found,and good recovery of the
popuation parametersisobtained. To make thismodel redlistic, the relationship between
the indicator and group membership shoud be estimated. Again, the parameter estimates
arelessredistic, particularly for thelesscorrel ated subpopu ation,whenthe propationsare
estimated rather than given.

Insummary, it may be possbleto deted the presenceof heterogeneity in araw dataset with
amoderately large sample size. However, unessone has agoodindicator variable - and
knowsits relationship to the variables being analyzed - it is difficult to quantify theway in
which the ‘latent groups’ differ. One example where agoodindicaor variableisavail able
isgenetic linkage (Eaveset a., 1996). Modeli ng heterogeneity with andwithou indicaors
isin nead o further study, bah the mmplexity of the models used, and the sample
propations.

Table 6.1 Summary of parameter estimates for a variety of models of heterogeneity

Model V1 C V2 p -2InL df
One model 1.0093 0.4699 0.8394 5344.12 1995
Estimated 0.5949 -0.1968 1.0359 0.2727 5289.39 1991
Heterogeneity 1.1779 0.7259 0.8840

Fixed 0.8409 0.1353 1.0065 .5000 5293.28 1992
Heterogeneity 1.1957 0.8113 0.8449

Fixed 0.9460 0.1721 0.9830 5267.59 1995
Indicator 1.0920 0.7764 0.8679

Estimated 0.6794 -0.1476 1.0017 5263.80 1988
Indicator 1.1672 0.7456 0.8922

Perfed 0.9997 0.1356 0.8473 5101.71 1992
Indicator 1.0393 0.8125 1.0036

Datawere simulated with unt variance and .8correlationsfor 500cases, and unt variance
and .2correlationfor 500 cases.
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#Ngroups 1
No heterogeneity
Data NInput=4 Nobservations=0
Rectangular File=siml.both
Labels X Y Z Key
Select X Y /
Begin Matrices;
A Lower 2 2 free
M Full 1 2 free
End Matrices;
Start 1A11toA22
Means M ;
Covariance A*A' ;
Option Mx%Zp=indivl.Tik
End Group;

#Ngroups 1
Simple Heterogeneity - two models, no indicator
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
IUnit 11
M Full 1 2 free
P Full 1 1 free ! proportion in subpopulation 1
End Matrices;
Start 1A11toA22
Start 5B11toB22P11
Bound .001 .999 P 11
Begin Algebra;
Q=1-P; I proportion in subpopulation 2
W= P
Q; ! vector of weights
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W ;
Option MxZp=indiv.1lik ! put individual likelihood statistics to file
Option RSiduals Multiple
End Group;

I Fixed proportions heterogeneity

Drop @5 P 111
Exit

#Ngroups 1
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Estimated indicator

Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both

Labels X Y Z Key
Select XY 7/
Definition 7 /
Begin Matrices;

A Lower 2 2 free
Lower 2 2 free
Unit 11
Full 1 2 free
Full 11
Full 1 1 free
Full 1 1 free
Full 1 1 free

N Full 1 1 free
End Matrices;
Specify C Z

— AL O XX —

! Cholesky of first subpopulation covariances
! Cholesky of second subpopulation covariances

! Vector of estimated means

!Mean of first group on Z variable
!Deviation of Mean of second group
Variance of first group on Z variable
!Variance of second group on Z variable

Start 1A11toA22L11INTI1
Start 5B11toB22J11

Start .25 K11
Bound .1 3L 11N
Bound 0 3 K11
Bound -3 3J 11
Begin Algebra;

11

P = \pdfnor(C_J+K N) % ( \pdfnor(C J L) + \pdfnor(C J+K N) ) ;

Q=1 -P;
W= P _Q;
End Algebra;
Means M M ;

Covariance A*A' B*B' ;

Weight W ;

Option MxZp=indiv.lik

Option RS
End Group;

#Ngroups 1
Fixed indicator

Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both

Labels X Y Z Key
Select X Y Z /
Definition Z /
Begin Matrices;

A Lower 2 2 free
B Lower 2 2 free
IUnitll

M Full 1 2 free
CFull 11

7 7ero 11

! compute prob
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End Matrices;
Specify C Z ! put individual Z variable scores into matrix C
Start IA11toA2?2
Start . 5B11toB2?2
Begin Algebra;
P = \pdfnor(C I I) % ( \pdfnor(C Z I) + \pdfnor(C I 1)) ;
I P computes probability separately for every case in the sample
Q=1-P;
W= P
Q:
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W :
Option MxZp=indiv.1lik
Option RS
End Group;

#Ngroups 1
Two groups, perfect indicator (Key)
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y Key /
Definition Key /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
FFull 11
IUnit 11
M Full 1 2 free
CFull 11
Z Zero 11
End Matrices;
Specify C Key
Matrix F 5
Start 1A11toA22
Start 5B11toB2?2
Begin Algebra;
P=C: ! compute prob
Q=1-P;
W= P
Q ;
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W ;
Option MxZp=indiv.lik
Option RS
End Group;
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Using #f and #repeat Commands

When genotype data ae avail able on siblings or twins, ore can test the @ntribution d a
spedficlocus(inadditionto urmeasured residual genetic df eds) to thevariability of atrait.
In most cases, alarge number of markers are typed, which would require repeded runnng
of the same script with the only change being the name of the redangular data fil e being
rea in, correspondng to the diff erent markers. The #repeat command all ows the user to
runthe script for the different markersin orejob.

The example below shows a script which is being repeaed 25times, with ead runreading
adifferent redangular datafile. Thefilenameiscreaed with a#define d string variable &
the end d the fil ename which changes acwrding to the repea_number. The#if command
is used so that for the first nine repeds, the $repea_number follows 3 zero’s. For the
remaining repeas(seethe#elseif command) the $repea_number foll ows?2 zero’ stomatch
thefiles(mx0001mx0025 containing the genotype datafor the 25 dfferent locaions. The
full model estimatesthe contribution d the QTL effed in additionto residual genetic and
spedfic environmental effeds. The submodel tests the significance of the QTL effed.
When the 25 repeds are dore, a System command is invoked to save the relevant output -
the location number and the li kelihoodratio chi-square - in a separate fil e using the * grep’
and ' paste’ commandsunder Unix. If ‘grep’ and aher Unix like utiliti esareinstall ed uncer
Windows, the job could be run onthat platform as well .

! Univariate QTL analysis using raw data and weighted IBD probabilities
#define nvar 1

#repeat 25

#Ngroups 1

Gl: QTL model with heterogeneity and weights
Data NInput=27 NModel=1
Missing=-1.000000
#if repeat number < 10
Rectangular File=mx000$repeat number
#elseif repeat number < 100
Rectangular File=mx00$repeat number
#else
Rectangular File=mx0$repeat number
#endif
Labels
Locn Pair pibd0 pibdl pibd?
ppnl TOTCH1 LOGTR1 LDL1 APOB1 LOGLPAT BMI1 HDL1 APOA11 APOA21 APOE1
ppn2 TOTCH2 LOGTR2 LDL2 APOB2 LOGLPA2 BMI2 HDLZ2 APOA12 APOA22 APOE2
Select pibd0 pibdl pibd2 LDL1 LDL2 ;
Definition pibd0 pibdl pibd2 ;
Begin Matrices;
A Lower nvar nvar Free I residual genetic effect
E Lower nvar nvar Free I specific environmental effect
K Full 3 1 I weights
F Full 1 3 Fixed I coefficients 0.0.5,1
Q Full nvar 1 Free I QTL effect
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HFull 11 I scalar 0.5
M Full 1 nvar Free I means
L Full 11 I 'matrix for the Tocation (repeat number)

End Matrices;
Matrix F 0.0 0.5 1.0
Matrix H .5
Specify K pibd0 pibdl pibd2
Begin Algebra;
P = F*;
HRA*A" ;
A*A" +Q*Q' +E*E";
U + P@Q*Q";
VW
WIV;
End Algebra;
Means M |M ;
Covariance
Matrix A .
Matrix E .
Matrix Q .
Matrix M 4.9
Matrix L $repeat number
Options RSiduals NDecimals=2 Iterations=5000
Options Multiple Issat
End

weighted IBD probabilities
residual genetic variance
total variance

total genetic covariance

< = < C
1

Y
5
5
5

! Fit submodel dropping the QTL effect

Drop Q111

Exit

#end repeat

system grep ‘Difference Chi” qtl.mxo > diff
system grep ‘Matrix L ° gqtl.mxo > Tocation
system paste location diff > results.txt

6.5 User-Defined Fit Functions

Least Squares

This is a simple example to illustrate the use of a user-defined fit function, in this case
least-squares. The model statement eval uatesto a scalar which isminimized by Mx. Note
that this approach is generally less efficient than using built-in formulae available in Mx,
but it is much more flexible.

User defined function to fit to a correlation matrix by Teast squares
Data NInput vars=3 NGroupies=1
CMatrix Symm

1

21

341
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Begin Matrices;
A Symm 3 3 = %01
B Stan 3 3 Free
End Matrices;
Begin Algebra;
D= \vec(A)-\vec(B);
End Algebra;
Compute \sum(D.D);
Option User
End

Correction for Ascertainment

On page 92, we described how proband-ascertained ordinal data could be used to estimate
population covariances or genetically informative parameters. Thissametruncate selection
might be applied using a screening instrument, so that only individuals above a certain
threshold value are sampled. [If such an ascertainment scheme was applied in a pairwise
fashion, such that only pairs in which at least one of the pair was above threshold, the
likelihood of these observationswould require correction for the necessarily missing pairs
concordant for being bel ow threshold. Mathematically, thelikelihood of pair ascertainment
can be expressed as a double integral of the bivariate normal distribution:

L = f; f;go(vrvz)dvzdvl

wheret isthe ascertainment threshold, v, and v, are theliability values of individuals 1 and
2, and ¢ is the multinormal probability density function. The likelihood of a pair of
observations x; and X, given the ascertainment scheme is therefore:
9 (X,%)
1- fit ﬁ " (vy,V,) dv, dv,

L XA) =

If we usetwicethe negativelog-likelihood as afunction to minimize, then the ascertainment
correction becomes more clearly distinct:

“2InL(x X J8) - 2(|n(¢(x1,x2) @[ f;go(vl,vz)dvzdvl))
~2In(p(x,%)) + 2In(1- f‘ f;go (V,,V,) dv,dv,)

when we have m pairs, the likelihoods are summed over j=1... m, giving
= -2n(p(x;x,) + 2min(1- f,t f,t 0 (V,,V,) dv, dv,)

Thefirst term is the function vaue cal culated by Mx when fitting to raw data. The second
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term may be cal cul ated by obtaining the value of theintegral from adummy categorical data
group using zero observed frequenciesin each cell. Parameter t, the threshold in thisgroup
should befixed at the population value, and the correlation should be constrained to equal
the correlation of these two variables as estimated from the ascertained data. The expected
proportions under the bivariate normal distribution are passed as a matrix using the %P
constraint as described on page 59.

Simulated twin data. Raw ML estimation
Data NInput=2 NGroups=3 NObservations=1000
Raw data file=[neale.sas]mzasc.dat
Begin Matrices;

M Full 12
R Stan 2 2 Free
End Matrices;
Mean M /
Covariance R /
Matrix M 0 0
Bound -.99 .99 R 1 2
Option RSiduals
End

Dummy group to calculate expected cell proportions
Data NInput=2
CTable 2 2
00
00 I'It's full of zeros so it contributes zero to the function
Begin Matrices;
TFull 21
R Stan 2 2 = R1
End Matrices;
Matrix T 1.282 1.282
Thresholds T /
Covariance R /
Option RSiduals
End

Calculate ascertainment correction
Data NInput=0
Begin Matrices;
I Iden 11
J IZero 12
P Full 22 = %P2
TFRUIT 11
End Matrices;
Matrix T 2000 ! twice the sample size of group 1
Compute T*\In(I-J*P*J") /
Options User-defined RSiduals Multiple
End
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6.6 Using Mx Header and Template Files
Factor Modelsfor Twin Data

To simplify fitting models using the Mx script language, a combination d header and
template files can be used, pasgbly with existing dat files. The dat file contains the basics
abou the adual data, such as number of variables, observations, labels and the data
themselves, either raw or summarized. The heaer file includes all the dements of the
model that can be dhanged in #define' d variables, e.g. the dat file and the variables to be
analyzed. Thelast line of the header file cdl s the template fil e which remains unchanged.
Thetemplatefil eincludes ageneric script - in thisexample for orthogonal fador analysis -
which isfitted to the input defined in the header file.

The dat file in this example @ntains the mvariance matrix for 5 intelli gence measures
obtained on 100subjeds.
!

! Factor.dat - example factor analysis data
|
Data NInputvars=b NObservations=100
Labels verb perf matrix digit speed

CMatrix

1.2
1.4
1.5

2.0

.3
4.3
2.4 521

wW U1 N

The example header file defines the dat file ($DATA), the number of factors (nfac), the
number of variables (nvar), the difference between the number of factors and variables
(diff), and a list of labels of the variables to be analyzed ($vars) which can be easily
changed tofit to different dataor adifferent number of variablesor factors. Thisheader file
can be edited by the end user using the MxGui (MxProject_Header Edit).

|

Orthogonal factor analysis example

1
!
! Model is of the form F*F' + E*E

! where F contains the factor loadings and is Tower triangular but not square
! Factors are constrained to be orthogonal

' E is diagonal and contains error s.d.'s

1

#define $DATA factor.dat ! dat file containing Data 1ine, Tabels and data
! or data files to be read. Use MxProject menu - data file edit to create

#define nfac 2 ! number of factors

#define nvar 5 ! number of observed variables - must match number
! of Tabels above

fdefine diff 3 ! set equal to nvar-nfac

#define $vars verb perf matrix digit speed ! T1ist of Tlabels of variables

! to be analyzed
1
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! The template file is included below
#include factor.mxt
! End of factor.mxh header file

The template fil e fitsan orthogonal fador analysis with nvar variables (in this example 5)
and nfac fadors (in this example 2) to the intelli gence data & defined in the header file.
Thereisno real to edit this template file.
|
! Template file factor.mxt
|
#MNGroups 1
Title Generic orthogonal factor analysis script

I include data file

#include $DATA

Select $vars

I set up matrices

Begin Matrices;

G Lower nfac nfac free ! top part of loading matrix

H Full diff nfac Free

E Diag nvar nvar Free

End Matrices;

Begin Algebra;

F=GH;

End Algebra;

Covariance F*F' + E.E ;
End

Alternative Genetic Modelsfor Twin Data

The Mx Gui has an editor for header files which al ows the beginning user to fit diff erent
models to dfferent data, simply by changing the relevant lines of the header file. In the
example below, changes can be made to the number of variables to be analyzed, the
particular variables for analysis, the data fil es, the model, the starting values, and whether
confidenceintervals are requested and means are estimated. Choicesare saved in define'd
variables which are used in the script which isreal from atemplate file using the #include
command. The template file then fill sin the choices for the define'd variables and wses a
variety of #1f commandsto fit the requested model with or withou means and confidence
intervals. Notethat new #if commands can be nested within ather #1f commands. Thisis
doreto request the mrred confidenceintervals depending onthe model being fitted.

Example Header File:

Header file for ACE/ADE/AE/CE/E Cholesky model
Two groups: MZ and DZ twins

Data files required are DATAMZ and DATADZ
Twin variables are expected to be labeled -T1 and -T2

1
1
1
1
1
!
| E.g. height-tl height-t2 bmi-t1 bmi-t2
1
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#define nvar 1

#define $vars BMI-T1 BMI-T?
#define $DATAMZ ozbmiomz.dat
#define $DATADZ ozbmiodz.dat

#define $model AE

#define intervals 1

#define means 1

#define $startsd .6

#define $startmean 2

! The template file below shoul
#include ace-cholesky.mxt
! End of ACE-cholesky header file

Example Template file:
! A/C/E/D Cholesky model

#NGroups 1

G1: Model parameters

Calculation
Begin Matrices;
#if $model = ACE
X Lower nvar nvar
Y Lower nvar nvar
/ Lower nvar nvar
W Lower nvar nvar

#elseif $model = ADE

X Lower nvar nvar
Y Lower nvar nvar
/ Lower nvar nvar
W Lower nvar nvar
#elseif $model = AE
X Lower nvar nvar
Y Lower nvar nvar
/ Lower nvar nvar
W Lower nvar nvar
#elseif $model = CE
X Lower nvar nvar
Y Lower nvar nvar
/ Lower nvar nvar
W Lower nvar nvar
#elseif $model = E
X Lower nvar nvar
Y Lower nvar nvar
/ Lower nvar nvar
W Lower nvar nvar

Free
Free
Free

Free

Free
Free

Free

Free

Free
Free

Free

!
!
!
!
!
!
!
!
!
d

number of variables being analyzed

labels for variables

name of MZ dat file

name of DZ dat file

model type: ACE; ADE; AE; CE; or E
confidence intervals: 0 = No; or 1 = Yes
means: 0 = No; or 1 = Yes

sd/3 for ACE/ADE sd/2 for AE/CE and sd for E
vector of observed means (nvar of them)

not be changed

felse ! good programming practice is to check for strange input
I and note it when it occurs
Oops - error, not correct header file model variable

#endif
#if means = 1
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M Full 1 nvar Free
#else
! Vector of means not required
#endif
HFull 11
QFull 11
End Matrices;
Matrix H .5
Matrix Q .25
Start $startsd All
#if means = 1
Matrix M $startmean
#else
#endif
Begin Algebra;
A= X*X';
C= Y*Y';
E= 7*7":
D= W*W";
End Algebra:
End

Group 2: MZ twins
#include $DATAMZ
Select $vars ;
Begin Matrices= Group 1;
Covariances A+C+D+E | A+C+D
A+C+D | A+CHD+E
#if means = 1
Means M|M;
#endif
Options RSiduals
End

Group 3: DZ twins
#include $DATADZ
Select $vars ;
Begin Matrices= Group 1;
Covariances A+C+D+E | HOA+C+Q@D
HEA+C+Q@D | A+C+D+E ;
#if means = 1
Means M|M;
#endif
#if intervals =1
#if model = ACE

Intervals A1 11 -Alnvarnvar C111-C1nvar nvar
Intervals E1 11 - E 1 nvar nvar

#else if model = ADE
Intervals A1 11 -AlnvarnvarD111-D1nvar nvar
Intervals E1 11 - E 1 nvar nvar



154

Example Scripts

#else if model = AE
Intervals A1 11-Alnvarnvar E111-E1nvar nvar
#else if model = CE
Intervals C1 11 -ClnvarnvarE111-E1nvar nvar
#else if model = E
Intervals E 111 - E 1 nvar nvar
#else
#endif
#else
#endif

Options RSiduals
End
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Appendix A Using M x under different operating systems

A.1 Obtaining MXx

Currently the Mx statistical engineis available for several Unix systems including Linux,
Solaris, Irix, IBM AlX, Digital Unix, HP Ux). Versionsfor most operating systems can be
downloaded via the internet at http://views.vcu.edu/mx. The MXx Graphical Interface
(MxGui) is available for MS Windows and MS-DOS and may be obtained from
http://mwww.vipbg.vcu.edu/mxgui. It can use either the included DOS version or Unix
version to analyze data.

A.2 System Requirements

A3

A4

To run the Mx graphical interface, you need:

An IBM-compatible PC running Windows 3.x or 95 or NT

A 386-DX (or 386-SX with coprocessor) or above (486-DX, Pentium, etc.)
A mouse or similar pointing device

At least 6Mb of free diskspace

At least 16Mb of installed RAM

To use networked Unix workstationsto run the Mx statistical engine (for faster turnaround
of cpu intensive jobs) a TCP/IP connection is heeded.

I nstalling the Mx GUI

Windows 95/98/NT

Download mxgui95.zipand unzipitinto adirectory suchasc: \templ (alternatively you can
useWinZiphttp://www.winzip.comtounzip andinstall inasingle step). Runthe program
setup.exe by double-clicking onit in the Windows Explorer and follow theinstructionsfor
the installation. Choose an instalation directory that is different from the directory
containing the setup.exe program.

Windows 3.xx

Download thefilemxgui31.zip and unzipit into adirectory such asc: \templ (aternatively
you can use WinZip http: //www.winzip.com to unzip and install in asingle step). Run the
setup.exe file by double clicking on it in the File Manager and follow the instructions for
the installation. Choose an installation directory that is different from the directory
containing the setup.exe program; we recommend the default C: \mxguii.

Using M X

Windows

See Chapter 2.
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Dos

MX iswritten in about 30,000 lines of FORTRAN, and it links to afurther 20,000 lines of
NPSOL code for optimization, so the resultant .exe file does not run within the 640K limit.
Fortunately, the Lahey compiler alows binding of aloader to the code which permits Mx
to use memory beyond the 640K limit in 386 and 486 machines. If the program runs out of
memory, it will use virtual memory (disk space) instead, but obvioudly this can drastically
decrease performance. The use of Stacker (file compression software) also seemsto slow
things down, especially for thefirst runinamultiplefit file. Under DOS, performance can
be improved if SMARTMEM is loaded.

Note the difference between your computer running out of memory and Mx running out of
workspace. Currently, the PC version is configured with 100,000 double precision words
of workspace; larger workspace can be requested on the command line with e.g.

mx -k 500

which would request 500,000 words of workspace.

We recommend that input files have the naming convention cutename .mx where cutename
isaname of your choice. To run Mx on aPC, create an input script and type

mx cutename.mx {cutename.mxo}

if you arerunning DOS. Mx now no longer requiresthat the output files be specified on the
command line. With the syntax

mx cutename.mx

the output will bein afile called cutename.mxo

If you wish to use other extensions or names for input and output files, you could, for
example, create afile called badname. abc, and use the syntax:

mx badname.abc awfulname.xyz

which would create an output file called awfulname .mxo. The command

mx badname. abc

would generate an outpuit file called badname .mxo

UnderWindows 3.x, 95 and NT, it ishandy to usethe Associate option in the File Manager,
to associate .mx fileswith themx. exe programfile. Double-clickinga .mx filewill then run
Mx and produce a .mxo output file. Feedback of function evaluations is printed on the
screen. Alternatively theinput file can belaunched onthe Mx icon. Similarly the .mxo files
can be associated with your favorite text editor/viewer, so that output files are easily read
with a double click.

We can extend the idea of filename extensions a little further to include: covariance
matrices, .COV; correlation matrices, . COR; contingency tables, .CTG; matrices, .MAT; variable
length files, .VL; rectangular files, .REC; weight matrices, . ASY; inverted weight matrices,
.AST; vectors of means, .MEA; mx savefiles, .MXS. Of course, it doesn't make any diff erence
to the program what you cdl thefil es, but some widely-used conventions sich asthese help
youand aher usersto understandthe content of thediredory when you (or your coll eagues)
look at it six months later.
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UNIX

Hypertext output may be requested with the -h flag, e.g.
mx -h myfile.mx myfile.htm
would produce html output suitable for looking at with a browser like Netscape.

Mx may be used very simply in UNIX by typing

mx <inputfile >outputfile

and the parameter & may be added to run jobsin batch. For very cpu intensive applications
the command

nice mx <inputfile >outputfile

may be used to run the job at lower priority to avoid overtaxing the system.

Y ou can also use abmx script which alows you to use the following syntax:

bmx inputfile

The outputfile is then automatically created as inputfile.mxo; the bmx script may be
downloaded, but it is quite short:

(usr/local/bin/mx <$1.mx >$1.mxo; \

echo “Mx has just finished a job for you *G”"; \

echo “See output in $1.mxo”)

and should be entered as a single line, with the literal character ctrl-G (ASCII code 7) to
make a beep.

VAX VMS

TheVMSversionisnolonger supported; however, version #istill available at thewebsite.
Mx for VMSis distributed with a command file (MX . COM) which dea s with file extensions
and checksto see whether the user has sufficient memory resources. Typically one user at
asite, the administrator, will keep the command and executable files with read and execute
permission set for all users. Then if users define the symbol mx with acommand such as
$ MX :== "@DISKI1:[BOSS.MXIMX.COM DUMMY"

where DISK 1 is the name of the diskdrive, BOSS is the name of the administrator, and
BOSS.MX isthe name of the subdirectory inwhich the mx.com and mx.exefilesare stored.
The above symbol definition will permit usersto run Mx either interactively or as a batch
job. Theonly difference isthat the former will produce a mesmerizing display of the Mx
logo and the latter will free up your terminal to do something elsewhileit runs. The output
file may be read while the program is running, though emptying the print buffer has been
reduced to improve performance.

Mx can be run either interactively with the following syntax:

$ MX CUTENAME

or alternatively, you can run the job in batch with

$ BAT/Q=whateveryoulike MX CUTENAME

for short jobs, ignore the /Q= bit. With this syntax, the output will be called CUTENAME . MXO.
Thereisalso afacility , called imx, for editing jobs, running them, and viewing the output.
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Appendix B Error M essages

B.1 General Input Reading

If, whilelooking for anumber, a(non-comment) input linewith only non-numeric characters
onit (e.g. matrix P)isfound, the program issues a warning:
**WARNING** Non-numeric characters found when trying to read a number

Thisisto alert the user to what is probably an error of not reading enough numbers, for one
of these reasons:

e inpu lines are toolong (1200column maximum, except AlX (500)

» the matrix was given the wrong dimensions in the matrices command

» toofew numbers have been suppied

Thisisnot afatal error, but normally some other problem will arise. Similarly, if too many
numbers have been provided for a matrix, (or a mistake was been made when defining the
type or dimensions of the matrix) the program will usually try to read a number as a
keyword, ask something like “Just what is this keyword supposed to mean?™ and stop.

Sometimes an integer overflow will occur if too many digits have been read in freeformat
for a number. Try to kee the number of digitsto 9 a less If you redly need more
predsion, we the exporential format (D+00) or read datafrom afile.

B.2 Error Codes

Thisisalist of the eror codes reported by Mx. The eror messages are suppased to be
self-explanatory, but they are usually quite brief. Heretheitalictex isthe @ror, and ordinary
type gives alittl e further explanation.

1 First inpu line after title must be DATA. Will occur if the Title line has been forgotten. Maybe, just

MAY BE, you got your NG wrong.

Data line must have NI andNO spedfied. (Datagroupsonly).

End do filewhiletryingto readtitle.

Must spedfy Matrices at this point... Perhaps you have the wrong NI or the wrong matrix type - SY

instead of FU?

Not a legal matrix name. Use A-Z, one letter only.

lllegal matrix type... Ched for typos. Youmay use ZE, ID, I1Z, ZI, DI, SD, SY, ST, FU, UN or LO.

Sary, | seanto be at the end o your inpu file. Chedk NG is corred.

Number of seleded variables must be lessthan a equd to number of inpu variables NI ... Otherwise

youwon't be analyzing something sensible and pasiti ve definite.

9. Error - novariables ®leded for andysis.

10.  Teribly sorry, | dort have enoughworkspace

1L Please try nat to refer to matrices that you haven't spedfied.

12. Please use only Pattern or Spedfication throughaiut. Pattern and Spedfication canna be used in the
sameinpu file,

13. Error - no matrix spedfied...

14. More than 3 dmensions edfied. After amatrix name, there shoud be amaximum of 3 numbers to
identify the dement.

15. Error - matrix has not been spedfied.

16. Matrix has been spedfied nd to havefree éements. SeeTable ?to figure out which types of matrix can
have free déements.

Eal SN

O N O
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17.
18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.
29.

30.
3L

32
33.
34.

35.

36.
37.
38.

39.

40.
41

42,

43,

44,
45,
46.
47.
48

You cannd alter off-diagond elements of a diagond matrix.

Incorred element of a Subdagoral matrix spedfied. You can't dter elementson a above the diagonal
of as Subdagonal matrix.

Incorred element of a Sandardized matrix spedfied. You can't alter elements on the diagonal of a
Standardized matrix.

Pleaseuse2 or 3 dmensiond format for elements. Array references shoud begrouprow,col, with group
optional.

Sary, | can't find your matrix dement. | redly shoud tidy up sometime.

I'msorry, | dorit understandthispart of DATAline, so I'mignaingit. Notethat Mx isnot LISREL and
won' fiddle éou changing data structures using the MA= command syntax. You can aways do it
explicitly in alittle Mx job which will be goodfor your immortal soul.

Sary, | coudn't invert your expeded matrix. If the method is ML, the expeded matrix has to be
invertible throughou optimizaion. Mx will try to avoid nonpasitive definite aeas with a penalty
function.

Sary, | couldn't invert your asymptotic matrix. If the asymptotic matrix isnot positive definite, it must
befixed. Ched the Selea command for repetitions of anumber, if it is used.

Strangely, you seemto haverequested an urknown matrix operation. IF you get this one, memory is
screwed upsomehow, andyoushoud chedk your inpu file caefull y before sending the problemto Mike
Nede.

Sary, your model matrix has different dimensions from your data matrix. A common silly mistake.
Carefully figure out the dimension o your model, chedk NI parameter and Selead command if used.
Sary, your expeded matrixisnot symnetric. The matrix formulayou provide shoud yield amatrix that
is yymmetric, if it isto befitted to deta

**Sorry, you must have symnetric or full model** Same & previous message.

Pleasetry nat to spedfy inverse for nonsquare matrices. Generalized inversesarenot avail able. If you
are desperate, try transforming to a partitioned matrix that has a square matrix of full rank at one end.
Sary, hadtroudetranspasing amatrix. Thisisan urikely error.

Sary, | coudn't find the determinart of a matrix. | thought | put it on the shelf here somewhere...
Probably zero.

Uh-oh.. there's a problem with a binary operator. This can happen when evaluating an ill egal matrix
expresson, but it isunlikely.

Sary, the matrix addtion screwed up Very unlikely.

The matrices you wish to add ae not conformable for addtioni.e. the number of rows (columns) in
matrix 1 isnot the same as the number of rows (columns) in matrix 2. Quitelikely. If at first you dorit
succed, chedk chedk and chedk again.

The matrices you wish to multi ply are not conformable for multi pli cationi.e. the number of columnsin
matrix 1 is not the same as the number of rowsin matrix 2. Be sure that you are using the right type of
multi plication for your application, as well as cheding the dimensions of the matrices you wish to
multiply.

You seemto havean urknown matrix type. Very unlikely.

| seemto beusing an uknown fit function. Very unlikely.

Youmust spedfy 3 numbers for bounday constraints. Lower bound Upper bound Parameter # or array
element.

First character after BOUNDARY must be alphanumeric. Alphanumeric means aphabetic
abcdefghijkimnopgstuv or 01234356789

Sary, to request AWLS for this group, you shoud haveinpu an asymptotic covariance matrix.

| dort know to what you want me to equae this matrix. Some eror in the =Mi command to equate
matrices. Equateemust be onthe sameinpu line.

Sary, | can't makethis matrix equd to amatrix that you haven't suppied yet. Reorder your groups if
it isn't atypo.

Uh-oh... | got stuck inverting amatrix while alculating expeded matrix... If you ae using an(I-B)~
formulation, makesurethat the parametersin BdoNOT havebound+1 or -1. Thiserror isa panin
theneck Ifyou cetit alot, let me know. Thiscan be avkward. Sometimes darting values or changing
the boundxries on parameters can help.

Uh-oh... I'mhaving troule reading a number in D or E format. Probably atypoin the data.

Sary - could you pu the =filename on the same line as the FI, please?

Awfully sorry, | couldn't open afile for you. Probably a spelli ng mistake in the fil ename.

| deeply regret that your equdity constraint refers to a norexstent matrix.

OH NO! ThelOP parameter callingMSOFARiswrong | havenoideawhat thiserror means. Thegood
thing abou it isthat you are nat likely to get it.
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49,
50.
51
52
53.
54.
55.
56.
57.

58.

50.

60.

61

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

72

73.

74.

75.

76.

Pleasedorit mixthenumeric and aray referenceson aBoundline! Useonly parameter numbersor only
matrix elements. | just get so terribly confused.

Therel was, looking for a number and- blow medown... - | just could na findit. Probably an error in
spedfying the dimensions of amatrix. The end o file was found tefore the number.

It seams rather strange to meto havea + or - sign withou a number after it. Well, wouldn't it seem
strange to you?

You seamed to put a * in the midd e of two numbers but WRONGLY. Do na passGO, do nd colled
$200

Uh-oh. Now there are too many numbers in alist.

Nincompoop Your data matrix hasto be paositivedefinitefor GLS. Probably alittl e harsh, thismessge.
Ouch! do nd try to change your mind abou the number of groups NG... This used to cause big
headacdes.

Awfully sorry, old chap, you're trying to | between matrices that have a dfferent number of rows. No
can dd Chedk conformability.

Awfully sorry, old chap, youretryingto _ between matrices that have a dfferent number of columns.
No way! Chedk conformability.

Uh-oh! Your formula hasanill egal character. Edit your input file andarrest thischarader immediately.
On the IBM RISC 6000it can occur spuriously andirrationaly if you leave blank spaces at the start of
alinefollowing an underscore. Heaven knows why.

Uh-oh! Your matrix expresson has a mistakein it. Pleasefixit. Thiscould be unmatched parentheses,
amisdgng operator or amissng matrix. Sorry that it isn't more spedfic... Also, the matrix formulais
sensitiveto untrapped memory problems. Oneknown pacsshility isthat you havetried to dosomething
to arange of matrices from different groups, eg. Start LA111-A433

There seams to a problemwith your format in your data file. Put the format in parentheses () or use *
toreal datain freeformat.

Oh dear! The model you spedfied dces not give the same number of rows in the Expeded Matrix as
there arein the Observed Matrix for thisgroup. Chedk the order of the model.

Sack has overflowed - kick Mike Neale. This is nat necessary to fix the job. Your complicaed
expresson ouwht to be simplified by using a CALC groupto precdculate part of it.
Thematricesyouwish to subtract are not conformablefor subtraction. i.e. the number of rows (columns)
inmatrix 1 isnot the same as the number of rows (columns) in matrix 2. If this message doesn't add up
to you, go badk to elementary schod.

I'mterribly sorry, stack 1 has overflowed. Please abuse Mike Neale. Simplify your expresson with
CALC groups.

I'm terribly sorry, stack 2 has overflowed. Please abuse Mike Neale. Simplify your expresson with
CALC groups.

An undefined matrix has been encourtered in the matrix formula. Look for typosin theformula, andin
the matrices command. You're using a matrix that hasn't been spedfied for this group.

Youseemto havemissed ou an ogerator... Matrixnames sioud besinglelettersonly. Chedk thematrix
formulafor matrix names that are more than ore letter.

At first you pu % but then there was neither O nor E nor R after it. Pleasetry nat to makegramnmtical
errors likethis. So pu O or E or R after it!

You seemto bereferringto parameter spedfications for an Observed or Expeded matrix... Thereisno
way that you are going to be dlowed to dothis.

I want you to get this right. If you equae to the Observed or Expeded matrix, you must spedfy a
symnmetric or full matrix. Get it right.

The matrix you are trying to equate to the O matrix is bigger thanthe Observed matrix following ary
seledion. Makeit smaler...

Thematrix you aetryingto equateto the expeded matrix isnot the same sizeasthe expeded matrix for
that group. Thesizeof the expeded matrix for that groupisdetermined by the size of its observed matrix
after seledion. Makeit thesamesize

You haveto gve NG after CA if thefirst groupisa CALC group. So doit.

Tut-tut! you aretryingto da-product two matricesthat havedifferent dimensions. Thisisdifferent from
ordinary matrix multi pli caion after all.

| tried to read andher group and fit the end d fileinstead. Either NG= iswrongin group 1 or your
inpu file has been truncated. NG is probably wrong.

Look buster, if youwant to define your own function. Then please get your matrix formula to define a
1x1 matrix! Seepage92



162 Appendices

77.  Atfirst | though youwere goingto use a function, but then... You ddn't put \det, \tr, \exp, \In, \sgrt,
\v2d,\d2v, \m2v, \v2s, \v2f, \eval, \eveg\iveg \ival, \stnd, \vec, \veg \sin \cos\tan\sinh\cosh \tanh \muln
- or any functionsthat | recgnize, so | am confused.. You must have booked somewhere.

78.  Sary, | only calculate the determinant of SQUAREmatrices.

79.  Sary, | only calculate the trace of SQUAREmatrices.

80. | say, if you use the \EXPonent operator, you must make sure that the exporent isa 1x1 matrix. You
won't get this error message.

81 | can' t equate this matrix to the observed daa of that group, because it hasn’t got any!

82 Hmmmsorry | don t understandthis keyword. CheckNI= and FU/FI status of data matrices.

83. HEY! | though youwere goingto say = but where' sthe=7?7?

84.  Youcan orly have MA=CM,PM, or KM right now - sorry!

85. Pardon my ignarance here, but | don't understand this keyword. You shoud be using ore of the
following: CMatrix, PMatrix, KMatrix, ACov_matrix, Raw_daa, MEans, SKew, KUrtosis, LAbels,
SEled, or MATrices. Where at least the uppercase letters must be given. Quite possbly, an earlier
commandscrewed up Thisis commonly encourtered in the midd e of alist of numbersif thelist istoo
long. This may be becaise you have given too many numbers for the type and size of the matrix
concerned, or dternatively you may have spedfied the dimensions of that matrix incorredly. Note that
you shoud only supdy numbersfor the modifiable dements of a matrix, which depends heavily onthe
type of matrix. SeeSedion 45 for detail s on numbers of elementsin different types of matrices.

86. Imaginethis: I' mreading a number andl seea\ character, so | think. | know, it must be\PI or \E BUT
then to my surprise | seeit isneither. Do beless sirprising in your input.

87. I' meorry, | can' twriteamatrixthat doesn' texst to afile. Remember, thismatrix hasto bedefined inthis
group.

88.  Tooutput matricesto files, use Mx with 1letter after it (exceptions %E %M %P %V) then an= sign.
No spaces or anything else all owed.

89. AAAAGH! Youcan tassgn paameters to the raw data vedor.

90. If youwart to fit to the raw data vedors, you must put themin avedor that has 1 row andthe elumns
lessthan a equd to the number of input variables before seledion, if any.

91 No, | won' t let you dothis. It would overwrite the first raw data observation. Go andedit your data
instead.

92 Uh-oh, attempt to takelog o zero or negative \alue imninent.

93. In order to use Maximum Likdihoodto raw data, it is necessary to suppy both a model for the
covariances, and ore for the means.

94.  Sary, the expeded matrix is snguar just now.

95.  Just WHAT is this keyword suppcsed to mean? You shoud be using ore of the following:
MEan_structure, THresholds, COvariances, SPedfy, MAtrix, PArameter, FIx, FReg EQual, VAlue,
STart, BOunday, OPtions, ENd, OUtput. Where at least the uppercase letters must be given.

96.  Youhavetried to convert something that wasn' t a vedor into a matrix. Please try not to abise \v2
functionsin thisway.

97.  Atyour starting values, evaluation of the log-li kdihoodmade me take the logarithm of something less
thanor equd tozero. Pleaserevisethestartingvalues. Nothingfor it... changethe starting values. This
could be aproblemif there ae some gruesome ol ers, in which case you'd haveto edit your data... See
page 138 for detail s of how to interpret and respondto the diagnastics printed along with this error
message.

98.  Your bounday constraint refers to a paameter nat yet spedfied.

99.  You have referred to a nonexistent row of a matrix. It's slly mistakes like these that my job as a
computer *SO* rewarding. MX has alousy imagination when it comes to that sort of thing.

100. Youhavereferredto a nonexstent column of amatrix. There aelotsof nonexistent columnsin Athens
and Rome.

101 Youcan' tusethe keword Full when reading dagond weight matrices or means.

102 SORRYIdon tseled DWLSwith correlationmatricesyetTry again after midnight? Seriously, I'm sorry
abou this.

103  Error - youseanto havea noninteger value for thetype of person. Please check (1) you havetheright
pedigreesize here (2) you have an integer type identifier for eveyone (3) Nothing screwed upin an
earlier pedigree Make sure that you have got your VL fileright. Be extra caeful abou SAS missng
values.

104. Please, you must tell methe mvariance matrix structure in terms of id codes. Use the IC commandto
dothis, sometime after MO and kefore End.
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105

106.

107.

108
109

110
111

112
113

114

115
116
117.
118
119
120,
121

122
123

124
125
126
127.
128

129

130

131

132

Thereisavariablein thispedigreewhoseid hasnaot been gvenin the IC comnand If nolC was given
avariablewho hasanid greater thanNI is present.. Themysterious granger needsto beidentified and
deleted.

Your model does nat define the cvariance between TWO people with thisID. Of course, by default it
won't. You reed to usethe IC commandcorredly. Seepage 49.

An element of a matrix that you havetried to\sgrt() islessthanzero. Pleasedon't let thishappen! This
version d Mx does not cater for complexnumbers - most of the time.

Youtried to convert a vedor of thewronglength to asymnetric matrix. Hah, didn't think I'd notice én?
I amonly prepared to raise the dements of a matrix to the power of a scalar. Pleasetry to ensure the
matrixtotheright of a”is(1x1). Doyou have ay better ideas? Kronedkerizeit or something like that?
Youtried to convert a vedor of thewronglength to aFULL square matrix. Silly billy.

Eigenvalues of square matrices only, please.

Eigenvedors of square matrices only, please.

I' rafraidthat if youwant tofit to raw data youMUST suppy modelsfor BOTH meansandcovariances.
You haveforgotten amodel for the means. You might forget your head if it wasn’t attached with lots of
sinews etc. Of course, you may have aked for the wrong kind d fit function onthe Optionsline.

I' rafraidthat if youwant to fit to raw data you MUST suppy modelsfor BOTH meansandcovariances.
You haveforgotten amodel for the cvariances. Thisisthe 783rd time you have made this mistakebut
you have probally forgotten abou the other times. Of course, you may have asked for the wrong kind
of fit function onthe Optionsline.

If you are using Multiple fits, it is impossble to change the matrix formulae - andyou can' t change
boundaies either.

If youwish to Spedfy, Pattern, or matrix a matrix, you haveto spedfy the group number **on the same
line** BEFOREthe Spedfication, Pattern or Matrix statement.

Pleasetry *not* to refer to nonrexistent groups! | dor't mindyou having fantasies, but there are li mits,
you know.

When using the Multi ple option you *MUST* use 3 numbers to spedfy a matrix dement: Group # row
# andcolumn #

I' m*so* embarrassed. | ran ou of workspace

Toread labels for a matrix, you must use the syntax: LABE. <R or C> Name.

Labelscan' t begivenfor a nonexstent matrixOr rather they @an, but Mx will stop. Actually they can,
but then the program stops immediately.

Labels may not begin with a number because it could confuse me later on.

Labels have not been provided for the data, but you seen to be using them to seled variables. Use
numbers or “"Giveme labelsor giveme..."

It would seam that you ae trying to seled a variable that you reve suppied. | exped that, being
human, you made a mistakein the Labelsor Sdled list.

| can' tseled avariablethat doesn' t exst. Makesurethat NI iscorred or fix the Seled list.

Sary, youcan wse mvariancestructuresONLY in constraint or calculation groups; meansnot all owed.
Incorred element of a lower trianguar matrix spedfied.

Hey You must have Ninpuvars=2 to use mntingency tables. A contingency table effedively
crosstabulates two variables, hence NInpuvars must be two onthe Dataline.

I' nafraid that if youwant to fit to contingency tables you MUST suppy models for BOTH thresholds
and covariances. You haveforgotten amodel for the thresholds. Are these lapses of memory getting
morefrequent? Can't remember?? Maybe you reed acheclup... Alternatively youmay have requested
the wrong fit function onthe options line.

I' nafraid that if youwant to fit to contingency tables you MUST suppy models for BOTH thresholds
andcovariances. You haveforgotten amode for the mvariances. Aretheselapses of memory getting
more frequent? Can't remember?? Maybe you reed a checlup... Perhaps you requested the wrong fit
function onthe optionsline?

You must suppdy a matrix expresson for the thresholds that will evaluate to a matrix with 2 rows and
with at least as many columns as one lessthanthe number of row categories or the number of column
categories, whichever isgreater i.e. max(nrowcat-1,ncolcat-1). Seepage 75for detail sabout thresholds.
Sary, but during optimization | havebeen asked to calculate a hivariate integral with acorrelation o
1 or more. Thisisvery unreasonakle of you Please fix your moddl so that thisdoesn' t happen. Use
boundaies or something. Note that the wrrelationiscriticd here, not the wvariance The @rrelation
iscaculated fromthe expeded covariancematrix (theresult of themodel or covariancestatement) ascov;
+ Vvarvar;.
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133

134

135

136

137.

138

139

140,

141

142

143

144

145

146

147.

148

149,
150,

151

152

153
154

Yes | will fit to nx n contingency tables BUT... n must be greater than a equd to 2 | know alxnis
feasible but | haven't written the code for it yet, OK?

If youwant meto saveor get an Mx binary file then you MUST suppy a filename onthe same line It's
just one of those thingsiin life that you have to da

Wemust havemisunderstoodeach ather somehow. Youcan't get expeded propartions%P froma group
that isn't using contingency tables.

I think memory is <rewed up tecause MikeNeale has <rewed up Call himon 804 786 85900Dr better
still, E-mail himon reale@ruby.veu.edu a neale@vcuruby (bitnet). Has srewed up o is <rewed up?
Well well well. Youwould likegraphics. If so why dorit you pu an= after the DR command??? Mx
likes = signs before fil enames. | dorit know how it got into this habit.

Tofit to meanstructuresaswell ascovariancesyoushoud provide*both* observed meansand amodel
for them (aswell you know!) I'm going to use the cvariances, but the mean - I'mjust goingto ignare
it OK? Watch ou for thisone if you dort seem to get any adion with the means.

Redly I'mvery vay sorry abou this. It isnot under my control. Unlessof course | wasto use a better
languag thanFORTRAN77 | suppcse... Howeve enough philosophising, the problemisthat we have
reached the end o filetoosoon Since you aeusing * format, you shoud pu one ase per line. That
isto say, there shoud be NObslines each with NI variablesin aRAdatafile. Sometimeserror messges
arenot just explicit, they areintrospedive. How would youliketo be a @mputer program? Could be our
spedes destiny.

Really I'mvery vey sorry abott this. It isnat under my control. Unlessof course | wasto use a better
languag than FORTRAN77 | suppcse... Howeve enough pli osophy, the problem is that we have
reached the end d filetoo soon Make sure that your format is OK. Also, remember there shoud be
NObs* NI numbers in your RAdata file. Seeprevious error message for sci-fi remark.

Very funrny. Hahaha Youwant meto standadize a nonsquare matrix? Just how am| suppcsed to do
that? If you get any ideas, let me know.

Itiswith great sadressthat | havetotel you that | couldn't ssandadize your matrix because the number
I'msuppased to dvidebyistoosmall. Perhapsyoucould avoid thisproblemwith bounday constraints.
Poor madhine, it tried!

Youareinterribledanger. Don't say multiple until thelast group. | know | could havejust remembered
for you, but I'mlazy too! There ae only so many housin the day.

Sary, old chap. Youcan't spedfy bounday constraints after options. | might remedy this problem one
day, but for now just meekly go bad and pu boundiry constraints before the first option line in this
group.

Cough ahem... can you dease give me a matrix that has 1 row and 2 column for the power
transformation?? Currently it is only possble to apply a transformation to al variables within eah
vedor. This soud be upgraded if thereis ever suppat for Mx; cdl your paliti cd representative now
to safeguard its future...

For heaven's sakel Can't you boundyour constant so that it is *Greater* than minus the minimum
observation?? Redly most nursery schod children have agood ideawhy this sioud be dore.
Exporentiating (espedally for nonrinteger exporents) numbersthat are lessthan zero is mathematicaly
awkward, requiring complex numbersand so on To avoid complex arithmetic, whase implicaions are
unclea to mein this context, MX demands that if, say, your minimum observationis-3.1, the mnstant
required would have to be greaer than +3.1.

YIKES There's omething funny abou the power function you request. Remember that after PO you
shoud suppy 2 numbers. The significancelevé (alpha) (0.0 < alpha< 1), andthe degrees of freedom
of thetest (df > 0). Saretimes NAG chokesif alphaiscloseto O a 1. | can't think why this shoudn't be
self-explanatory. The numbers ioud be onthe same line & the Power keyword. Note that Power in
this context refers to caculating the statistica power of the study (seepage 114).

| can calculate confidence intervals in the range 0 to 10Q Please try to stay within these bounds.
Everyone has their limits, you know.

Look here buster, the matrix you\muln must have 3 more rows thanit does columns.

Thereisa problemwith the multinormal integral that youtried to compute. Seeif you can ke knder to
me by using bound.

Covariance matrices must be computed from sample sizes of at least 1. | susped that you forgot to put
the NObs= parameter onthe data line.

The operationyou atempted using” isundefined in mathematicsin thisuniverse. Try usinge.g. \abs()
if you can, or goto andher universe!

Look here buster, the matrix you\mnor must have 4 more rows thanit does columns.

Unknown matrix operator encourtered!
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155.

156.

157.

158.

159.

160.

161.

162.

163.

164.
165.

166.
167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.
185.

186.

Your observed covariance matrix is not positive-definite. Checkthat you aereadingit in the mrrea
format - Full or Symnmretric.

Ooops. Sanehow | was expeding a matrix with 4 more rows than columns for the \momnor function.
Remember, theyshoud be organized thisway: Covariance matrix/Mean vedor/Thresholdsin terms of
standadized units/Seledion vedor: 1=above -1=below, 0=not seleded/Quadrature parameter
O=default=16; max=64.

Ahal You havetried to use algebra to create a matrix that already exsts. Thisis grictlyillegal in Mx.
Go diredly to Jail. Do nd passgo. Do na collea $200 And makesure you haven't forgotten the End
Algebra; statement.

Hmmmyou can't call a matrix this. Not yet. Use single letters (A-Z) for now.

After the BEGIN keyword | expected to see one of the keywords ALGEBRA or MATRICES. Areyou
dyslexic? Or am|1?

Well | wastryingto find the above daracter, but even thoughl looked throughthe wholefile. | could
not findit. Perhapsyouforgot it?

You seemto have put two hinary operators in arow, which is badsyntax. Might this be a typo? Just
possbly?

| figure that you are trying to redefine something in this multi-group script but you have not used a
#define Group = n statement yet so | don't know which groupit isyouwish to change.

Oh noyou dont. Youcan't use a #dfine group statement unlessyou ae (or rather | am) in multiple
fit mode.

Sary, | don't understandwhat you aretrying to #define.

While searching for a number, | encourtered astringmore than 32characterslong At first, | thought
it might be a gobd variable, but it is probaly just your mistake

*So* sorry! Youcan't use!@ inthetitle. It might confuse my front end.

I wastryingto read a number or a #dfine'd paameter, and dthoughl found a @i miter, | got to the
end d theline before | found the number.

I know thisis rather silly of me, but | really need to know both NI= andNO= in order to read the data
sensibly. Pleaselook at the DA line.

Error: file not found Checkspelling andexstence of file. Remember that UNIX is case sensitive
Filenames have a maximum of 80 characters including dredory.

Oncel saw the begin keyword, | though, ‘Ahal bet this user isgoingto say algebra or matrices nex.’
Well | lost my bet. | don't know what youwant to begin.

You seamto betrying to end matrices with something aher than‘end matrices;’. It'snat that diffi cult,
isit?

Thisisa generic eror message of no use to youwhatsoeve. Lots of software has error messages like
this, so | though Mx shoud too. Please mntact Mike Neale (neale@ruby.vecu.edu) for help.
I"'mterribly sorry abou thisold chap. Youcan't use QQasa missng daa flag. It's Just one of those
things.

Ohboy. Therel wastryingto read stuff inred¢angudar format for you. Andthen| cameacrossa blank
reard. | susped a mistake

Ker-splat! | ran into some peadliar FORTRAN read error. Check the data file for Suspicious
Characters.

An error has occurred whilereading aredanguar file. Makesurethat you *dorit* havea FORMAT
at the beginning and nee, | can't read numbers that begin with D, Q or E.

OooooH Weird ore. Your data file seamsto be empty.

Sary, I'mjust not ready to saveat this paint.

Thismight seem a hit pickyof me, but if you aegoingto simulatedata. I'd liketo know HOW MANY
casesto simulate. Please give NI=n onthe Smulate line, wherenisa pasitiveinteger. Thark you.
Now look here. To simulate data you reed to have a matrix formula for the Covariances which is
*Squae*, i.e., rows = columns above

Well therel was, all ready to equate all the matricesinthisgroupto those of a previousgroup, andthen
you ddn't put *which* group onthe sameline. Try, e.g., Matrices= Group 1 Note that you *must*
have a space after the word group.

Unbdanced parenthesesin your formula. I'mnot biginto Yin & Yan bu thisisoneareathat I'd like
more balance

| can't give youthe sort order of this*column vedor* because it has more than ore wlumn!!
Partitionrequires gntax \part(A,B) where B has 4 rows and ore wlumn. Sanehow you ddn't dothis
right.

No no no The secndmatrix in thelist \part(A,B) must have4 rows and 1column.
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187. I'mafraidthat youcan't use & between matricesthat are nat conformable. In this case, the number of
columnsin the first matrix must equd the number of rows in the second matrix, which must be square
(rows of b=cols of b).

188 Look, how am | suppased to know what these dements outside the dimensions of the matrix are??

189 Thepartitionfunctionistricky, | know. Makesurethat the wordinate (2nd) matrix has been initialized
FIRST. Seethe example partit.mx for details on hav to dothis.

190, OKwiseguythat'sfar enough Thegroupyoureferenced with %0 doesn’t havean olserved covariance
matrix!

191 Thematricesyouwish to divide with % are not conformable. The number of rowsin matrix 1 must be
the same as the number of rowsin matrix 2, *and* the number of columnsin matrix 1 must be the same
as the number of columnsin matrix 2.

192 | believe pureadin the inverse of a weight matrix, sir? In that case you can't use seled variables,
becuse it defeats the paint of saving time by pre-inverting.

193 Tousethe computed matrix type, you haveto put = M 1 onthe sameline, where M isa matrix and lis
anearlier group. I'mnat psychic. How am | suppased to know which computed matrix you warnt it to
equd?

194 Hangon aminute! You can *only* use the mmputed matrix type to refer to matrices generated in a
Begin Algebra sedion.

195 Yoo-hod You're suppcsed to aletter here...

196, Gadzooks! You ddn’'t supply a compute statement in that group. Therefore, | can't make this matrix
equd to the %E of it.

197. Huh?Il dortunderstandyour optiond commandline parameters. Syntax shoud be eg.,: mx-f-h-k100
myfile.mx myfil e.mxo where f denotes frontend, h requests html, andk is workspace Note: -f implies
reading fromkeyboard andwriting to screen.

198  Youmust put the fil ename on the same line when using ! @get,! @put or ! @exist.

199, Huh?

200. File exsts; use '@PUT! to overwriteit.

Some of these aror messages are alittl einformal. | apaogize. I'mterribly terribly sorry
and | wont doit again.

What | amredly sorry about isif Mx givesyouthewrong error message. Thisisquiterare,
but occasiondly it is posgble to screw up memory, and one of the sensitive aeas is the
matrix formula. When this has occurred, you may see

“Dump of formula being calculated”

whilethe programisrunring. Itisimportant to chedk theformulage bu if they seem ok, it’s
time to email technicd suppat. One untrapped sourceisif you say

Start 5A123toA223

in which case everything between the memory addresses of A of group 1 and A of group 2
gets overwritten with .5. A little care can go along way; so can a little more fool proof
programing which | shall try to provide as soon as | can. Please let me know of any
nonsensical error messages that you get; elucidation is prerequisite for elimination.
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Appendix C Introduction to Matrices

C.1 TheConcept of aMatrix

A matrix is atable of numbers or symbaslaid ou in rows and columns, e.g.

Opq Qpp O3
or | Gy Opy Op

Og Oz Ogg
Thetableisenclosedin () or [ ] in most texts.

Itisconventional to spedfy the cnfiguration of the matrix interms of RowsxColumnsand
theseareitsdimensions. Thusthefirst matrix aboveisof dimensions 3 by 2 andthe second
isa3x 3 square matrix.

The most common cccurrence of matrices in behavioral sciencesisthe data matrix where
the rows are subjeds and the columns are measures. e.g.

W H.
S [ 50 20
S, |100 40
S, |150 60
S, [200 80

It is convenient to let a single letter symbalize amatrix. Thisiswritten in UPPERCASE
boldface.

Thuswe might say that our datamatrix isA, which in handwriti ng we would uncerlinewith
either a straight or a wavy line. Sometimes a matrix may be written ,A, to spedfy its
dimensions. When amatrix consists of asinglenumber, it iscdl ed ascalar; whenit consists
of single olumn (row) of numbersit iscdled a awlumn (row) vedor. Vedorsare normally
represented as abold lowercase. Thus the weights of our four subjeds are

50
100
150
200
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C.2 Matrix Algebra

Matrix algebra defines a set of operations that may be performed on matrices. These
operations include addition, subtraction, multiplication, inversion (multiplication by the
inverseis similar to division) and transposition.

Transposition

A matrix is transposed when the rows are written as columns and the columns are written
asrows. Thisoperation is denoted by writing A’ or A'. In our example,

50 100 150 200
20 40 60 80

arow vector isusually written

a = (50 100 150 200)
Clearly, (A')' = A.
The Mx script would look as follows:

Title: transpose of matrix A
Calculation NGroups=1

Begin Matrices;
A Full 4 2
End Matrices:;
Matrix A

50 20

100 40

150 60

200 80

Begin Algebra;
B=A";
End Algebra;
End

Matrix Addition and Subtraction
Matrices may be added and to do so they must be of the samedimension. They arethen said

to be conformable for addition. Each element in the first matrix is added to the
corresponding element in the second matrix to form the same element in the solution, e.g.
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14 8 11 9 15
25 +]19 12| = (11 17
10 13 13 19

or symbdlicdly, A+ B =C.

Y oucannd add
8 10
+
9 11

Subtradion works in the same way as addition, e.g.

whichiswritten A -B =C.
Matrix Multiplication

Matrices may be multi pli ed andto doso they must be conformablefor multi plication. This
means that adjacent columns androws must be of the same order. For example, the matrix
product ;A,%,B, may be cdculated; theresult isa3x 2 matrix. In general, if we multi ply two
matrices ;A %;By, the result will be of order ixk.

Matrix multi pli cation involves cdculating a sum of crossproducts among rows of thefirst
matrix and columns of the secondmatrix in al possble combinations, e.g.

14 3 I1x1 + 4x2 1x3 + 4%x4 9 19
25 (2 4] = | 2x1 + 5x2 2x3 + 5x4| = |12 26
36 3x1 + 6x2 3x3 + 6%x4 15 33

Thisiswritten AB =C.

The only exception to the &ove rule is multiplication by a single number cdled ascdar.
Thus for example,
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14 2 8
2 125 =14 10
36 6 12

by conventionwe writethis2 A.
Itisnat posgble to usethis convention dredly in Mx; however, it is possble to define a
1x 1 matrix with the constant 2.0 as the sole dement, and wse the kronedker product.

The simplest example of matrix multiplication is to multiply a vedor by itsdf. If we
premulti ply a wlumn vector by itstranspose, the result isascdar cdled theinner product.
For example, if

a’=(12 3
then the inner product is
1
aa=(123 |2 = 12+22+3F = 14
3

whichisthe sum of the squares of the dements of thevedor A. Thishasasimple graphicd
representationwhen A is of dimension 2x1 (seeFigure C.1).

FigureC.1 Graphicd representation d theinner product @' a of a(2x 1) vedor a, with
a'=(xy). By Pythagoras' theorem, the distanceof the point V fromthe origin O is y/x?+y?,
which isthe square roct of the inner product of the vedor.
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Multiplication Exercises

Try these exercises either by hand, or using M X, or both, as suits your needs.

Let
36 1 0 3 2
A = , B =
21 0-1-11
1 Form AB.
2. FormBA. (Careful, this might be atrick question!)
Let
36 12
C = , D=
(2 1] (3 4)
1. FormCD.
2. FormDC.
3. In ordinary algebra, multiplication is commutative, i.e. xy=yx. In general, is matrix

multiplication commutative?
4.  Show for two (preferably non-trivial) matrices conformable for multiplication that

(AB)' =B'A’
Let
103
E' =
121
1. FormE(C+D).
2.  FormEC + ED.
3. Inordinary algebra, multiplication is distributive, i.e. X(y+2z) = xy+xz. In generdl, is

matrix multiplication distributive?
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C.3 Equationsin Matrix Algebra

Matrix algebra provides a very convenient short hand for writing sets of equations. For
example, the pair of simultaneous equations

Y1 = 2 + 3%
Yo =X %
may be written
y' = AX

HREIN

Also if we have the following pair of equations:

y = AX
X = Bz
Then
y = A(B2
= ABz
= Cz

where C=AB. This is very convenient notation compared with direct substitution.
Structural equations are written in this general form, i.e.
"Real variables (y) = matrix x hypothetical variables."

To show the smplicity of the matrix notation, consider the following equations:

y, = 2X + 3%,
Yo =X %
X =7+
=454

Then we have
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i =27 +z) + 3z - z)
=92 - %
Y, =(z +2) +(z - 2)
=22 +0
From y=ABz, where
[2 3) (1 1)
A - , B -
11 1 -1
and
5 —1)
AB = ,
2 0
or
Y1 =92 - %
Y, = 2%

C.4 Calculation of Covariance Matrix from Data M atrix

Suppose we have a data matrix A with rows corresponding to subjects and columns
corresponding to variables. We can cal culate amean for each variable and replace the data
matrix with amatrix of deviations fromthe mean. That is, each element g; is replaced by
a;- |, where |, isthe mean of the " variable. Let uscall the new matrix X. The covariance
matrix isthen simply calculated as:

X'X

2L
N-1

where N is the number of subjects.

For example, suppose we have the following data:

X Y X-X_ Y-Y
1 2 -2 -4
2 8 -1 2
3 6 0
4 4 -2
5 10 4
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30 the matrix of deviations from the mean is

-2 -4
-1 2
X=]1 00
1 -2
2 4

and therefore the mvariance matrix of the observationsis

2 4
> 10 12| * °
ix/x _1
N-1 al-2 20 24
2
4

(25 30]
130 100
= %2 %y
Sy §
The wrrelationis
Sy Sy
sqrtsfg,z Sﬁ/

In general, a correlation matrix may be cdculated from a cvariance matrix by pre- and
post-multi plying the covariance matrix by a diagonal matrix D in which each diagonal
element d; is1+S, i.e. theredprocd of the standard deviationfor that variable. Thusin ou
two variable example, we have:

0 S(Z% 0(1&){]
o s ) log) Bt

o vk
o ><(/)|b—\
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Transformations of Data M atrices

Matrix algebraprovidesanatural notationfor transformations. If we premulti ply the matrix
iB; by ancther, say , T;, then the rows of T describe linea combinations of the rows of B.
The resulting matrix will therefore @nsist of k rows correspondng to the linea
transformations of the rows of B described by therowsof T. A very simple example of this
is premulti plication by the identity matrix (written 1), which merely has 1's on the leading
diagonal andzeroeseverywhere dse. Thusthetransformation described by thefirst row may
be written as'multiply the first row by 1 and add zero times the other rows." In the second
row, we have 'multi ply the sscondrow by 1 and add zero times the other rows," and so the
identity matrix transforms the matrix B into the same matrix. For alesstrivial example, let

our datamatrix be X, then
-2 -10 1 2
X/ =
-4 20 -2 4

(1)

and let

then

Y/ = TX!
6 10 -1 6
2 30 3 -2

Inthiscase, thetransformationmatrix spedfiestwo transformationsof thedata: thefirst row
defines the sum of the two variates, and the secondrow definesthe diff erence(row 1 - row
2). In the &ove, we have gplied the transformation to the raw data, bu for these linea
transformations it is easy to apply the transformation to the covariance matrix. The
covariancematrix of the transformed variatesis

1 1

Y = (TX)(TXY

E 7 XTXx)
1

= —— TX/XT'
N_
=TV, T’
which isauseful result, meaning that linea transformations may be gplied dredly to the

covariance matrix, instead of going to the troube of transforming all the raw data and
recdculating the @variance matrix.
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Deter minant of a Matrix

For a square matrix A we may cadculate ascdar cdled the determinant which we write &
[Al. In the cae of a2x 2 matrix, this quantity is cdculated as

Al = a,8),-a,,8,,.

The determinant has an interesting geometric representation. For example, consider two
standardized variables that correlate r. This stuation may be represented graphicdly by
drawing two vedors, ead o length 1.0, faving the same origin and an angle csine r
betweenthem (seefigure C.2). It can beshown (i.e. thisisatoughiethat involves symmetric
sguare root decompasition d matrices, eigenvalues etc. that I'm not going to do tere) that
the area of the triangle OV,V, is .5/]A|. Thus as the crrelation r increases, the angle
between the lines deaeases, the aeadeaeases and the determinart deaeases. For two
variablesthat correlate perfedly, the determinant of the correlation (or covariance) matrix
is zero. For larger numbers of variables, the determinant is a simple function d the
hypervolume in nspace if any single pair of variables correlates perfedly then the
determinant is zero. In addition, if one of the variablesisalinea combination d the others,
the determinant will be zero.

FigureC.2 Geometricrepresentation d thedeterminant of amatrix. The angle between
thevedorsisthe asineof the wrrelation betweentwo variables, so thedeterminant isgiven
by twicethe aeaof the triangle OV, V.,.

To cdculate the determinant of larger matrices, we anploy the concept of a cofactor. If we

deleterow i andcolumnj froman nx nmatrix, then the determinant of the remaining matrix
iscdled the minor of element ;. The cfador, written A; is smply:

A; = (-1 minor a
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The determinant of the matrix A may be calculated as
n
Al = 21: 3 A
I=

where nisthe order of A.

The determinant of amatrix isrelated to the concept of definiteness of amatrix. In general,
for anull column vector x, the quadratic form x’Ax is always zero. For some matrices, this
guadraticiszeroonly if x isthe null vector. If x’Ax>0for al non-null vectors x then we say
that the matrix is positive definite. Conversely, if x' Ax<0 for al non-null x, we say that the
matrix is negative definite. However, if we can find some non-null x such that x’ Ax=0 then
the matrix issaid to besingular, and its determinant iszero. Aslong asno two variables are
perfectly correlated, and there are more subjects than measures, a covariance matrix
calculated from data on random variables will be positive definite. Mx will complain (and
rightly so!) if it is given a covariance matrix that is not positive definite. The determinant
of the covariance matrix can be helpful when there are problems with model-fitting that
seem to originate with the data. However, it is possible to have a matrix with a positive
determinant yet which isnegative definite (consider -1 with an even number of rows), so the
determinant is not an adequate diagnostic. Instead we note that all the eigenvalues of a
positivedefinitematrix aregreater than zero. Eigenval uesand eigenvectors may be obtained
from software packages and the numerical libraries listed above™.

Inverseof aMatrix

Just asthere are many usesfor the operation of division in ordinary agebra, there are many
valuable applications of theinverse of amatrix. Wewritetheinverse of thematrix A asA™,
and one of the most important resultsis that

AAL = |

where| isthe identity matrix. In this case, the multiplication operation is commutative, so
itisalso true that

AlA = |

There are many computer programs available for inverting matrices. Some routines are
general, but there are often faster routines available if the program is given some
information about the matrix, for example whether it is symmetric, positive definite,
triangular or diagonal. Here we describe one general method that everyone should use at
least oncein their livesfor at least a 3x 3 matrix.

™ Those readers wishing to know more about the uses of eigenvalues and eigenvectors may consult Searle
(1982) or any genera text on matrix algebra.
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Procedurefor Inversion of a General Matrix

In order to invert amatrix, the following four steps can be used:

Find the determinant

Set up the matrix of cofactors

1
2
3.  Transpose
4

Divide by the determinant

For example, the matrix

Al = (1x5)-(2x1) = 3

-(—1)2><5 (-1)°x1

A (1>4x1]

5 -1
2 1

Al-1
3

I
°°|»—- wlo
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To verify this, we can multiply AA* to obtain the identity matrix:

2693696

The result that AA™* =1 may be used to solve the pair of simultaneous equations:

X +2X, = 8
X +9X, = 17
which may be written
12| (% 8
15) %) \17
i.e
AX =y

AlAx =
X =

which may be verified by substitution.

For alarger matrix it is more tedious to compute the inverse. Let us consider the matrix
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1. The determinant is

01 11 1 0
Al = +1 - 0
-10 10 1 -1
= +1+1+0
=2
2. The matrix of cofactorsis:
01 |11 |1 o
+ - +
-1 0 |10 |1 1
10 |10 |1 1
Aij =T + -
-1 0 |10 |1 1
10 10 11
+ - +
01 11 1 0]
1 1 -1
=10 0 2
1 -1 -1
Thetransposeis
10 1
Aj=| 10 -1
-1 2 -1
Dividing by the determinant, we have
10 1 50 5
A*1:% 10 -1/ -| 50 -5
-1 2 -1 -51 -5

which may be verified by multiplication with A to obtain the identity matrix.
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Appendix D Reciprocal Causation

Consider the Path Diagram in Figure D. 1.
a

FigureD.1 Feedback |oop between two variables, x, and x,.

v

This shows afeedback |oop between two internal variables, which we call x variables. The
total variance of x; and X, is the sum of the infinite geometric series:

2.2 3.3
88, * 8ndp * 8nadp -

It issimple to show that if |a,;a,,| < 1 then the series converges. Let the sum of the series
of ntermsbe called S, and let a,,a,,=r. Then

S=r +r? +r3«+ . g"

r§=r2 +r® + " +rt

Thus the difference between these two equationsis:

@-ns =r-rnt

and so
r-rnt
S -
" 1-r
which as n gets large tendsto
r
S E e—
R R {
-1 _1-r
1-r 1-r
__1 -1
1-r
- 1 -1
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Thisformulageneralizesto the cae of amatrix of such eff eds between more than a pair of
variables (Joreskog & Stérbom, 1989. In general

A+A2+A% .. = (1 -A)t I

Anather way to seethis formulation is diredly from the structural equations. Figure D.2
shows a multi variate path dagram of a structural equation model, where x variables are
caused by aset of independent variables, y. In addition, the x variables may cause eat
other, hencethe unidiredional arrow from x to itself.

S
(P
9

(D

FigureD.2 Structural equation model for x variables

Algebraicdly, the model for the x variablesis:

X = AX+l1z
= AX+Z

Here x appeas on bah sides of the equation, and we want it solely in terms of the other
variablesin the model. Hence

X-AX =z

(I-A)x =z
(I1-A)Y-A)x = (1-A)'z
x =(1-A)!z

xx' = (I -A)tz((l -A) 12
- (1-A)1zZ(1 -A)Y
= (1-A)1s(-A)Y

This givesageneral expresgonfor al variablesin amodel, bah latent and olserved. We
usually want to predict the covariancebetween the observed variables only, so that thiscan
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be compared with (“fitted to”) thedata. A slight additiontothe model isneeded tofilter the
observed variables from the set of all variables (seefigure D.3).

S
P

N

FigureD.3 Structural equation model for y variables
The dgebrafor the wvariance of the observed variables, v, isvery similar.

y = Fx
F(I-A)?z

F(I-A)z(F(1 -A) 12
F(I-A)1zZ(1 -A)'F
F(I-A)1S( -A) YF/

yy’

Thismodel can efficiently and elegantly be spedfied in MX using the formula:

F&((I -A)&S)

which invokes the quadratic operator & (seep. 63.
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Appendix E Frequently Asked Questions

Hereisalist of some of the frequently asked questions about Mx GUI.

Q. My jobistaking alongtimeto run. How can| seewhat's happening? A. If you
arerunring ajob onthelocd PC, thenyoucan doube dick onthe MXE iconwhich
will give adisplay of the progressof the optimization. Every 20iterationsthe value
of thefit functionwill beupdated. If youarerunringonaUnix hgst, thenthereisn't
much that can be dore, except to log in to the macdhine. If you have used Option
NAG=10 DB=1 then you could view (e.g. using more or tail) the end d the
NAGDUMP.OUT filefor the latest set of parameter estimates and fit function.

Q. What does ‘ Appears OK’ mean as a fit result? What abou the other codes? A.
Appeas OK meansthat optimization seemsto be successul. Optimizationisnat an
exad science so we can't be 100% sure that a global optimum has been found. The
other codes and what you shodd do abou them are shown in
Table~\ref{ tab:optcodes} in this document.

Q. How can | learn more about the Mx script languag? A. Chapters ## and the
quick reference dart are the best placeto lean the language, with the possble
exception of attending a awurse. To date most MXx courses have mncerned genetic
models, athough some nongenetic courses have been run at the University of
Southern California and The University of Arizona. Future aurseswill be annourced
onthe Mx web page http://views.vcu.edu/mx.

Q. Help! My diagram has disappeared in the window when | was zooming. How do
| get it back? A. Press the zoomundo button (3.

Q. How do | sdect a different browser or text file viewer? A. Sdect
Preferences|Select Test Viewer or Preferences|Select HTML Viewer from the menu
bar.

Q. How do | work with contingency table data in the GUI? A. Unfortunately itisnot
possible to model contingency table datawith the GUI at thistime. It is possible to
draw a diagram for two observed variables (leave them unmapped) and then hit To
Script to build a basic script from a two-variable model. Then edit this script to
replacethe CMatrix with CTable dataand add amodel for the thresholdsin the script
itself. This does at least avoid the scary part of specifying the structural equation
model with matrix algebra. We hopeto add contingency table modeling in the future.
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