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Chapter 1

The Scope of Genetic

Analyses

1.1 Introduction and General Aims

This book has its origin in a week-long intensive course on methods of twin data
analysis taught between 1987 and 1997 at the Katholieke Universiteit of Leuven
in Belgium, the University of Helsinki, Finland, and the Institute for Behavioral
Genetics, Boulder, in Colorado. Our principal aim here is to help those interested
in the genetic analysis of individual differences to realize that there are more chal-
lenging questions than simply “Is trait X genetic?” or “What is the heritability of
X?” and that there are more flexible and informative methods than those that have
been popular for more than half a century. We shall achieve this goal primarily
by considering those analyses of data on twins that can be conducted with the Mx
program. There are two main reasons for this restriction: 1) the basic structure
and logic of the twin design is simple and yet can illustrate many of the conceptual
and practical issues that need to be addressed in any genetic study of individual
differences; 2) the Mx program is well-documented, freely available for personal
computers and Unix workstations, and can be used to apply all of the basic ideas
we shall discuss. We believe that the material to be presented will open many new
horizons to investigators in a wide range of disciplines and provide them with the
tools to begin to explore their own data more fruitfully.

The four main aims of this introductory chapter are:

1. to identify some of the scientific questions which have aroused the curiosity
of investigators and led them to develop the approaches we describe

2. to trace part of the intellectual tradition that led us to the approach we are
to present in this text

1
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3. to outline the overall logical structure of the approach

4. to accomplish all of these with the minimum of statistics and mathematics.

Before starting on what we are going to do, however, it is important to point out
what we are not going to cover. There will be almost nothing in this book about
detecting the contribution of individual loci of large effect against the background
of other genetic and environmental effects (“segregation analysis”). In contrast to
the first edition, there will be a chapter on linkage analysis concerning the location
on the genome of individual genes of major effect, if they exist. These issues have
been treated extensively elsewhere (see e.g., Ott, 1985, Sham, 1998, Lange, 1997,
Lynch & Walsh, 1998) — often to the exclusion of issues that may still turn out to
be equally important, such as those outlined in this chapter. When the history of
genetic epidemiology is written, we believe that the approaches described here will
be credited with revealing the naivete of many of the simple assumptions about
the action of genes and environment that are usually made in the search for single
loci of large effect. Our work may thus be seen in the context of exploring those
parameters of the coaction of genes and environment which are frequently not
considered in conventional segregation and linkage analysis.

1.2 Heredity and Variation

Genetic epidemiology is impelled by three basic questions:

1. Why isn’t everyone the same?

2. Why are children like their parents?

3. Why aren’t children from the same parents all alike?

These questions address variation within individuals and covariation between rela-
tives. As we shall show, covariation between relatives can provide useful informa-
tion about variation within individuals.

1.2.1 Variation

In this section we shall examine the ubiquity of variability, and its distinction from
mean levels in populations and sub-populations.

Variation is Everywhere

Almost everything that can be measured or counted in humans shows variation
around the mean value for the population. Figure 1.1 shows the pattern of varia-
tion for self-reported weight (lb.) in a U.S. sample. The observation that individ-
uals differ is almost universal and covers the entire spectrum of measurable traits,
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Figure 1.1: Variability in self reported weight in a sample of US twins.

whether they be physical such as stature or weight, physiological such as heart rate
or blood pressure, or psychological such as personality, abilities, mental health, or
attitudes. The methods we shall describe are concerned with explaining why these
differences occur.

Beyond the a priori Approach

As far as possible, the analyses we use are designed to be agnostic about the causes
of variation in a particular variable. Unfortunately, the same absence of a priori
bias is not always found among our scientific peers! A referee once wrote in a report
on a manuscript describing a twin study:

It is probably alright to use the twin study to estimate the genetic
contribution to variables which you know are genetic like stature and
weight, and it’s probably alright for things like blood pressure. But it
certainly can’t be used for behavioral traits which we know are environ-
mental like social attitudes!

Such a crass remark nevertheless serves a useful purpose because it illustrates an
important principle which we should strive to satisfy, namely to find methods that
are trait-independent; that is, they do not depend for their validity on investigators
a priori beliefs about what causes variation in a particular trait. Such considera-
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tions may give weight to choosing one study design rather than another, but they
cannot be used to decide whether we should believe our results when we have them.

Biometrical Genetical and Epidemiological Approaches

Approaches that use genetic manipulation, natural or artificial, to uncover latent
(i.e. unmeasured) genetic and environmental causes of variation are sometimes
called biometrical genetical (see e.g. Mather and Jinks, 1982). The methods may
be contrasted to the more conventional ones used in individual differences, chiefly in
the areas of psychology, sociology and epidemiology. The conventional approaches
try to explain variation in one set of measures (the dependent variables) by refer-
ences to differences in another set of measures (independent variables). For exam-
ple, the risk for cardiovascular and lung diseases might be assumed to be dependent
variables, and cigarette smoking, alcohol use, and life stress independent variables.
A fundamental problem with this “epidemiological approach” is that its conclu-
sions about causality can be seriously misleading. Erroneous inferences would be
made if both the dependent and independent variables were caused by the same
latent genetic and environmental variables (see e.g., Chapters 6 and 10).

Not Much Can Be Said About Means

It is vital to remember that almost every result in this book, and every conclusion
that others obtain using these methods, relate to the causes of human differences,
and may have almost nothing to do with the processes that account for the de-
velopment of the mean expression of a trait in a particular population. We are
necessarily concerned with what makes people vary around the mean of the pop-
ulation, race or species from which they are sampled. Suppose, for example, we
were to find that differences in social attitudes had a very large genetic component
of variation among U.S. citizens. What would that imply about the role of culture
in the determination of social attitudes? It could imply several things. First, it
might mean that culture is so uniform that only genetic effects are left to account
for differences. Second, it might mean that cultural changes are adopted so rapidly
that environmental effects are not apparent. A trivial example may make this clear.
It is possible that understanding the genetic causes of variation in stature among
humans may identify the genes responsible for the difference in stature between
humans and chimpanzees, but it is by no means certain. Neither would a demon-
stration that all human variation in stature was due to the environment lead us
to assume that the differences between humans and chimpanzees were not genetic.
This point is stressed because, whatever subsequent genetic research on population
and species differences might establish, there is no necessary connection between
what is true of the typical human and what causes variation around the central
tendency. For this reason, it is important to avoid such short-hand expressions
as “height is genetic” when really we mean “individual differences in height are
mainly genetic.”
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Variation and Modification

What has been said about means also extends to making claims about intervention.
The causes of variation that emerge from twin and family studies relate to a par-
ticular population of genotypes at a specific time in its evolutionary and cultural
history. Factors that change the gene frequencies, the expression of gene effects, or
the frequencies of the different kinds of environment may all affect the outcome of
our studies. Furthermore, if we show that genetic effects are important, the possi-
bility that a rare but highly potent environmental agent is present cannot entirely
be discounted. Similarly, a rare gene of major effect may hold the key to under-
standing cognitive development but, because of its rarity, accounts for relatively
little of the total variation in cognitive ability. In either case, it would be foolhardy
to claim too much for the power of genetic studies of human differences. This does
not mean, however, that such studies are without value, as we shall show. Our
task is to make clear what conclusions are justified on the basis of the data and
what are not.

1.2.2 Familial Resemblance

Look at the two sets of data shown in Figure 1.2. The first part of the figure is a
scatterplot of measurements of weight in a large sample of non-identical (fraternal,
dizygotic, DZ) twins. Each cross in the diagram represents a single twin pair. The
second part of the figure is a scatterplot of pairs of completely unrelated people
from the same population. Notice how the two parts of the figure differ. In the
unrelated pairs the pattern of crosses gives the general impression of being circular;
in general, if we pick a particular value on the X axis (first person’s weight), it makes
little difference to how heavy the second person is on average. This is what it means
to say that measures are uncorrelated — knowing the score of the first member of
a pair makes it no easier to predict the score of the second and vice-versa. By
comparison, the scatterplot for the fraternal twins (who are related biologically to
the same degree as brothers and sisters) looks somewhat different. The pattern of
crosses is slightly elliptical and tilted upwards. This means that as we move from
lighter first twins towards heavier first twins (increasing values on the X axis),
there is also a general tendency for the average scores of the second twins (on the
Y axis) to increase. It appears that the weights of twins are somewhat correlated.
Of course, if we take any particular X value, the Y values are still very variable
so the correlation is not perfect. The correlation coefficient (see Chapter 2) allows
us to quantify the degree of relationship between the two sets of measures. In the
unrelated individuals, the correlation turns out to be 0.02 which is well within the
range expected simply by chance alone if the measures were really independent.
For the fraternal twins, on the other hand, the correlation is 0.44 which is far
greater than we would expect in so large a sample if the pairs of measures were
truly independent.

The data on weight illustrate the important general point that relatives are
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Figure 1.2: Two scatterplots of weight in: a) a large sample of DZ twin pairs,
and b) pairs of individuals matched at random.
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usually much more alike than unrelated individuals from the same population.
That is, although there are large individual differences for almost every trait than
can be measured, we find that the trait values of family members are often quite
similar. Figure 1.3 gives the correlations between relatives in large samples of
nuclear families for body mass index (BMI), and conservatism. One simple way
of interpreting the correlation coefficient is to multiply it by 100 and treat it as a
percentage. The correlation (× 100) is the “percentage of the total variation in a
trait which is caused by factors shared by members of a pair.” Thus, for example,
our correlation of 0.44 for the weights of DZ twins implies that, of all the factors
which create variation in weight, 44% are factors which members of a DZ twin
pair have in common. We can offer a similar interpretation for the other kinds of
relationship. A problem becomes immediately apparent. Since the DZ twins, for
example, have spent most of their lives together, we cannot know whether the 44%
is due entirely to the fact that they shared the same environment in utero, lived
with the same parents after birth, or simply have half their genes in common —
and we shall never know until we can find another kind of relationship in which
the degree of genetic similarity, or shared environmental similarity, is different.

Figure 1.4 gives a scattergram for the weights of a large sample of identical
(monozygotic, MZ) twins. Whereas DZ twins, like siblings, on average share only
half their genes, MZ twins are genetically identical. The scatter of points is now
much more clearly elliptical, and the 45◦ tilt of the major axis is especially ob-
vious. The correlation in the weights in this sample of MZ twins is 0.77, almost
twice that found for DZ’s. The much greater resemblance of MZ twins, who are
expected to have completely identical genes establishes a strong prima facie case
for the contribution of genetic factors to differences in weight. One of the tasks to
be addressed in this book is how to interpret such differential patterns of family
resemblance in a more rigorous, quantitative, fashion.

1.2.3 Within Family Differences

At a purely anecdotal level, when parents hear about the possibility that genes cre-
ate differences between people, they will sometimes respond “Well, that’s pretty
obvious. I’ve raised three sons the same way and they’ve all turned out differently.”
At issue here is not whether their conclusions are soundly based on their data, so
much as to indicate that not all variation is due to factors that family members
share in common. No matter how much parents contribute genetically to their
children and, it seems, no matter how much effort they put into parenting, a large
part of the outcome appears beyond their immediate control. That is, there are
large differences even within a family. Some of these differences are doubtless due
to the environment since even identical twins are not perfectly alike. Figure 1.5 is
a bar chart of the (absolute) weight differences within pairs of twins. The darker,
left-hand column of each pair gives the percentage of the DZ sample falling in the
indicated range of differences, and the lighter, right-hand column shows the corre-
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Figure 1.3: Correlations for body mass index (weight/height2) and conservatism
between relatives. Data were obtained from large samples of nuclear families as-
certained through twins.
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Figure 1.4: Scatterplot of weight in a large sample of MZ twins.

sponding percentages for MZ pairs. For MZ twins, these differences must be due
to factors in the environment that differ even within pairs of genetically identical
individuals raised in the same home. Obviously the differences within DZ pairs are
much greater on average. The known mechanisms of Mendelian inheritance can
account for this finding since, unlike MZ twins, DZ twins are not genetically iden-
tical although they are genetically related. DZ twins represent a separate sample
from the genetic pool “cornered” by the parents. Thus, DZ twins will be correlated
because their particular parents have their own particular selection of genes from
the total gene pool in the population, but they will not be genetically identical
because each DZ twin, like every other sibling in the same family, represents the
result of separate, random, meioses1 in the parental germlines.

1meiosis is the process of gametogenesis in which either sperm or ova are formed
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Figure 1.5: Bar chart of absolute differences in weight within MZ and DZ twin
pairs.

1.3 Building and Fitting Models

As long as we study random samples of unrelated individuals, our understanding of
what causes the differences we see will be limited. The total population variation
is simply an aggregate of all the various components of variance. One practical ap-
proach to the analysis of variation is to obtain several measures of it, each known
to reflect a different proportion of genetic and environmental components of the
differences. Then, if we have a model for how the effects of genes and environment
contribute differentially to each distinct measure of variation, we can solve to ob-
tain estimates of the separate components. Figure 1.6 shows the principal stages in
this process. There are two aspects: theory and data. The model is a formal, in our
case mathematical, statement which mediates between the logic of the theory and
the reality of the data. Once a model is formulated consistently, the predictions
implied for different sets of data can be derived by a series of elementary math-
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Figure 1.6: Diagram of the interrelationship between theory, model and empirical
observation.

ematical operations. Model building is the task of translating the ideas of theory
into mathematical form. A large part of this book is devoted to a discussion of
model building. Inspection of the model, sometimes aided by computer simulation
(see Chapters 7 and ??), may suggest appropriate study designs which can be used
to generate critical data to test some or all parts of a current model. The statistical
processes of model fitting allow us to compare the predictions of a particular model
with the actual observations about a given population. If the model fails, then we
are forced to revise all or some of our theory. If, on the other hand, the model fits
then we cannot know it is “right” in some ultimate sense. However, we might now
wish to base new testable conjectures on the theory in order to enlarge the scope
of observations it can encompass.

1.4 Elements of a Model: Causes of Variation

No model is built in isolation. Rather it is built upon a foundation of what is either
already known or what might be a matter for fertile conjecture. Part of the diffi-
culty, but also the intrinsic appeal, of genetic epidemiology is the fact that it seeks
either to distinguish between major sets of theoretical propositions, or to integrate
them into an overall framework. From biology, and especially through knowledge
of genetics, we have a detailed understanding of the intricacies of gene expression.
From the behavioral and social sciences we have strong proposals about the impor-
tance of the environment, especially the social environment, for the development
of human differences. One view of our task is that it gives a common conceptual
and mathematical framework to both genetic and environmental theories so that
we may decide which, if any, is more consistent with the facts in particular cases.
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1.4.1 Genetic Effects

A complete understanding of genetic effects would need to answer a series of ques-
tions:

1. How important are genetic effects on human differences?

2. What kinds of action and interaction occur between gene products in the
pathways between genotype and phenotype?

3. Are the genetic effects on a trait consistent across sexes?

4. Are there some genes that have particularly outstanding effects when com-
pared to others?

5. Whereabouts on the human gene map are these genes located?

Questions 4 and 5 are clearly very important, but are not the immediate concern
of this book. On the other hand, we shall have a lot to say about 1, 2, and 3. It is
arguable that we shall not be able to understand 4 and 5 adequately, if we do not
have a proper appreciation of these other issues.

The importance of genes is often expressed relative to all the causes of varia-
tion, both genetic and environmental. The proportion of variation associated with
genetic effects is termed the broad heritability. However, the complete analysis of
genetic factors does not end here because, as countless experiments in plant and
animal genetics have shown (well in advance of modern molecular genetics; see e.g.,
Mather and Jinks, 1982), genes can act and interact in a variety of ways before
their effects on the phenotype appear.

Geneticists typically distinguish between additive and non-additive genetic ef-
fects (these terms will be defined more explicitly in Chapter 3). These influences
have been studied in detail in many non-human species using selective breeding
experiments, which directly alter the frequencies of particular genotypes. In such
experiments, the bulk of genetic variation is usually explained by additive genetic
effects. However, careful studies have shown two general types of non-additivity
that may be important, especially in traits that have been subject to strong di-
rectional selection in the wild. The two main types of genetic non-additivity are
dominance and epistasis.

The term dominance derives initially from Mendel’s classical experiments in
which it was shown that the progeny of a cross between two pure breeding lines
often resembled one parent more than the other. That is, an individual who car-
ries different alleles at a locus (the heterozygote) is not exactly intermediate in
expression between individuals who are pure breeding (homozygous) for the two al-
leles. While dominance describes the interaction between alleles at the same locus,
epistasis describes the interaction between alleles at different loci.

Epistasis is said to occur whenever the effects of one gene on individual dif-
ferences depend on which genotype is expressed at another locus. For example,
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suppose that at locus A/a individuals may have genotype AA, Aa or aa, and at
locus B/b genotype BB, Bb or bb2. If the difference between individuals with
genotype AA and those with genotype aa depends on whether they are BB or
bb, then there would be additive × additive epistatic interactions. Experimental
studies have shown a rich variety of possible epistatic interactions depending on
the number and effects of the interacting loci. However, their detailed resolution
in humans is virtually impossible unless we are fortunate enough to be examining
a trait which is influenced by a small number of known genetic loci. Therefore
we acknowledge their conceptual importance and model them if they are identi-
fied. Failure to take non-additive genetic effects into account may be one of the
main reasons studies of twins give different heritability estimates from studies of
adoptees and nuclear families (Eaves et al., 1992; Plomin et al., 1991).

As studies in genetic epidemiology become larger and better designed, it is
becoming increasingly clear that there are marked sex differences in gene expres-
sion. An important factor in establishing this view has been the incorporation of
unlike-sex twin pairs in twin studies (Eaves et al., 1990). However, comparison of
statistics derived from any relationship of individuals of unlike sex with those of like
sex would yield a similar conclusion (see Chapter 9). We shall make an important
distinction between two types of sex-limited gene expression. In the simpler case,
the same genes affect both males and females, but their effects are consistent across
sexes and differ only by some constant multiple over all the loci involved. We shall
refer to this type of effect as scalar sex-limitation. In other cases, however, we shall
discover that genetic effects in one sex are not just a constant multiple of their
effects in the other. Indeed, even though a trait may be measured in exactly the
same way in males and females, it may turn out that quite different genes control
its expression in the two sexes. A classic example would be the case of chest-girth
since at least some of the variation expressed in females may be due to loci that,
while still present in males, are only expressed in females. In this case we shall
speak of non-scalar sex-limitation. None of us likes the term very much, but until
someone suggests something better we shall continue to use it!

1.4.2 Environmental Effects

Paradoxically, one of the greatest benefits of studies that can detect and control
for genetic effects is the information they can provide about the sources of envi-
ronmental influence. We make an important distinction between identifying which
are the best places to look for specific environmental agents and deciding what
those specific agents are. For example, it may be possible to show that variation
in diastolic blood pressure is influenced by environmental effects shared by family
members long before it is possible to demonstrate that the salient environmental
factor is the amount of sodium in the diet. We make a similar distinction be-
tween estimating the overall contribution of genetic effects and identifying specific

2This notation is described more fully in Chapter 3.
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loci that account for a significant fraction of the total genetic variation. Using
some of the methods we shall describe later in this book it may indeed be possible
to estimate the contribution of specific factors to the environmental component
of variation (see Chapter 10). However, using the biometrical genetical approach
which relies only on the complex patterns of family resemblance, it is possible to
make some very important statements about the structure of the environment in
advance of our ability to identify the specific features of the environment that are
most important. Although the full subtlety for analyzing the environment cannot
be achieved with data on twins alone, much less on twins reared together, it is nev-
ertheless possible to make some important preliminary statements about the major
sources of environmental influence which can provide a basis for future studies.

We may conceive of the total environmental variation in a trait as arising from
a number of sources. The first major distinction we make is between environmen-
tal factors that operate within families and those which create differences between
families. Sometimes the environment within families is called the unique environ-
ment or the specific environment or the random environment. Different authors
may refer to it as VE , VSE , E1, EW or e2, but the important thing is to understand
the concept behind the symbols. The within-family environment refers to all those
environmental influences which are so random in their origin, and idiosyncratic in
their effects, as to contribute to differences between members of the same fam-
ily. They are captured by Hamlet’s words from the famous ‘to be or not to be’
soliloquy:

...the slings and arrows of outrageous fortune.

The within-family environment will even contribute to differences between individ-
uals of the same genotype reared in the same family. Thus, the single most direct
measure of their impact is the variation within pairs of MZ twins reared together.

Obviously, if a large proportion of the total variation is due to environmental
differences within families we might expect to look more closely at the different ex-
periences of family members such as MZ twins in the hope of identifying particular
environmental factors. However, we have to take account of a further important dis-
tinction, namely that between “long-term” and “short-term” environmental effects,
even within families. If we only make a single measurement on every individual in a
study of MZ twins, say, we cannot tell whether the observed phenotypic differences
between members of an MZ twin pair are due to some lasting impact of an early
environmental trauma, or due to much more transient differences that influence
how the twins function on the particular occasion of measurement. Many of the
latter kinds of influence are captured by the concept of “unreliability” variance
in measurement theory. There is, of course, no hard and fast distinction between
the two sources of variation because how far one investigator is prepared to treat
short-term fluctuations as “unreliability” is largely a matter of his or her frame
of reference. In depression, which is inherently episodic, short term fluctuations
in behavior may point to quite specific environmental factors that trigger specific
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episodes (see, e.g., Kendler et al., 1986). The main thing to realize is that what a
single cross-sectional study assigns to the “within-family” environment may or may
not be resolved into specific non-trivial environmental causes. How far to proceed
with the analysis of within-family environment is a matter for the judgement and
ingenuity of the particular investigator, aided by such data on repeated measures
as he or she may gather.

The between-family environment would seem to be the place that many of the
conceptually important environmental effects might operate. Any environmental
factors that are shared by family members will create differences between families
and make family members relatively more similar. The environment between fam-
ilies is sometimes called the shared environment, the common environment or just
the family environment. Sometimes it is represented by the symbols E2, EB, EC,
CE, c2 or VEC . Again, all these symbols denote the same underlying processes.

In twin studies, the shared environment is expected to contribute to the cor-
relation of both MZ and DZ twins as long as they are reared together. Just as
we distinguish short-term and long-term effects of the within-family environment,
so it is conceptually important to note that the effects of the shared environment
may be more or less permanent and may persist even if family members are sepa-
rated later in life, or they may be relatively transient in that they are expressed as
long as individuals are living together, perhaps as children with their parents, but
are dissipated as soon as the source of shared environmental influence is removed.
Such effects can be detected by comparing the analyses of different age groups in
a cross-sectional study, or by tracing changes in the contribution of the shared
environment in a longitudinal genetic study (see Chapter 12).

It is a popular misconception that studies of twins reared together can offer no
insight about the effects of the shared environment. As we shall see in the following
chapters, this is far from the case. Large samples of twins reared together can pro-
vide a strong prima facie case for the importance of between-family environmental
effects that account for a significant proportion of the total variance. The weak-
ness of twin studies, however, is that the various sources of the shared environment
cannot be discriminated. It is nevertheless essential for our understanding of what
the twin study can achieve, to recognize some of the reasons why this design can
never be a “one-shot,” self-contained investigation and why investigators should be
open to the possibility of significant extensions of the twin study (see Chapter ??).

The environmental similarity between twins may itself be due to several distinct
sources whose resolution would require more extensive studies. First, we may
identify the environmental impact of parents on their children. That is, part of
the common environment effect in twins, can be traced to the fact that children
learn from their parents. Formally, this implies that some aspect of variation in
the maternal or paternal phenotypes (or both) creates part of the environmental
variation between pairs of children. An excellent starting point for exploring some
of these effects is the extension of the classical twin study to include data on the
parents of twins (see Chapter ??). In principle, we might find that parents do
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not contribute equally to the shared family environment. The effect of mothers
on the environment of their offspring is usually called the “maternal effect” and
the impact of fathers is called the “paternal effect.” Although these effects can
be resolved by parent-offspring data, they cannot be separated from each other as
long as we only have twins in the sample.

Following the terms introduced by Cavalli-Sforza and Feldman (1981), the
environmental effects of parent on child are often called vertical cultural transmis-
sion to reflect the fact that non-genetic information is passed vertically down the
family tree from parents to children. However, the precise effects of the parental
environment on the pattern of family resemblance depend on which aspect of the
parental phenotype is affecting the offspring’s environment. The shared environ-
ment of the children may depend on the same trait in the parents that is being
measured in the offspring. For example, the environment that makes offspring
more or less conservative depends directly on the conservatism of their parents.
In this case we normally speak of “phenotype-to-environment (‘P to E’)” trans-
mission. It is quite possible, however, that part of the shared environment of the
offspring is created by aspects of parental behavior that are different from those
measured in the children, although the two may be somewhat correlated. Thus, for
example, parental income may exercise a direct effect on offspring educational level
through its effect on duration and quality of schooling. Another example would
be the effect of parental warmth or protectiveness on the development of anxiety
or depression in their children. In this case we have a case of correlated variable
transmission. Haley, Jinks and Last (1981) make a similar distinction between the
“one character” and “two character” models for maternal effects. The additional
feature of the parental phenotype may or may not be measured in either parents
or children. When such additional traits are measured in addition to the trait of
primary interest we will require multivariate genetic models to perform the data
analysis properly. Some simple examples of these methods will be described in later
chapters. Two extreme examples of correlated variable transmission are where the
variable causing the shared environment is:

1. an index purely of the environmental determinants of the phenotype —
“environment-to-environment (‘E to E’)” transmission

2. purely genetic — “genotype-to-environment (‘G to E’)” transmission.

Although we can almost never claim to have a direct measure of the genotype for
any quantitative trait, the latter conception recognizes that there may be a genetic
environment (see e.g. Darlington, 1971), that is, genetic differences between some
members of a population may be part of the environment of others. One conse-
quence of the genetic environment is the seemingly paradoxical notion that different
genetic relationships also can be used to tease out certain important aspects of the
environment. For example, the children of identical twins can be used to provide
a test of the environmental impact of the maternal genotype on the phenotypes of
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their children (see e.g., Nance and Corey, 1976). A concrete example of this phe-
nomenon would be the demonstration that a mother’s genes affect the birthweight
of her children.

Although researchers in the behavioral sciences almost instinctively identify the
parents as the most salient feature of the shared environment, we must recognize
that there are other environmental factors shared by family members that do not
depend directly on the parents. There are several factors that can create residual
(non-parental) shared environmental effects. First, there may be factors that are
shared between all types of offspring, twin or non-twin; these may be called sibling
shared environments. Second, twins may share a more similar pre-and postnatal
environment than siblings simply because they are conceived, born and develop at
the same time. This additional correlation between the environments of twins is
called the special twin environment and is expected to make both MZ and DZ twins
more alike than siblings even in the absence of genetic effects. It is important to
note that even twins separated at birth share the same pre-natal environment, so
a comparison of twins reared together and apart is only able to provide a simple
test of the post-natal shared environment3.

A further type of environmental partition, the special MZ twin environment
is sometimes postulated to explain the fact that MZ twins reared together are
more correlated than DZ twins. This is the most usual environmental explanation
offered as an alternative to genetic models for individual differences because the
effects of the special MZ environment will tend to mimic those of genes in twins
reared together. It is because of concern that genetic effects may be partly con-
founded with any special MZ twin environments that we stress the importance
of thinking beyond the twin study to include other relationships. It becomes in-
creasingly difficult to favor a purely non-genetic explanation of MZ twin similarity
when the genetic model is able to predict the correlations for a rich variety of re-
lationships from a few fairly simple principles. Since the special twin environment,
however, would increase the correlation of MZ twins, its effects may often resemble
those of non-additive genetic effects (dominance and epistasis) in models for family
resemblance.

1.4.3 Genotype-Environment Effects

It has long been realized that the distinction we make for heuristic purposes between
“genotype” and “environment” is an approximation which ignores several processes
that might be important in human populations. Three factors defy the simple
separation of genetic and environmental effects, but are likely to be of potential
significance from what we know of the way genes operate in other species, and from
the logical consequences of the grouping of humans into families of self-determining
individuals who share both genes and environment in common.

3Twins born serially by embryo implantation are currently far too rare for the purposes of
statistical distinction between pre- and post-natal effects!
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The factors we need to consider are:

1. assortative mating

2. genotype-environment covariance (CovGE, or genotype-environment correla-
tion, CorGE)

3. genotype × environment interaction (G×E).

Each of these will be discussed briefly.

Assortative Mating

Any non-random pairing of mates on the basis of factors other than biological
relatedness is subsumed under the general category of assortative mating. Mating
based on relatedness is termed inbreeding, and will not be examined in this book.
We discuss assortative mating under the general heading of genotype-environmental
effects for two main reasons. First, when assortment is based on some aspect of
the phenotype, it may be influenced by both genetic and environmental factors.
Second, assortative mating may affect the transmission, magnitude, and correlation
of both genetic and environmental effects.

In human populations, the first indication of assortative mating is often a cor-
relation between the phenotypes of mates. Usually, such correlations are positive.
Positive assortment is most marked for traits in the domains of education, religion,
attitudes, and socioeconomic status. Somewhat smaller correlations are found in
the physical and cognitive domains. Mating is effectively random, or only very
slightly assortative, in the personality domain. We are not aware of any replicated
finding of a significant negative husband-wife correlation, with the exception of
gender!

Assortative mating may not be the sole source of similarity between husband
and wife — social interaction is another plausible cause. A priori, we might expect
social interaction to play a particularly important role in spousal resemblance for
habits such as cigarette smoking and alcohol consumption. Two approaches are
available for resolving spousal interaction from strict assortative mating. The first
depends on tracing the change in spousal resemblance over time, and the second
requires analyzing the resemblance between the spouses of biologically related in-
dividuals (see Heath, 1987). Although the usual treatment of assortative mating
assumes that spouses choose one another on the basis of the trait being studied
(primary phenotypic assortment), we should understand that this is only one model
of a process that might be more complicated in reality. For example, mate selection
is unlikely to be based on an actual psychological test score. Instead it is probably
based on some related variable, which may or may not be measured directly. If
the variable on which selection is based is something that we have also measured,
we call it correlated variable assortment. If the correlated trait is not measured di-
rectly we have latent variable assortment. In the simplest case, the latent variable
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may simply be the true value of trait of which the actual measure is just a more or
less unreliable index. We then speak of phenotypic assortment with error.

Once we begin to consider latent variable assortment, we recognize that the
latent variable may be more or less genetic. If the latent variable is due entirely
to the social environment we have one form of social homogamy (e.g., Rao et al.,
1974). We can conceive of a number of intriguing mechanisms of latent variable

assortment according to the presumed causes of the latent variable on which mate
selection is based. For example, mating may be based on one or more aspects of
the phenotypes of relatives, such as parents’ incomes, culinary skills, or siblings’
reproductive history. In all these cases of correlated or latent variable assortment,
mate selection may be based on variables that are more reliable indices of the
genotype than the measured phenotype. This possibility was considered by Fisher
(1918) in what is still the classical treatment of assortative mating.

Clearly, the resolution of these various mechanisms of assortment is beyond the
scope of the conventional twin study, although multivariate studies that include
the spouses of twins, or the parents and parents-in-law of twins may be capable of
resolving some of these complex issues (see, e.g., Heath et al., 1985).

Even though the classical twin study cannot resolve the complexities of mate
selection, we have to keep the issue in mind all the time because of the effects
of assortment on the correlations between relatives, including twins. When mates
select partners like themselves phenotypically, they are also (indirectly) choosing
people who resemble themselves genetically and culturally. As a result, positive
phenotypic assortative mating increases the genetic and environmental correlations
between relatives. Translating this principle into the context of the twin study,
we will find that assortative mating tends to increase the similarity of DZ twins
relative to MZ twins. As we shall see, in twins reared together, the genetic effects
of assortative mating will artificially inflate estimates of the family environmental
component. This means, in turn, that estimates of the genetic component based
primarily on the difference between MZ correlations and DZ correlations will tend
to be biased downwards in the presence of assortative mating.

Genotype-Environment Correlation

Paradoxically, the factors that make humans difficult to study genetically are pre-
cisely those that make humans so interesting. The experimental geneticist can
control matings and randomize the uncontrolled environment. In many human so-
cieties, for better or for worse, consciously or unconsciously, people likely decide for
themselves on the genotype of the partner to whom they are prepared to commit
the future of their genes. Furthermore, humans are more or less free living organ-
isms who spend a lot of time with their relatives. If the problem of mate selection
gives rise to fascination with the complexities of assortative mating, it is the fact
that individuals create their own environment and spend so much time with their
relatives that generates the intriguing puzzle of genotype-environment correlation.
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As the term suggests, genotype-environment correlation (CorGE) refers to the
fact that the environments that individuals experience may not be a random sample
of the whole range of environments but may be caused by, or correlated with, their
genes. Christopher Jencks (1972) spoke of the “double advantage” phenomenon in
the context of ability and education. Individuals who begin life with the advantage
of genes which increase their ability relative to the average may also be born into
homes that provide them with more enriched environments, having more money to
spend on books and education and being more committed to learning and teaching.
This is an example of positive CorGE. Cattell (1963) raised the possibility of nega-
tive CorGE by formulating a principle of “cultural coercion to the biosocial norm.”
According to this principle, which has much in common with the notion of stabiliz-
ing selection in population genetics, individuals whose genotype predisposes them
to extreme behavior in either direction will tend to evoke a social response which
will “coerce” them back towards the mean. For example, educational programs
that are designed specifically for the average student may increase achievement in
below average students while attenuating it in talented pupils.

Many taxonomies have been proposed for CorGE. We prefer one that classi-
fies CorGE according to specific detectable consequences for the pattern of varia-
tion in a population (see Eaves et al., 1977). The first type of CorGE, genotype-
environment autocorrelation arises because the individual creates or evokes envi-
ronments which are functions of his or her genotype. This is the “smorgasbord”
model which views a given culture as having a wide variety of environments from
which the individual makes a selection on the basis of genetically determined prefer-
ences. Thus, an intellectually gifted individual would invest more time in mentally
stimulating activities. An example of possible CorGE from a different context is
provided by an ethological study of 32 month-old male twins published a number
of years ago (Lytton, 1977). The study demonstrated that parent-initiated interac-
tions with their twin children are more similar when the twins are MZ rather than
DZ. Of course, like every other increased correlation in the environment of MZ
twins, it may not be clear whether it is truly a result of a treatment being elicited
by genotype rather than simply a matter of identical individuals being treated more
similarly. That is, the direction of causation is not clear.

Insofar as the genotypes of individuals create or elicit environments, cross-
sectional twin studies will not be able to distinguish the ensuing CorGE from
any other effects of the genes. That is, positive CorGE will increase estimates of
all the genetic components of variance and negative CorGE will decrease them.
However, we will have no direct way of knowing which genetic effects act directly
on the phenotype and which result from the action of environmental variation
caused initially by genetic differences. In this latter case, the environment may be
considered as part of the “extended phenotype” (see Dawkins, 1982). If the process
we describe were to accumulate during behavioral development, positive CorGE
would lead to an increase in the relative contribution of genetic factors with age,
but a constant genetic correlation across ages (see Chapter 12). However, finding
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this pattern of developmental change would not necessarily imply that the actual
mechanism of the change is specifically genotype-environment autocorrelation.

The second major type of CorGE is that which arises because the environment
in which individuals develop is provided by their biological relatives. Thus, one
individual’s environment is provided by the phenotype of someone who is genet-
ically related. Typically, we think of the correlated genetic and environmental
effects of parents on their children. For example, a child who inherits the genes
that predispose to depression may also experience the pathogenic environment of
rejection because the tendency of parents to reject their children may be caused
by the same genes that increase risk to depression. As far as the offspring are
concerned, therefore, a high genetic predisposition to depression is correlated with
exposure to an adverse environment because both genes and environment derive
originally from the parents. We should note (i) that this type of CorGE can occur
only if parent-offspring transmission comprises both genetic factors and vertical
cultural inheritance, and (ii) that the CorGE is broken in randomly adopted in-
dividuals since the biological parents no longer provide the salient environment.
Adoption data thus provide one important test for the presence of this type of
genotype-environment correlation.

Although most empirical studies have focused on the parental environment as
that which is correlated with genotype, parents are not the only relatives who may
be influential in the developmental process. Children are very often raised in the
presence of one or more siblings. Obviously, this is always the case for twin pairs.
In a world in which people did not interact socially, we would expect the presence
or absence of a sibling, and the unique characteristics of that sibling, to have no
impact on the outcome of development. However, if there is any kind of social
interaction, the idiosyncrasies of siblings become salient features of one another’s
environment. Insofar as the effect of one sibling or twin on another depends on
aspects of the phenotype that are under genetic control, we expect there to be
a special kind of genetic environment which can be classified under the general
category of sibling effects. When the trait being measured is partly genetic, and
also responsible for creating the sibling effects, we have the possibility for a specific
kind of CorGE. This CorGE arises because the genotype of one sibling, or twin,
is genetically correlated with the phenotype of the other sibling which is providing
part of the environment. When above average trait values in one twin tend to
increase trait expression in the other, we speak of cooperation effects (Eaves, 1976b)
or imitation effects (Carey, 1986b). An example of imitation effects would be any
tendency of deceptive behavior in one twin to reinforce deception in the other. The
alternative social interaction, in which a high trait value in one sibling tends to act
on the opposite direction in the other, produces competition or contrast effects We
might expect such effects to be especially marked in environments in which there
is competition for limited resources. It has sometimes been argued that contrast
effects are an important source of individual differences in extraversion (see Eaves
et al., 1989) with the more extraverted twin tending to engender introversion in
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his or her cotwin and vice-versa.
Sibling effects typically have two kinds of detectable consequence. First, they

produce differences in trait mean and variance as a function of sibship size and
density. One of the first indications of sibling effects may be differences in variance
between twins and singletons. Second, the genotype-environment correlation cre-
ated by sibling effects depends on the biological relationship between the socially
interacting individuals. So, for example, the CorGE is greater in pairs of MZ twins
because each twin is reared with an cotwin of identical genotype. If there are co-
operation (imitation) effects we expect the CorGE to make the total variance of
MZ twins significantly greater than that of DZ’s, which in turn would exceed that
of singletons (Eaves, 1976b). Competition (contrast) effects will tend to make the
MZ variance less than that of DZ’s. Other effects ensue for the covariances between
relatives, as discussed in Chapter 8. Sibling effects may conceivably be reciprocal,
if siblings influence each other, or non-reciprocal, if an elder sibling, for example,
is a source of social influence on a younger sibling.

Genotype × Environment Interaction

The interaction of genotype and environment (“G × E”) must always be distin-
guished carefully from CorGE. Genotype-environment correlation reflects a non-
random distribution of environments among different genotypes. “Good” genotypes
get more or less than their fair share of “good” environments. By contrast, G × E
interaction has nothing to do with the distribution of genetic and environmental
effects. Instead, it relates to the actual way genes and environment affect the
phenotype. G × E refers to the genetic control of sensitivity to differences in the
environment. The old adage “sauce for the goose is sauce for the gander” describes
a world in which G × E is absent, because it implies that the same environmental
treatment has the same positive or negative effect regardless of the genotype of the
individual upon whom it is imposed.

An obvious example of G × E interaction is that of inherited disease resistance.
Genetically susceptible individuals will be free of disease as long as the environment
does not contain the pathogen. Resistant individuals will be free of the disease even
in a pathogenic environment. That is, changing the environment by introducing
the pathogen will have quite a different impact on the phenotype of susceptible
individuals than on resistant ones. More subtle examples may be the genetic control
of sensitivity to the pathogenic effects of tobacco smoke or genetic differences in
the effects of sodium intake on blood pressure.

The analysis of G × E in humans is extremely difficult in practice because of
the difficulty of securing large enough samples to detect effects that may be small
compared with the main effects of genes and environment. Studies of G × E in
experimental organisms (see, e.g., Mather and Jinks, 1982) illustrate a number of
issues which are also conceptually important in thinking about G×E in humans.
We consider these briefly in turn.
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The genes responsible for sensitivity to the environment are not always the
same as those that control average trait values. For example, one set of genes
may control overall liability to depression and a second set, quite distinct in their
location and mode of action, may control whether individuals respond more or less
to stressful environments. Another way of thinking about the issue is to consider
measurements made in different environments as different traits which may or may
not be controlled by the same genes. By analogy with our earlier discussion of sex-
limitation, we distinguish between “scalar” and “non-scalar” G × E interaction.
When the same genes are expressed consistently at all levels of a salient envi-
ronmental variable so that only the amount of genetic variance changes between
environments, we have “scalar genotype × environment interaction.” If, instead
of, or in addition to, changes in genetic variance, we also find that different genes
are expressed in different environments we have “non-scalar G × E.”

G × E interaction may involve environments that can be measured directly or
whose effects can be inferred only from the correlations between relatives. Gener-
ally, our chances of detecting G × E are much greater when we can measure the
relevant environments, such as diet, stress, or tobacco consumption. The simplest
situation, which we shall discuss in Chapter 9, arises when each individual in a
twin pair can be scored for the presence or absence of a particular environmental
variable such as exposure to severe psychological stress. In this case, twin pairs can
be divided into those who are concordant and those discordant for environmental
exposure and the data can be tested for different kinds of G × E using relatively
simple methods.

One “measurable” feature of the environment may be the phenotype of an indi-
vidual’s parent. A problem frequently encountered, however, is the fact that many
measurable aspects of the environment, such as smoking and alcohol consumption,
themselves have a genetic component so that the problems of mathematical mod-
elling and statistical analysis become formidable. If we are unable to measure the
environment directly, our ability to detect and analyze G × E will depend on the
same kinds of data that we use to analyze the main effects of genes and environ-
ment, namely the patterns of family resemblance and other, more complex, features
of the distribution of trait values in families. Generally, the detection of any in-
teraction between genetic effects and unmeasured aspects of the between-family
environment will require adoption data, particularly separated MZ twins. Interac-
tion between genes and the within-family environment will usually be detectable
only if the genes controlling sensitivity are correlated with those controlling average
expression of the trait (see, e.g., Jinks and Fulker, 1970).

1.5 Relationships between Variables

Many of the critics of the methods we are to describe argue that, for twin studies
at least, the so-called traditional methods such as taking the difference between the
MZ and DZ correlations and doubling it as a heritability estimate give much the
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same answer as the more sophisticated methods taught here. In the final analysis,
it must be up to history and the consumer to decide, but in our experience there
are several reasons for choosing the methods presented here. First, as we have
already shown, the puzzle of human variation extends far beyond testing whether
genes play any role in variation. The subtleties of the environment and the varieties
of gene action call for methods that can integrate many more types of data and
test more complex hypotheses than were envisioned fifty or a hundred years ago.
Only a model building/model fitting strategy allows us to trace the implications
of a theory across all kinds of data and to test systematically for the consistency
of theory and observation. But even if the skeptic is left in doubt by the methods
proposed for the interpretation of variables considered individually, we believe that
the conventional approaches of fifty years ago pale utterly once we want to analyze
the genetic and environmental causes of correlation between variables.

The genetic analysis of multiple variables will occupy many of the succeeding
chapters, so here it is sufficient to preview the main issues. There are three kinds of
“multivariate” questions which are generic issues in genetic epidemiology, although
we shall address them in the context of the twin study. Each is outlined briefly.

1.5.1 Causes of Correlation between Variables

The question of what causes variables to correlate is the usual entry point to mul-
tivariate genetic analysis. Students of genetics have long been familiar with the
concept of pleiotropy, i.e., that one genetic factor can affect several different phe-
notypes. Obviously, we can imagine environmental advantages and insults that
affect many traits in a similar way. Students of the psychology of individual dif-
ferences, and especially of factor analysis, will be aware that Spearman introduced
the concept of the “general intelligence factor” as a latent variable accounting for
the pattern of correlations observed between multiple abilities. He also introduced
an empirical test (the method of tetrad differences) of the consistency between his
general factor theory and the empirical data on the correlations between abilities.
Such factor models however, only operate at the descriptive phenotypic level. They
aggregate into a single model genetic and environmental processes which might be
quite separate and heterogeneous if only the genetic and environmental causes
of inter-variable correlation could be analyzed separately. Cattell recognized this
when he put forward the notion of “fluid” and “crystallized” intelligence. The
former was dependent primarily on genetic processes and would tend to increase
the correlation between measures that index genetic abilities. The latter was de-
termined more by the content of the environment (an “environmental mold” trait)
and would thus appear as loading more on traits that reflect the cultural environ-
ment. An analysis of multiple symptoms of anxiety and depression by Kendler et
al. (1986) illustrates very nicely the point that the pattern of genetic and environ-
mental effects on multiple measures may differ very markedly. They showed that
twins’ responses to a checklist of symptoms reflected a single underlying genetic
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dimension which influenced symptoms of both anxiety and depression. By con-
trast, the effects of the environment were organized along two dimensions (“group
factors”) — one affecting only symptoms of anxiety and the other symptoms of
depression. More recently, this finding has been replicated with psychiatric diag-
noses (?; ?), which suggests that the liability to either disorder is due to a single
common set of genes, while the specific expression of that liability as either anx-
iety or depression is a function of what kind of environmental event triggers the
disorder in the vulnerable person. Such insights are impossible without methods
that can analyze the correlations between multiple measures into their genetic and
environmental components.

1.5.2 Direction of Causation

Students of elementary statistics have long been made to recite “correlation does
not imply causation” and rightly so, because a premature assignment of causality
to a mere statistical association could waste scientific resources and do actual harm
if treatment were to be based upon it. However, one of the goals of science is to
analyze complex systems into elementary processes which are thought to be causal
or more fundamental and, when actual experimental intervention is difficult, it
may be necessary to look to the nexus of intercorrelations among measures for
clues about causality.

The claim that correlation does not imply causality comes from a fundamental
indeterminacy of any general model for the correlation between a single pair of
variables. Put simply, if we observe a correlation between A and B, it can arise
from one or all of three processes: A causing B (denoted A −→ B), B causing A, or
latent variable C causing A and B. A general model for the correlation between A
and B would need constants to account for the strength of the causal connections
between A and B, B and A, C and A, C and B. Clearly, a single correlation cannot
be used to determine four unknown parameters.

When we have more than two variables, however, matters may look a little dif-
ferent. It may now become possible to exclude some causal hypotheses as clearly
inconsistent with the data. Whether or not this can be done will depend on the
complexity of the causal nexus being analyzed. For example, a pattern of corre-
lations of the form rAC = rAB × rBC would support one or other of the causal
sequences A −→ B −→ C or C −→ B −→ A in preference to orders that place A
or C in the middle.

The fact that causality implies temporal priority has been used in some appli-
cations to advocate a longitudinal strategy for its analysis. One approach is the
cross-lagged panel study in which the variables A and B are measured at two points
in time, t0 and t1. If the correlation of A at t0 with B at t1 is greater than the
correlation of B at t0 with A at t1, we might give some credence to the causal pri-
ority of A over B. Methods for the statistical assessment of such relative priorities
are known as “cross-lagged panel analysis” (?) and may assessed within structural
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equation models (?).
The cross-lagged approach, though strongly suggestive of causality in some

circumstances, is not entirely foolproof. With this fact in view, researchers are
always on the look-out for other approaches that can be used to test hypotheses
about causality in correlational data. It has recently become clear that the cross-
sectional twin study, in which multiple measures are made only on one occasion,
may, under some circumstances, allow us to test hypotheses about direction of
causality without the necessity of longitudinal data. The potential contribution
of twin studies to resolving alternative models of causation will be discussed in
Chapter ??. At this stage, however, it is sufficient to give a simple insight about
one set of circumstances which might lead us to prefer one causal hypothesis over
another.

Consider the ambiguous relationship between exercise and body weight. In
free-living populations, there is a significant correlation between exercise and body
weight. How much of that association is due to the fact that people who exercise
use up more calories and how much to the fact that fat people don’t like jogging? In
the simplest possible case, suppose that we found variation in exercise to be purely
environmental (i.e., having no genetic component) and variation in weight to be
partly genetic. Then there is no way that the direction of causation can go from
body weight to exercise because, if this were the case, some of the genetic effects
on body weight would create genetic variation in exercise. In practice, things are
seldom that simple. Data are nearly always more ambiguous and hypotheses more
complex. But this simple example illustrates that the genetic studies, notably the
twin study, may sometimes yield valuable insight about the causal relationships
between multiple variables.

1.5.3 Developmental Change

Any cross-sectional study is a slice at one time point across the continuing onto-
genetic dialogue between the organism and the environment. While such studies
help us understand outcomes, they may not tell us much about the process of “be-
coming”. For example, the longitudinal genetic study involving repeated measures
of twins may be thought of as a multivariate genetic study in which the multiple
occasions of measurement correspond to multiple traits in the conventional cross-
sectional study. In the conventional multivariate study we ask such questions as
“How much do genes create the correlation between different variables?”, so in the
longitudinal genetic study we ask “How far do genes (or environment) account for
the developmental consistency of behavior?” and “To what extent are there specific
genetic and environmental effects expressed at each point in time?”. These are but
two of a rich variety of questions which can be addressed with the methods we shall
describe. One indication of the insight that can ensue from such an approach to
longitudinal measures on twins comes from some of the data on cognitive growth
obtained in the ground-breaking Louisville Twin Study. In a reanalysis by model
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fitting methods, Eaves et al. (1986) concluded that such data as had been pub-
lished strongly suggested the involvement of a single common set of genes which
were active from birth to adolescence and whose affects persisted and accumulated
through time. By contrast, the shared environment kept changing during devel-
opment. That is, parents who provided a better environment at one age did not
necessarily do so at another, even though whatever they did had fairly persistent
effects. The unique environment of the individual, however, was age-specific and
very ephemeral in its effect. Such a model, based as it was on only that part of
the data available in print, may not stand the test of more detailed scrutiny. Our
aim here is not so much to defend a particular model for cognitive development as
to indicate that a model fitting approach to longitudinal kinship data can lead to
many important insights about the developmental process.

1.6 The Context of our Approach

Figure 1.7 summarizes the main streams of the intellectual tradition which converge
to yield the ideas and methods we shall be discussing here. The streams divide and
merge again at several places. The picture is not intended to be a comprehensive
history of statistical or behavioral genetics, so a number of people whose work is
extremely important to both disciplines are not mentioned. Rather, it tries to
capture the main lines of thought and the “cast of characters” who have been
especially influential in our own intellectual development. Not all of us would give
the same weight to all the lines of descent.

1.6.1 Early History

To our knowledge, the first use of twin resemblance as a means of resolving al-
ternative hypotheses about the causes of human individual differences appears in
426 A.D. by Augustine of Hippo in Book V of the City of God. Augustine argued
that since twins, who were highly correlated in their times of birth, nevertheless
had such discrepant life histories, there was little empirical support for planetary
influence on human destiny. For Augustine’s purpose, it was sufficient that at least
some twin pairs showed markedly different life histories, despite being born at the
same time. To go beyond testing the astrological hypothesis and use twins to an-
swer the nature-nurture question required recognition of the fact that there are
two types of twins, identical and fraternal, and some way of distinguishing between
them.

1.6.2 19th Century Origins

Two geniuses of the last century provided the fundamental principles on which
much of what we do today still depends. Francis Galton’s boundless curiosity,
ingenuity and passion for measurement were combined in seminal insights and
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Figure 1.7: Diagram of the intellectual traditions leading to modern mathematical
genetic methodology.
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contributions which established the foundations of the scientific study of individ-
ual differences. Karl Pearson’s three-volume scientific biography of Galton is an
enthralling testimony to Galton’s fascination and skill in bringing a rich variety
of intriguing problems under scientific scrutiny. His Inquiry into the Efficacy of
Prayer reveals Galton to be a true “child of the Enlightenment” to whom nothing
was sacred. To him we owe the first systematic studies of individual differences and
family resemblance, the recognition that the difference between MZ and DZ twins
provided a valuable point of departure for resolving the effects of genes and culture,
the first mathematical model (albeit inadequate) for the similarity between rela-
tives, and the development of the correlation coefficient as a measure of association
between variables that did not depend on the units of measurement.

The specificity that Galton’s theory of inheritance lacked was supplied by the
classical experiments of Gregor Mendel on plant hybridization. Mendel’s demon-
stration that the inheritance of model traits in carefully bred material agreed with
a simple theory of particulate inheritance still remains one of the stunning exam-
ples of how the alliance of quantitative thinking and painstaking experimentation
can predict, in advance of any observations of chromosome behavior or molecu-
lar science, the necessary properties of the elementary processes underlying such
complex phenomena as heredity and variation.

1.6.3 Genetic, Factor, and Path Analysis

The conflict between those, like Karl Pearson, who followed a Galtonian model of
inheritance and those, like Bateson, who adopted a Mendelian model, is well known
to students of genetics. Although Pearson appeared to have some clues about
how Galton’s data might be explained on Mendelian principles, it fell to Ronald
Fisher, in 1918, to provide the first coherent and general account of how the “cor-
relations between relatives” could be explained “on the supposition of Mendelian
inheritance.” Fisher assumed what is now called the polygenic model, that is, he
assumed the variation observed for a trait such as stature was caused by a large
number of individual genes, each of which was inherited in strict conformity to
Mendel’s laws. By describing the effects of the environment, assortative mating,
and non-additive gene action mathematically, Fisher was able to show remarkable
consistency between Pearson’s own correlations between relatives for stature and
a strictly Mendelian mechanism of inheritance. Some of the ideas first expounded
by Fisher will be the basis of our treatment of biometrical genetics (Chapter 3).

In the same general era we witness the seeds of two other strands of thought
which continue to be influential today. Charles Spearman, adopting Galton’s idea
that a correlation between variables might reflect a common underlying causal
factor, began to explore the pattern of correlations between multiple measures
of ability. So began the tradition of multivariate analysis which was, for much
of psychology at least, embodied chiefly in the method of factor analysis which
sought the latent variables responsible for the observed patterns of correlation
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between multiple variables. The notion of multiple factors, introduced through the
work of Thurstone, and the concept of factor rotation to simple structure, provided
much of the early conceptual and mathematical foundation for the treatment of
multivariate systems to be discussed in this book.

Sewall Wright, whose long and distinguished career spans all of the six decades
which have seen the explosion of genetics into the most influential of the life sci-
ences, was the founding father of American population genetics. His seminal paper
on path analysis, published in 1921 established a parallel stream of thought to that
created by Fisher in 1918. The emphasis of Fisher’s work lay in the formulation
of a mathematical theory which could reconcile observations on the correlation
between relatives with a model of particulate inheritance. Wright, on the other
hand, was less concerned with providing a theory which could integrate two views
of genetic inheritance than he was with developing a method for exploring ways
in which different causal hypotheses could be expressed in a simple, yet testable,
form. It is not too gross an oversimplification to suggest that the contributions of
Fisher and Wright were each stronger where the other was weaker. Thus, Fisher’s
early paper established an explicit model for how the effects and interaction of
large numbers of individual genes could be resolved in the presence of a number of
different theories of mate selection. On the other hand, Fisher showed very little
interest in the environment, choosing rather to conceive of environmental effects as
a random variable uncorrelated between relatives. Fisher’s environment is what we
have called the “within family” environment, which seems appropriate for the kinds
of anthropometric variables that Fisher and his predecessors chose to illustrate the
rules of quantitative inheritance. However, it seems a little less defensible, on a
priori grounds, as a model for the effects of environment on what Pearson (1904)
called “the mental and moral characteristics of man” or those habits and lifestyles
that might have a significant impact on risk for disease. By contrast, Wright’s
approach virtually ignored the subtleties of gene action, considering only additive
genetic effects and treating them as a statistical aggregate which owed little to the
laws of Mendel beyond the fact that offspring received half their genes from their
mother and half from their father. On the other hand, Wright’s strategy made it
much easier to specify familial environmental effects, especially those derived from
the social interaction of family members.

1.6.4 Integration of the Biometrical and Path-Analytic Ap-

proaches

These different strengths and weaknesses of the traditions derived from Fisher and
Wright persisted into the 1970’s. The biometrical genetical approach, derived from
Fisher through the ground-breaking studies of Kenneth Mather and his student
John Jinks established what became known as the “Birmingham School.” The em-
phasis of this tradition was on the detailed analysis of gene action through carefully
designed and properly randomized breeding studies in experimental organisms. Ex-
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cept where the environment could be manipulated genetically (e.g., in the study
of the environmental effects of the maternal genotype), the biometrical genetical
approach treated the environment as a random variable. Even though the envi-
ronment might sometimes be correlated between families as a result of practical
limitations on randomization, it was independent of genotype. Thus, the Birm-
ingham School’s initial treatment of the environment in human studies allowed for
the partition of environmental components of variance into contributions within
families (EW) and between families (EB) but was very weak in its treatment of
genotype-environment correlation. Some attempt to remedy this deficiency was of-
fered by Eaves (1976a; 1976b) in his treatment of vertical cultural transmission and
sibling interaction, but the value of these models was restricted by the assumption
of random mating.

The rediscovery of path analysis in a series of papers by Morton and his cowork-
ers in the early 70’s showed how many of the more realistic notions of how envi-
ronmental effects were transmitted, such as those suggested by Cavalli-Sforza and
Feldman (1981), could be captured much better in path models than they could by
the biometrical approach. However, these early path models assumed that assorta-
tive mating to be based on homogamy for the social determinants of the phenotype.
Although the actual mechanism of assortment is a matter for empirical investiga-
tion, this strong assumption, being entirely different from the mechanisms proposed
by Fisher, precluded an adequate fusion of the Fisher and Wright traditions.

A crucial step was achieved in 1978 and 1979 in a series of publications describ-
ing a more general path model by Cloninger, Rice, and Reich which integrated the
path model for genetic and environmental effects with a Fisherian model for the
consequences of assortment based on phenotype. Since then, the approach of path
analysis has been accepted (even by the descendants of the Birmingham school)
as a first strategy for analyzing family resemblance, and a number of different
nuances of genetic and environmental transmission and mate selection have now
been translated into path models. This does not mean that the method is without
limitations in capturing non-additive effects of genes and environment, but it is
virtually impossible today to conceive of a strategy for the analysis of a complex
human trait that does not include path analysis among the battery of techniques
to be considered.

1.6.5 Development of Statistical Methods

Underlying all of the later developments of the biometrical-genetical, path-analytic
and factor-analytic research programs has been a concern for the statistical prob-
lems of estimation and hypothesis-testing. It is one thing to develop models; to
attach the most efficient and reliable numerical values to the effects specified in
a model, and to decide whether a particular model gives an adequate account of
the empirical data, are completely different. All three traditions that we have
identified as being relevant to our work rely heavily on the statistical concept of
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likelihood, introduced by Ronald Fisher as a basis for developing methods for pa-
rameter estimation and hypothesis testing. The approach of “maximum likelihood”
to estimation in human quantitative genetics was first introduced in a landmark
paper by Jinks and Fulker (1970) in which they first applied the theoretical and
statistical methods of biometrical genetics to human behavioral data. Essential
elements of their understanding were that:

1. complex models for human variation could be simplified under the assumption
of polygenic inheritance

2. the goodness-of-fit of a model should be tested before waxing lyrical about
the substantive importance of parameter estimates

3. the most precise estimates of parameters should be obtained

4. possibilities exist for specifying and analyzing gene action and genotype ×
environment interaction

It was the confluence of these notions in a systematic series of models and methods
of data analysis which is mainly responsible for breaking the intellectual gridlock
into which human behavioral genetics had driven itself by the end of the 1960’s.

Essentially the same statistical concern was found among those who had fol-
lowed the path analytic and factor analytic approaches. Rao, Morton, and Yee
(1974) used an approach close to maximum likelihood for estimation of parameters
in path models for the correlations between relatives, and earlier work on the analy-
sis of covariance structures by Karl Jöreskog had provided some of the first workable
computer algorithms for applying the method of maximum likelihood to param-
eter estimation and hypothesis-testing in factor analysis. Guided by Jöreskog’s
influence, the specification and testing of specific hypotheses about factor rotation
became possible. Subsequently, with the collaboration of Dag Sörbom, the analysis
of covariance structures became elaborated into the flexible model for Linear Struc-
tural Relations (LISREL) and the associated computer algorithms which, over two
decades, have passed through a series of increasingly general versions.

The attempts to bring genetic methods to bear on psychological variables nat-
urally led to a concern for how the psychometrician’s interest in multiple variables
could be reconciled with the geneticist’s methods for separating genetic and envi-
ronmental effects. For example, several investigators (Vandenberg, 1965; Loehlin
and Vandenberg, 1968; Bock and Vandenberg, 1968) in the late 1960’s began to
ask whether the genes or the environment was mainly responsible for the general
ability factor underlying correlated measures of cognitive ability. The approaches
that were suggested, however, were relatively crude generalizations of the classi-
cal methods of univariate twin data analysis which were being superseded by the
biometrical and path analytic methods. There was clearly a need to integrate the
model fitting approach of biometrical genetics with the factor model which was still
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the conceptual framework of much multivariate analysis in psychology. In discus-
sion with the late Owen White, it became clear that Jöreskog’s analysis of covari-
ance structures provided the necessary statistical formulation. In 1977, Martin and
Eaves reanalyzed twin data on Thurstone’s Primary Mental Abilities using their
own FORTRAN program for a multi-group extension of Jöreskog’s model to twin
data and, for the first time, used the model fitting strategy of biometrical genetics
to test hypotheses, however simple, about the genetic and environmental causes
of covariation between multiple variables. The subsequent wide dissemination of a
multi-group version of LISREL (LISREL III) generated a rash of demonstrations
that what Martin and Eaves had achieved somewhat laboriously with their own
program could be done more easily with LISREL (Boomsma and Molenaar, 1986,
Cantor, 1983; Fulker et al., 1983; Martin et al., 1982; McArdle et al, 1980). After
teaching several workshops and applying LISREL to everyday research problems
in the analysis of twin and family data, we discovered that it too had its limita-
tions and was quite cumbersome to use in several applications. This led to the
development of Mx, which began in 1990 and which has continued throughout this
decade. Initially devised as a combination of a matrix algebra interpreter and a
numerical optimization package, it has simplified the specification of both simple
and complex genetic models tremendously (Neale et al., 2003.

In the 1980’s there were many significant new departures in the specification
of multivariate genetic models for family resemblance. The main emphasis was
on extending the path models, such as those of Cloninger et al., (1979a,b) to the
multivariate case (Neale & Fulker, 1984; Vogler, 1985). Much of this work is
described clearly and in detail by Fulker (1988) . Many of the models described
could not be implemented with the methods readily available at the time of writing
of the first edition this book. Furthermore, several of the more difficult models were
not addressed in the first edition because of the lack of suitable data. Since that
time many of the problems of specifying complex models have been solved using
Mx, and this edition presents some of these developments. In addition, several
research groups have now gathered data on samples large and diverse enough to
exploit most of the theoretical developments now in hand.

The collection of large volumes of data in a rich variety of twin studies from
around the world in the last ten years, coupled with the rocketing growth in the
power of micro-computers, offer an unprecedented opportunity. What were once
ground-breaking methods, available to those few who knew enough about statistics
and computers to write their own programs, can now be placed in the hands of
teachers and researchers alike.



34 CHAPTER 1. THE SCOPE OF GENETIC ANALYSES



Chapter 2

Data Preparation

2.1 Introduction

By definition, the primary focus of the study of human individual differences is
on variation. As we have seen, the covariation between family members can be
especially informative about the causes of variation, so we now turn to the statistical
techniques used to measure both variation within and covariation between family
members. We start by reviewing the calculation of variances and covariances by
hand, and then illustrate how one may use pograms such as SAS, SPSS and PRELIS
(SAS, 1988; SPSS, 1988; Jöreskog and Sörbom, 1988) to compute these summary
statistics in a convenient form for use with Mx. Our initial treatment assumes that
we have well-behaved, normally-distributed variables for analysis (see Section 2.2).
However, almost all studies involve some measures that are certainly not normal
because they consist of a few ordered categories, which we call ordinal scales. In
Section 2.3, we deal with the summary of these cruder forms of measurement, and
discuss the concepts of degrees of freedom and goodness-of-fit that arise in this
context.

During this decade advances in computer software and hardware have made
the direct analysis of raw data quite practical. As we shall see, this method has
some advantages over the analysis of summary statistics, especially when there are
missing data. Section 2.4 describes the preparation of raw data for analysis with
Mx.

2.2 Continuous Data Analysis

Biometrical analyses of twin data often make use of summary statistics that re-
flect differences, or variability, between and within members of twin pairs. Some
early studies used mean squares and products, derived from an analysis of variance

35
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(Eaves et al., 1977; Martin and Eaves, 1977; Fulker et al., 1983; Boomsma and
Molenaar, 1987; Molenaar and Boomsma, 1987), but work over the past 15 years
has embraced variance-covariance matrices as the summary statistics of choice.
This approach, often called covariance structure analysis, provides greater flexi-
bility in the treatment of some of the processes underlying individual differences,
such as genotype × sex or genotype × environment interaction. In addition, vari-
ances and covariances are a more practical data summary for data that include
the relatives of twins, such as parents or spouses (Heath et al., 1985). Because
of the greater generality afforded by variances and covariances, we focus on these
quantities rather than mean squares.

2.2.1 Calculating Summary Statistics by Hand

The variances and covariances used in twin analyses often are computed using a
statistical package such as SPSS (SPSS, 1988) or SAS (SAS, 1988), or by PRELIS
(Jöreskog and Sörbom, 1988). Nevertheless, it is useful to examine how they are
calculated in order to ensure a comprehensive understanding of one’s observed
data. In this section we describe the calculation of means, variances, covariances,
and correlations.

Some simulated measurements from 16 MZ and 16 DZ twin pairs are presented
in Table 2.1. The observed values in the columns labelled Twin 1 and Twin 2 have
been selected to illustrate some elementary principles of variation in twins1.

In order to obtain the summary statistics of variances and covariances for ge-
netic analysis, it is first necessary to compute the average value for a set of measure-
ments, called the mean. The mean is typically denoted by a bar over the variable
name for a group of observations, for example X or Twin1 or Twin2. The formula
for calculation of the mean is:

X =
X1 + X2 + · · ·+ Xn

n

=

n
∑

i=1

Xi

n
, (2.1)

in which Xi represents the ith observation and n is the total number of observations.
In the twin data of Table 2.1, the mean of the measurements on Twin 1 of the MZ
pairs is

Twin1 =
3 + 3 + 2 + · · ·+ 2 + 2 + 1

16
= 32/16

= 2.0
1These data are for illustration only; they would normally be treated as ordinal, not continuous,

and would be summarized differently, as described in Section 2.3. Note also that we do not need
to have equal numbers of pairs in the two groups.
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Table 2.1: Simulated measurements from MZ and DZ Twin Pairs.

MZ DZ
Twin 1 Twin 2 Twin 1 Twin 2

3 2 0 1
3 3 2 3
2 1 1 2
1 2 4 3
0 0 3 1
2 2 2 2
2 2 2 2
3 2 1 3
3 3 3 4
2 3 1 0
1 1 1 1
1 1 2 1
4 4 3 3
2 3 3 2
2 1 2 2
1 2 2 2

The mean for the second MZ twin (Twin2) also is 2.0, as are the means for both
DZ twins.

The variance of the observations represents a measure of dispersion around the
mean; that is, how much, on average, observations differ from the mean. The
variance formula for a sample of measurements, often represented as s2 or VMZ or
VDZ , is

s2 =
(X1 −X)2 + (X2 −X)2 + · · ·+ (Xn −X)2

n− 1

=

n
∑

i=1

(Xi −X)2

n− 1
(2.2)

We note two things: first, the difference between each observation and the mean
is squared. In principle, absolute differences from the mean could be used as a
measure of variation, but absolute differences have a greater variance than squared
differences (Fisher, 1920), and are therefore less efficient for use as a summary
statistic. Likewise, higher powers (e.g.

∑n

i=1(Xi−X)4) also have greater variance.
In fact, Fisher showed that the square of the difference is the most informative
measure of variance, i.e., it is a sufficient statistic. Second, the sum of the squared
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deviations is divided by n− 1 rather than n. The denominator is n− 1 in order to
compensate for an underestimate in the sample variance which would be obtained
if s2 were divided by n. (This arises from the fact that we have already used one
parameter — the mean — to describe the data; see Mood & Graybill, 1963 for a
discussion of bias in sample variance). Again using the twin data in Table 2.1 as
an example, the variance of MZ Twin 1 is

VMZT1 =
(3− 2)2 + (3− 2)2 + · · ·+ (2− 2)2 + (1− 2)2

15

=
1 + 1 + 0 + · · ·+ 0 + 0 + 1

15
= 16/15

The variances of data from the second MZ twin, DZ Twin 1, and DZ Twin 2 also
equal 16/15.

Covariances are computationally similar to variances, but represent mean devia-
tions which are shared by two sets of observations. In the twin example, covariances
are useful because they indicate the extent to which deviations from the mean by
Twin 1 are similar to the second twin’s deviations from the mean. Thus, the co-
variance between observations of Twin 1 and Twin 2 represents a scale-dependent
measure of twin similarity. Covariances are often denoted by sx,y or CovMZ or
CovDZ , and are calculated as

sx,y =
(X1 −X)(Y1 − Y ) + (X2 −X)(Y2 − Y ) + · · ·+ (Xn −X)(Yn − Y )

n− 1

=

n
∑

i=1

(Xi −X)(Yi − Y )

n− 1
(2.3)

Note that the variance formula shown in Eq. 2.2 is just a special case of the covari-
ance when Yi = Xi. In other words, the variance is simply the covariance between
a variable and itself.

For the twin data in Table 2.1, the covariance between MZ twins is

CovMZ =
(3− 2)(2− 2) + (3− 2)(3− 2) + · · ·+ (1− 2)(2− 2)

15

=
0 + 1 + 0 + 0 + · · ·+ 4 + 0 + 0 + 0

15
= 12/15

The covariance between DZ pairs may be calculated similarly to give 8/15.
The correlation coefficient is closely related to the covariance between two sets

of observations. Correlations may be interpreted in a similar manner as covari-
ances, but are rescaled to give a lower bound of -1.0 and an upper bound of 1.0.
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The correlation coefficient, r, may be calculated using the covariance between two
measures and the square root of the variance (the standard deviation) of each mea-
sure:

r =
Covx,y
√

VxVy

(2.4)

For the simulated MZ twin data, the correlation between twins is

rMZ =
12/15

√

(16/15)(16/15)

= 12/16 = .75,

and the DZ twin correlation is

rDZ =
8/15

√

(16/15)(16/15)

= 8/16 = .50

Although variances and covariances typically define the observed information
for biometrical analyses of twin data, correlations are useful for comparing resem-
blances between twins as a function of genetic relatedness. In the simulated twin
data, the MZ twin correlation (r = .75) is greater than that of the DZ twins
(r = .50). This greater similarity of MZ twins may be due to several sources of
variation (discussed in subsequent chapters), but at the least is suggestive of a
heritable basis for the trait, as increased MZ similarity could result from the fact
that MZ twins are genetically identical, whereas DZ twins share only 1/2 of their
genes on average.

2.2.2 Using SAS to Summarize Data

The statistical packages SAS and SPSS are probably the most widely-used ways
to store data collected in twin studies. In some cases relational databases such as
Oracle, DB2, Paradox and Ingres may be used to store data collected from relatives
because these offer powerful ways to maintain data in a consistent fashion according
to normal form. Normal form is a way of storing data that avoids duplication of
information; this is very important to avoid inconsistencies in the data. The general
strategy may then be to use SAS or SPSS to extract the data from the database,
to do preliminary data cleaning, to compute scales scores and transform them as
necessary, and finally to dump the data in a format suitable for analysis with Mx.
Here we discuss the advantages and disadvantages of this approach, and illustrate
it with sample SAS scripts.

By creating intermediate files for Mx to read, we are violating an elementary
database principle to keep data in one place and one place only. This principle
arises from the observation that almost as soon as there are two copies of data
they become inconsistent and the updating chore requires more than double the
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effort as both sets must be updated and inconsistencies must be resolved. For that
reason, it is best to consider the database as a master and to make updates to
that dataset and that dataset only. Data analysis then involves creation of the
intermediate data files using the same SAS or SPSS script. There are some very
important advantages to this procedure. First, we know that the intermediate,
file is not going to be updated by anyone else during our analysis — especially
important in a multi-user environment. We want the comparison of models to be
conducted on the same data, not on data that have changed from one analysis
to the next! Second, the computation time taken to extract the data from the
database may be non-trivial and it does not have to be repeated for every analysis.

SAS scripts to compute covariance matrices

This is not the place to describe in detail the workings of SAS; the thousands of
pages in the manuals are quite adequate! All we aim to do here is to get the data in
and get the covariance matrix and means out. SAS has a useful procedure, PROC
CORR, which will print the required statistics, which can be cut and pasted into a
file for Mx use. However, as is commonly the case with computer tasks, investing
a little extra initial work on automation will save labor in the long run, and will
be more error-proof.

It often happens that data are stored at the individual subject level rather
than at the family level. Typically, each subject has a family number and an ‘id’
number to mark their position in the family (first or second twin). A necessary
step to analyse the covariance between relatives is to ‘glue’ the data from family
members together so that the family becomes the unit of measurement and co-
variances between family members may be computed. In SAS this is a relatively
simple operation although care must be taken to supply labels for the variables
that do not exceed the SAS maximum length of eight characters. The SAS script
in Appendix ?? shows the case for twin data, and goes beyond the initial require-
ment by taking the sex of the twins into account. Five groups are created, being
MZ male, DZ male, MZ female, DZ female and opposite DZ. The covariances
are computed and output to .dat files which contain the number of observations
(Nobservations), the number of input variables (NInput), labels (Labels), and
the covariance matrices (CMatrix). These .dat files may be used directly in Mx
in a diagram, or in a script using the #Include statement.

Note that the assignment of the twins as 1 or 2 is usually arbitrary for the same
sex groups, but in the opposite sex group the male (or female) twin is always first,
and the female (or male) twin second. Strictly speaking, when there is no inherent
order to the observations the variance-covariance matrix is not the best summary
statistic to use. The intraclass correlation is the most appropriate summary for
observations that do not have any order; it uses a joint estimate of the variance
of twin 1 and twin 2, and partitions this into within pairs and between pairs com-
ponents. However, the intraclass correlation is more difficult to generalize to the
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multivariate and multiple classes of relatives situations so we stay with covariance
matrices here. Sometimes data on birth order or some other characteristic may be
used to distinguish more formally between twin 1 and twin 2 within a pair, thereby
giving some rationality to the ordering and use of covariance matrices. Should such
an approach be taken, it is necessary to split the DZ opposite sex twin group into
two groups according to whether the first twin is female or male.

Appendix ?? shows a SAS macro for creating an Mx .dat file, which fully
describes the data: the number of variables, the sample size, the means and covari-
ances, and optionally labels for each of hte variables. Comments, beginning with !
indicate the date the file was created. The resulting .dat file might look like this:

!

! Mx dat file created by SAS on 03FEB1998

!

Data NInputvars=4 NObservations=844

CMatrix Full

1.0086 -0.0148 -0.0317 -0.0443

-0.0148 1.0169 -0.0062 0.0068

-0.0317 -0.0062 0.9342 0.0596

-0.0443 0.0068 0.0596 0.9697

Means

0.0139 -0.0729 0.0722 0.0159

Labels T1F1 T1F2 T2F1 T2F2

As will be seen in later chapters, this file is ready for immediate use for drawing
path diagrams in the Mx GUI or in an Mx script with the #include command.

2.2.3 Using PRELIS to Summarize Continuous Data

PRELIS was developped by Karl Jöreskog and Dag Sörbom as a preprocessor for
LISREL(Jöreskog and Sörbom, 1988). Here we apply PRELIS to the simulated
MZ twin data, and briefly discuss some of the further features of the software. In
practice, data on MZ and DZ twins may be placed in separate files, often with one
or more lines of data per twin pair2. It is easy to use PRELIS to generate summary
statistics such as means and covariances for structural equation model fitting.

Suppose that the MZ twin data in Table 2.1 are stored in a file called MZ.RAW

in the following way:

3 2

3 3

. .

. .

2It is possible to use data files that contain both types of twins and some code to discriminate
between them, but it is less efficient.
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. .

2 1

1 2

We can use “free format” to read these data. Free format means that there is
at least one space or end-of-line character between consecutive data items. These
data could be entered using any simple text editor. If a wordprocessor such as
Wordperfect or Microsoft Word were used, it would be necessary to save the file
as a DOS or ASCII text file. Next, we would prepare an ASCII file containing the
PRELIS commands to read these data and compute the means and covariances.
We refer to files containing program commands as ‘scripts’; the PRELIS script in
this case might look like this:

Simple prelis example to compute MZ covariances

DA NI=2 NO=0

LA

Twin1 Twin2

COntinuous Twin1 Twin2

RAw FIle=MZ.RAW

OU SM=MZ.COV MA=CM

The first line is simply a title. PRELIS will treat all lines as part of the title until
a line beginning with DA is encountered. The DAta line is used to specify basic
features of the input (raw) data such as the number of input variables (NI) and the
number of observations (NO). Here we have specified the number of observations as
zero (NO=0), which asks PRELIS to count the number of cases for us. The next two
lines of the script supply labels (LA) for the variables; these are optional but highly
recommended when more than a few variables are to be read. Next, we define
the variables Twin1 and Twin2 as continuous. By default, PRELIS 2 will treat
any variable with less than 15 categories as ordinal. Although this is a reasonable
statistical approach, it is not what we want for the purposes of this example. The
next line in the script (beginning RAw) tells PRELIS where to find the data, and
the OUtput line signifies the end of the script, and requests the covariance matrices
(MA=CM) to be saved in the file MZ.COV. This output file is created by PRELIS —
it is also ASCII format and looks like this:

(6D13.6)

.106667D+01 .800000D+00 .106667D+01

The first line of the file contains a FORTRAN format for reading the data. The
reader is referred to almost any text on FORTRAN, including User’s Guides, for
a detailed description of formats. The format used here is D format, for double
precision. The 3 characters after the D give the power of 10 by which the printed
number should be multiplied, so our .106667D+01 is really .106667×101 = 1.06667.
This number is part of the lower triangle of the covariance matrix. Since covariance
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matrices are always symmetric, only the lower triangle is needed. The file may in
turn be read by Mx for the purposes of structural equation model fitting using
syntax such as

CMatrix File=MZ.COV

within an Mx script — Mx by default expects only the lower triangle of covariance
matrices to be supplied.

Suppose that, instead of just two variables, we had a data file with 20 variables
per subject, with two lines for a twin pair. Also suppose that one of the variables
identifies the zygosity of the pair, we wish to select only those pairs where zygosity
is 1, and we only want the covariance of four of the variables. We could read these
data into PRELIS using a FORTRAN format statement explicitly given in the
PRELIS script. The script might look like this:

PRELIS script to select MZ’s and compute covariances of 4 variables

DA NI=40 NO=0

LA

Zygosity Twin1P1 Twin1P2 Twin2P1 Twin2P2

RA FIle=MZ.RAW FO

(3X,F1.0,2x,F5.0,12X,F5.0/6X,F5.0,12X,F5.0)

SD Zygosity=1

OU SM=MZ.COV MA=CM

Note the FOrtran keyword at the end of the raw data line, indicating that the next
line contains a Fortran format statement. The SD command selects cases where
zygosity is 1, and deletes zygosity from the list of variables to be analyzed. Note
that the FORTRAN format implicitly skips all the irrelevant variables, retaining
only five (as specified by the F1.0 and F5.0 fields). Although we could have started
with a more complete list of variables, read them in with an appropriate FORMAT,
and used the PRELIS command SD to delete those we did not want, it is more
efficient to save the program the trouble of reading these data by adjusting our
NI and format statement. On the other hand, if the data file is not large or if a
powerful computer is available, it may be better to use SD to save user time spent
modifying the script.

2.3 Ordinal Data Analysis

Suppose that instead of making measurements on a continuous scale, we are able
to discriminate only a few ordered categories with our measuring instrument. This
situation is commonly encountered when assessing the presence or absence of dis-
ease, or responses to a single item on a questionnaire. Although it is possible to
calculate a covariance matrix from these data, the correlations usually will be bi-
ased. The degree of bias depends on factors such as the number of categories and
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Figure 2.1: Univariate normal distribution with thresholds distinguishing ordered
response categories.

the number of observations in each category, and usually results in an underesti-
mate of the true liability correlation in the population. In this section we describe
methods for summarizing ordinal data.

2.3.1 Univariate Normal Distribution of Liability

One approach to the analysis of ordinal data is to assume that the ordered cate-
gories reflect imprecise measurement of an underlying normal distribution of liabil-
ity. A second assumption is that the liability distribution has one or more threshold
values that discriminate between the categories (see Figure 2.1). This model has
been used widely in genetic applications (Falconer, 1960; Neale et al., 1986; Neale,
1988; Heath et al 1989a). As long as we consider one variable at a time, it is always
possible to place the thresholds so that the proportion of the distribution lying be-
tween adjacent thresholds exactly matches the observed proportion of the sample
that is found in each category. For example, suppose we had an item with four
possible responses: ‘none’, ‘a little’, ‘quite a lot’, and ‘a great deal’. In a sample of
200 subjects, 20 say ‘none’, 80 say ‘a little’, 98 say ‘quite a lot’ and 2 say ‘a great
deal’. If our assumed underlying normal distribution has mean 0 and variance 1,
then placing thresholds at z-values of -1.282, 0.0 and 2.326 would partition the
normal distribution as required. In mathematical terms, if there are p categories,
p − 1 thresholds are needed to divide the distribution. The expected proportion



2.3. ORDINAL DATA ANALYSIS 45

lying in category i is
∫ ti

ti−1

φ(x) dx

where t0 = −∞, tp =∞, and φ(x) is the unit variance normal probability density
function (pdf), given by

φ(x) =
e−.5x2

√
2π

This formulation is really a parametric model for the distribution of ordinal re-
sponses.

2.3.2 Bivariate Normal Distribution of Liability

When we have only one variable, there is no goodness-of-fit test for the liability
model because it always gives a perfect fit. However, this is not necessarily so when
we move to the multivariate case. Consider first, the example where we have two
variables, each measured as a simple ‘yes/no’ binary response. Data collected from
a sample of subjects could be summarized as a contingency table:

Item 1
Item 2 No Yes
Yes 13 55
No 32 15

It is at this point that we encounter the crucial statistical concept of degrees of
freedom (df). Fortunately, though important, calculating the number of df for
a model is usually very easy; it is simply the difference between the number of
observed statistics and the number of parameters in the model. In the present case
we have a 2 × 2 contingency table in which there are four observed frequencies.
However, if we take the total sample size as given and work with the proportion
of the sample observed in each cell, we only need three proportions to describe
the table completely, because the total of the cell proportions is 1 and the last
cell proportion always can be obtained by subtraction. Thus in general for a table
with r rows and c columns we can describe the data as rc frequencies or as rc− 1
proportions and the total sample size. The next question is, how many parameters
does our model contain?

The natural extension of the univariate normal liability model described above
is to assume that there is a continuous, bivariate normal distribution underlying the
distribution of our observations. Given this model, we can compute the expected
proportions for the four cells of the contingency table3 The model is illustrated
graphically as contour and 3-D plots in Figure 2.2. The figures contrast the uncor-
related case (r = 0) with a high correlation in liability (r = .9) and are dramatically

3Mathematically these expected proportions can be written as double integrals.
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Figure 2.2: Contour and 3-D plots of the bivariate normal distribution with
thresholds distinguishing two response categories. Contour plot in top left shows
zero correlation in liability and plot in bottom left shows correlation of .9; the
panels on the right shows the same data as 3-D plots.
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similar to the scatterplots of data from unrelated persons and from MZ twins, shown
in Figures 1.2 and 1.4 on pages 6 and 9. By adjusting the correlation in liability
and the two thresholds, the model can predict any combination of proportions in
the four cells. Because we use 3 parameters to predict the 3 observed proportions,
there are no degrees of freedom to test the goodness of fit of the model. This can
be seen when we consider an arbitrary non-normal distribution created by mixing
two normal distributions, one with r = +.9 and the second with r = −.9, as shown
in Figure 2.3. With thresholds imposed as shown, equal proportions are expected
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Figure 2.3: Contour plots of a bivariate normal distribution with correlation .9
(top); and of a mixture of bivariate normal distributions (bottom), one with .9
correlation and the other with -.9 correlation. One threshold in each dimension is
shown.

in each cell, corresponding to a zero correlation and zero thresholds, not an un-
reasonable result but with just two categories we have no knowledge at all that our
distribution is such a bizarre non-normal example. The case of a 2×2 contingency
table is really a ‘worst case scenario’ for no degrees of freedom associated with a
model, since absolutely any pattern of observed frequencies could be accounted for
with the liability model. Effectively, all the model does is to transform the data;
it cannot be falsified.
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2.3.3 Testing the Normal Distribution Assumption

The problem of having no degrees of freedom to test the goodness of fit of the
bivariate normal distribution to two binary variables is solved when we have at
least three categories in one variable and at least two in the other. To illustrate
this point, compare the contour plots shown in Figure 2.4 in which two thresholds
have been specified for the two variables. With the bivariate normal distribution,
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Figure 2.4: Contour plots of a bivariate normal distribution with correlation .9
(top) and a mixture of bivariate normal distributions, one with .9 correlation and
the other with -.9 correlation (bottom). Two thresholds in each dimension are
shown.

there is a very strong pattern imposed on the relative magnitudes of the cells on
the diagonal and elsewhere. There is a similar set of constraints with the mixture
of normals, but quite different predictions are made about the off-diagonal cells; all
four corner cells would have an appreciable frequency given a sufficient sample size,
and probably in excess of that in each of the four cells in the middle of each side
[e.g., (1,2)]. The bivariate normal distribution could never be adjusted to perfectly
predict the cell proportions obtained from the mixture of distributions.

This intuitive idea of opportunities for failure translates directly into the concept
of degrees of freedom. When we use a bivariate normal liability model to predict
the proportions in a contingency table with r rows and c columns, we use r − 1
thresholds for the rows, c − 1 thresholds for the columns, and one parameter for
the correlation in liability, giving r + c− 1 in total. The table itself contains rc− 1
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proportions, neglecting the total sample size as above. Therefore we have degrees
of freedom equal to:

df = rc− 1− (r + c− 1) (2.5)

df = rc− r − c (2.6)

The discrepancy between the frequencies predicted by the model and those actually
observed in the data can be measured using the χ2 statistic given by:

χ2 =

r
∑

i=1

c
∑

j=1

(Oij −Eij)
2

Eij

Given a large enough sample, the model’s failure to predict the observed data would
be reflected in a significant χ2 for the goodness of fit.

In principle, models could be fitted by maximum likelihood directly to con-
tingency tables, employing the observed and expected cell proportions. This ap-
proach is general and flexible, especially for the multigroup case — the programs
LISCOMP (Muthén, 1987) and Mx (Neale, 1991) use the method — but it is
currently limited by computational considerations. When we move from two vari-
ables to larger examples involving many variables, integration of the multivariate
normal distribution (which has to be done numerically) becomes extremely time-
consuming, perhaps increasing by a factor of ten or so for each additional variable.

An alternative approach to this problem is to use PRELIS 2 to compute each
correlation in a pairwise fashion, and to compute a weight matrix. The weight
matrix is an estimate of the variances and covariances of the correlations. The
variances of the correlations certainly have some intuitive appeal, being a measure
of how precisely each correlation is estimated. However, the idea of a correlation
correlating with another correlation may seem strange to a newcomer to the field.
Yet this covariation between correlations is precisely what we need in order to
represent how much additional information the second correlation supplies over
and above that provided by the first correlation. Armed with these two types of
summary statistics — the correlation matrix and the covariances of the correlations,
we may fit models using a structural equation modeling package such as Mx or
LISREL, and make statistical inferences from the goodness of fit of the model.

It is also possible to use the bivariate normal liability distribution to infer the
patterns of statistics that would be observed if ordinal and continuous variables
were correlated. Essentially, there are specific predictions made about the expected
mean and variance of the continuous variable in each of the categories of the ordinal
variable. For example, the continuous variable means are predicted to increase
monotonically across the categories if there is a correlation between the liabilities.
An observed pattern of a high mean in category 1, low in category 2 and high again
in category 3 would not be consistent with the model. The number of parameters
used to describe this model for an ordinal variable with r categories is r + 2,
since we use r − 1 for the thresholds, one each for the mean and variance of the
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continuous variable, and one for the covariance between the two variables. The
observed statistics involved are the proportions in the cells (less one because the
final proportion may be obtained by subtraction from 1) and the mean and variance
of the continuous variable in each category. Therefore we have:

dfoc = (r − 1) + 2r − (r + 2) (2.7)

= 2r − 3

So the number of degrees of freedom for such a test is 2r−3 where r is the number
of categories.

2.3.4 Terminology for Types of Correlation

One of the difficulties encountered by the newcomer to statistics is the use of a wide
variety of terms for correlation coefficients. There are many measures of association
between variables; here we confine ourselves to the parametric statistics computed
by normal theory. These statistics correspond most naturally to our genetic theory,
in which we assume that a large number of independent genetic and environmental
factors give rise to variation — “multifactorial inheritance”4.

Table 2.2 shows the name given to the correlation coefficient calculated under
normal distribution theory, according to whether each variable has: two categories
(dichotomous); several categories (polychotomous); or an infinite number of cat-
egories (continuous). If both variables are dichotomous, then the correlation is
called a tetrachoric correlation as long as it is calculated using the bivariate nor-
mal integration approach described in Section 2.3 above. If we simply use the
Pearson product moment formula (described in Section 2.2.1 above) then we have
computed a phi-coefficient which will probably underestimate the population cor-
relation in liability. Because the tetrachoric and polychoric are calculated with the
same method, some authors refer to the tetrachoric as a polychoric, and the same
is true of the use of polyserial instead of biserial. As we shall see, the theory behind
all these statistics is essentially the same.

2.3.5 Using PRELIS to Summarize Ordinal Data

Here we give a PRELIS script to read only two from a long list of psychiatric
diagnoses, coded as 1 or 0 in these data.

Diagnoses and age MZ twins: VARIABLES ARE:

DEPLN4 DEPLN2 DEPLN1 DEPLB4 DEPLB2 DEPLB1 GADLN6 GADLN1

GADLB6 GADLB1 GAD88B GAD88N PANN PANB PHON PHOB ETOHN

4In fact quite a small number of genetic factors may give rise to a distribution which is for
almost all practical purposes indistinguishable from a normal distribution (Kendler and Kidd,
1986).
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Table 2.2: Classification of correlations according to their observed distribution.

Two Three or more
Measurement Categories Categories Continuous
Two Tetrachoric Polychoric Biserial
Three or more Polychoric Polychoric Polyserial
Continuous Biserial Polyserial Product Moment

ETOHB ANON ANOB BULN BULB DEPLN4T2 DEPLN2T2 DEPLN1T2

DEPLB4T2 DEPLB2T2 DEPLB1T2 GADLN6T2 GADLN1T2 GADLB6T2

GADLB1T2 GAD88BT2 GAD88NT2 PANNT2 PANBT2 PHONT2 PHOBT2

ETOHNT2 ETOHBT2 ANONT2 ANOBT2 BULNT2 BULBT2/

FORMAT IN FULL IS:

(2X, F8.2,F1.0, 43(1X,F1.0)

Diagnoses and age MZ twins

DA NI=3 NO=0

LA; DOB DEPLN4 DEPLN4T2

RA FI=DIAGMZ.DAT FO

(2X, F8.2,F1.0, 43x,F1.0)

OR DEPLN4-DEPLN4T2

OU MA=PM SM=DEPLN4MZ.COR SA=DEPLN4MZ.ASY PA

Diagnoses and age DZ twins

DA NI=3 NO=0

LA; DOB DEPLN4 DEPLN4T2

RA FI=DIAGDZ.DAT FO

(2X, F8.2,F1.0, 43x,F1.0)

OR DEPLN4-DEPLN4T2

OU MA=PM SM=DEPLN4DZ.COR SA=DEPLN4DZ.ASY PA

Note that again we have used the FORTRAN format to control which variables
are read. One key difference from the continuous case is the use of MA=PM, which
requests calculation of a matrix of polychoric, polyserial and product moment cor-
relations. The program uses product moment correlations when both variables
are continuous, a polyserial (or biserial) when one is ordinal and the other con-
tinuous, and a polychoric (or tetrachoric) when both are ordinal. Running the
script produces four output files DEPLN4MZ.COR, DEPLN4MZ.ASY, DEPLN4DZ.COR and
DEPLN4DZ.ASYwhich may be read directly into Mx using PMatrix and ACovariance

commands. Notice that we have ‘stacked’ two scripts in one file, one to read and
compute statistics from the MZ data file (FI=DIAGMZ.DAT) and a second to do the
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same thing for the DZ data. Also notice that the SM command is used to output
the correlation matrix and SA is to save the asymptotic weight matrix. In fact,
PRELIS saves the weight matrix multiplied by the sample size which is what Mx
expects to receive when the ACov command is used. The PA command requests that
the asymptotic weight matrix itself be printed in the output. However, PRELIS
saves this file in a binary format which must be converted to ASCII for use with
Mx. The utility bin2asc, supplied with PRELIS, can be used for this purpose.

In the PRELIS output, there are a number of summary statistics for contin-
uous variables (means and standard deviations, and histograms) and frequency
distributions with bar graphs, for the ordinal variables. To provide the user with
some guide to the origin of statistics describing the covariance between variables,
PRELIS prints means and standard deviations of continuous variables separately
for each category of each pair of ordinal variables, and contingency tables between
each ordinal variables. Towards the end of the output there is a table printed with
the following format:

TEST OF MODEL

CORRELATION CHI-SQU. D.F. P-VALUE

___________ ________ ____ _______

DEPLN4 VS. DOB -.233 (PS) 5.067 1 .024

DEPLN4T2 VS. DOB .010 (PS) 6.703 1 .010

There are two quite different chi-squared tests printed on the output. The first,
under TEST OF MODEL is a test of the goodness of fit of the bivariate normal dis-
tribution model to the data. In the case of two ordinal variables with r and c
categories in each, there are rc − r − c df as described in expression 2.5 above.
Likewise there will be 2r − 3 df for the continuous by ordinal statistics, as de-
scribed in expression 2.7. If the p-value reported by PRELIS is low (e.g. < .05),
then concern arises about whether the bivariate normal distribution model is ap-
propriate for these data. For a polyserial correlation (correlations between ordinal
and continuous variables), it may simply be that the continuous variable is not
normally distributed, or that the association between the variables does not follow
a bivariate normal distribution. For polychoric correlations, there is no univari-
ate test of normality involved, so failure of the model would imply that the latent
liability distributions do not follow a bivariate normal. Remember however that
significance levels for these tests are not often the reported p-value, because we are
performing multiple tests. If the tests were independent, then with n such tests the
α significance level would not be the reported p-value but 1− (1− p)n. Therefore
concern would arise only if p was very small and a large number of tests had been
performed. In our case, the tests are not independent because, for example, the
correlation of A and B is not independent of the correlation of A and C, so the
attenuation of the α level of significance is not so extreme as the 1−(1−p)n formula
predicts. The amount of attenuation will be application specific, but would often
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be closer to 1− (1− p)n than simply to p.
The second chi-squared statistic printed by PRELIS (not shown in the above

sample of output) tests whether the correlation is significantly different from zero.
A similar result should be obtained if the summary statistics are supplied to Mx,
and a chi-squared difference test is performed between a model which allows the
correlation to be a free parameter, and one in which the correlation is set to zero.

The use of weight matrices as input to Mx is described elsewhere in this book.
Here we have described the generation of a weight matrix for a correlation matrix,
but it is also possible to use weight matrices for covariance matrices5. Both meth-
ods are part of the asymptotically distribution free (ADF) methods pioneered by
Browne (1984). It is not yet clear whether maximum likelihood or ADF methods
are generally better for coping with data that are not multinormally distributed;
further simulation studies are required. The ADF methods require more numerical
effort and become cumbersome to use with large numbers of variables. This is so
because the size of the weight matrix rapidly increases with number of variables.
The number of elements on and below the diagonal of a matrix is a triangular
number given by k(k + 1)/2. The number of elements in the weight matrix is a
triangular number of a triangular number, or

k4 + 2k3 + 3k2 + 2k

8

In the case of correlation matrices, the number of elements is somewhat less, but
still increases as a quadratic function:

k4 − 2k3 + 3k2 − 2k

8

As a compromise when the number of variables is large, Jöreskog and Sörbom
suggest the use of diagonal weights, i.e. just the variances of the correlations and
not their covariances. However, tests of significance are likely to be inaccurate with
this method and estimates of anything other than the full or true model would be
biased.

2.4 Preparing Raw Data

Almost by definition, raw data does not need to be prepared for analysis. However,
computer programs rarely communicate with each other without some form of
translation of data format, and getting data out of datasets maintained in popular
statistical packages such as SAS or SPSS and into Mx is no exception. In this
section we briefly describe SAS scripts that output data into a file suitable for Mx
to read.

5The number of elements in a weight matrix for a covariance matrix is greater than that for a
correlation matrix. For this reason, it is necessary to specify Matrix=PMatrix on the Data line of
a Mx job that is to read a weight matrix.
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Mx has two main ways to read individual scores. First, and most straightfor-
ward, is ‘rectangular’ format, with one case per line, with variables separated by
one or more spaces. A case is a collection of possibly correlated observations, such
as several variables assessed on an individual, or on both members of a twin pair,
or on a whole family. Because family members correlate, it is necessary to consider
the whole family as a ‘case’. Separate cases are assumed to be uncorrelated, which
is important for statistical purposes. Certain new methods available in programs
such as Sudaan, SAS proc mixed, and Stata make it possible to account for some
correlation between different cases, usually when data are grouped, e.g., subjects in
the same school. These methods can prove useful for running standard statistical
analyses at the individual level (multiple regression, survival analysis) by taking
into account the covariation between family members. However, they do not help
with the preparation of data for modeling genetic and environmental factors which
is the primary objective here.

The default code that Mx recognises as indicating missing data is a dot ‘.’
which is the same as SAS. A sample SAS script to produce rectangular data is
shown in Appendix ??. Mx’s missing command can be used to declare a different
string as the missing value, and it is important to note that this is a string and not
a numeric value, as 1.0 and 1.00 will be considered to be different.

The second main format for raw data that Mx accepts is variable length, or ‘vl’.

2.5 Summary

We have described in detail the statistical operations involved in, and the use of
SAS and PRELIS for, the measurement of variation and covariation. When we
have continuous measures, the calculations are quite simple and can be done by
hand, but for ordinal data the process is more complex. We obtain estimates of
polychoric and polyserial correlations by using software that numerically integrates
the bivariate normal distribution. In the process, we are effectively fitting a model
of continuous multivariate normal liability with abrupt thresholds to the contin-
gency table. This model cannot be rejected when there are only two categories for
each measure, but may fail as the number of cells in the table increases.

While ordinal data are far more common than continuous measures in the be-
havioral sciences, we note that as the number of categories gets large (e.g., more
than 15) the difference between the continuous and the ordinal treatments gets
small. In general, the researcher should try to obtain continuous measures if pos-
sible, since considerable statistical power can be lost when only a few response
categories are used, as we shall show in Chapter 7.



Chapter 3

Biometrical Genetics

3.1 Introduction and Description of Terminology

The principles of biometrical and quantitative genetics lie at the heart of virtually
all of the statistical models examined in this book. Thus, an understanding of
biometrical genetics is fundamental to our statistical approach to twin and fam-
ily data. Biometrical models relate the “latent,” or unobserved, variables of our
structural models to the functional effects of genes. It is these effects, based on the
principles of Mendelian genetics, that give our structural models a degree of valid-
ity quite unusual in the social sciences. The purpose of this chapter is to provide a
brief introduction to biometrical models. Extensive treatments of the subject have
been provided by Mather and Jinks (1982) and Falconer (1990). Here we employ
the notation of Mather and Jinks.

Before we begin our discussion of biometrical genetics, we must describe some
of the terms that are encountered frequently in biometrical and classical genetic
discourse. For the present purposes, we use the term gene in reference to a “unit
factor of inheritance” that influences an observable trait or traits, following the ear-
lier usage by Fuller and Thompson (1978). Observable characteristics are referred
to as phenotypes. The site of a gene on a chromosome is known as the locus. Alleles
are alternative forms of a gene that occupy the same locus on a chromosome. They
often are symbolized as A and a or B and b or A1 and A2. The simplest system
for a segregating locus involves only two alleles (A and a), but there also may be
a large number of alleles in a system. For example, the HLA locus on chromosome
6 is known to have 18 alleles at the A locus, 41 alleles at the B locus, 8 at C,
about 20 at DR, 3 at DQ, and 6 at DP (Bodmer 1987). Nevertheless, if one or
two alleles are much more frequent than the others, a two-allele system provides a
useful approximation and leads to an accurate account for the phenotypic variation
and covariation with which we are concerned. The genotype is the chromosomal
complement of alleles for an individual. At a single locus (with two alleles) the
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genotype may be symbolized AA, Aa, or aa; if we consider multiple loci the geno-
type of an individual may be written as AABB, AABb, AAbb, AaBB, AaBb, Aabb,
aaBB, aaBb, or aabb, in the case of two loci, for example. Homozygosity refers to
a state of identical alleles at corresponding loci on homologous chromosomes; for
example, AA or aa for one locus, or AABB, aabb, AAbb, or aaBB for two loci. In
contrast, heterozygosity refers to a state of unlike alleles at corresponding loci, Aa
or AaBb, for example. When numeric or symbolic values are assigned to specific
genotypes they are called genotypic values. The additive value of a gene is the
sum of the average effects of the individual alleles. Dominance deviations refer to
the extent to which genotypes differ from the additive genetic value. A system in
which multiple loci are involved in the expression of a single trait is called polygenic
(“many genes”). A pleiotropic system (“many growths”) is one in which the same
gene or genes influence more than one trait.

Biometrical models are based on the measurable effects of different genotypes
that arise at a segregating locus, which are summed across all of the loci that con-
tribute to a continuously varying trait. The number of loci generally is not known,
but it is usual to assume that a relatively large number of genes of equivalent ef-
fect are at work. In this way, the categories of Mendelian genetics that lead to
binomial distributions for traits in the population tend toward continuous distri-
butions such as the normal curve. Thus, the statistical parameters that describe
this model are those of continuous distributions, including the first moment, or the
mean; second moments, or variances, covariances, and correlation coefficients; and
higher moments such as measures of skewness where these are appropriate. This
polygenic model was originally developed by Sir Ronald Fisher in his classic paper
“The correlation between relatives on the supposition of Mendelian inheritance”
(Fisher, 1918), in which he reconciled Galtonian biometrics with Mendelian genet-
ics. One interesting feature of the polygenic biometrical model is that it predicts
normal distributions for traits when very many loci are involved and their effects
are combined with a multitude of environmental influences. Since the vast majority
of biological and behavioral traits approximate the normal distribution, it is an in-
herently plausible model for the geneticist to adopt. We might note, however, that
although the normality expected for a polygenic system is statistically convenient
as well as empirically appropriate, none of the biometrical expectations with which
we shall be concerned depend on how many or how few genes are involved. The
expectations are equally valid if there are are only one or two genes, or indeed no
genes at all.

In the simplest two–allele system (A and a) there are two parameters that define
the measurable effects of the three possible genotypes, AA, Aa, and aa. These
parameters are d, which is twice the measured difference between the homozygotes
AA and aa, and h, which defines the measured effect of the heterozygote Aa, insofar
as it does not fall exactly between the homozygotes. The point between the two
homozygotes is m, the mean effect of homozygous genotypes. We refer to the
parameters d and h as genotypic effects. The scaling of the three genotypes is
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Figure 3.1: The d and h increments of the gene difference A – a. Aa may lie on
either side of m and the sign of h will vary accordingly; in the case illustrated h
would be negative. (Adapted from Mather and Jinks, 1977, p. 32).

shown in Figure 3.1.
To make the simple two–allele model concrete, let us imagine that we are talking

about genes that influence adult stature. Let us assume that the normal range of
height for males is from 4 feet 10 inches to 6 feet 8 inches; that is, about 22
inches1. And let us assume that each somatic chromosome has one gene of roughly
equivalent effect. Then, roughly speaking, we are thinking in terms of loci for which
the homozygotes contribute ± 1

2 inch (from the midpoint), depending on whether
they are AA, the increasing homozygote, or aa, the decreasing homozygotes. In
reality, although some loci may contribute greater effects than this, others will
almost certainly contribute less; thus we are talking about the kind of model in
which any particular polygene is having an effect that would be difficult to detect by
the methods of classical genetics. Similarly, while the methods of linkage analysis
may be appropriate for a number of quantitative loci, it seems unlikely that the
majority of causes of genetic variation would be detectable by these means. The
biometrical approach, being founded upon an assumption that inheritance may be
polygenic, is designed to elucidate sources of genetic variation in these types of
systems.

3.2 Breeding Experiments: Gametic Crosses

The methods of biometrical genetics are best understood through controlled breed-
ing experiments with inbred strains, in which the results are simple and intuitively

1Note: 1 inch = 2.54cm; 1 foot = 12 inches.
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Table 3.1: Punnett square for mating between two heterozygous parents.

Male Gametes
1
2A 1

2a
Female Gametes 1

2A 1
4AA 1

4Aa
1
2a 1

4Aa 1
4aa

obvious. Of course, in the present context we are dealing with continuous variation
in humans, where inbred strains do not exist and controlled breeding experiments
are impossible. However, the simple results from inbred strains of animals apply
directly, albeit in more complex form, to those of free mating organisms such as
humans. We feel an appreciation of the simple results from controlled breeding
experiments provides insight and lends credibility to the application of the models
to human beings.

Let us consider a cross between two inbred parental strains, P1 and P2, with
genotypes AA and aa, respectively. Since individuals in the P1 strain can produce
gametes with only the A allele, and P2 individuals can produce only a gametes, all
of the offspring of such a mating will be heterozygotes, Aa, forming what Gregor
Mendel referred to as the “first filial,” or F1 generation. A cross between two F1

individuals generates what he referred to as the “second filial” generation, or F2,
and it may be shown that this generation comprises 1

4 individuals of genotype AA,
1
4 aa, and 1

2 Aa. Mendel’s first law, the law of segregation, states that parents with
genotype Aa will produce the gametes A and a in equal proportions. The pioneer
Mendelian geneticist Reginald Punnett developed a device known as the Punnett
square, which he found useful in teaching Mendelian genetics to Cambridge un-
dergraduates, that gives the proportions of genotypes that will arise when these
gametes unite at random. (Random unions of gametes occur under the condition
of random mating among individuals). The result of other matings such as P1 ×
F1, the first backcross, B1, and more complex combinations may be elucidated in a
similar manner. A simple usage of the Punnett square is shown in Table 3.1 for the
mating of two heterozygous parents in a two–allele system. The gamete frequen-
cies in Table 3.1 (shown outside the box) are known as gene or allelic frequencies,
and they give rise to the genotypic frequencies by a simple product of indepen-
dent probabilities. It is this assumption of independence based on random mating
that makes the biometrical model straightforward and tractable in more complex
situations, such as random mating in populations where the gene frequencies are
unequal. It also forms a simple basis for considering the more complex effects of
non-random mating, or assortative mating, which are known to be important in
human populations.

In the simple case of equal gene frequencies as we have in an F2 population,
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it is easily shown that random mating over successive generations changes neither
the gene nor genotype frequencies of the population. Male and female gametes
of the type A and a from an F2 population are produced in equal proportions so
that random mating may be represented by the same Punnett square as given in
Table 3.1, which simply reproduces a population with identical structure to the
F2 from which we started. This remarkable result is known as Hardy–Weinberg
equilibrium and is the cornerstone of quantitative and population genetics. From
this result, the effects of non-random mating and other forces that change pop-
ulations, such as natural selection, migration, and mutation, may be deduced.
Hardy-Weinberg equilibrium is achieved in one generation and applies whether or
not the gene frequencies are equal and whether or not there are more than two
alleles. It also holds among polygenic loci, linked or unlinked, although in these
cases joint equilibrium depends on a number of generations of random mating.

For our purposes the genotypic frequencies from the Punnett square are im-
portant because they allow us to calculate the simple first and second moments
of the phenotypic distribution that result from genetic effects; namely, the mean
and variance of the phenotypic trait. The genotypes, frequencies, and genotypic
effects of the biometrical model in Table 3.1 are shown below, and from these we
can calculate the mean and variance.

Genotype (i) AA Aa aa
Frequency (f) 1

4
1
2

1
4

Genotypic effect (x) d h −d

The mean effect of the A locus is obtained by summing the products of the fre-
quencies and genotypic effects in the following manner:

µA =
∑

fixi

=
1

4
d +

1

2
h− 1

4
d

=
1

2
h (3.1)

The variance of the genetic effects is given by the sum of the products of the
genotypic frequencies and their squared deviations from the mean2:

σ2
A =

∑

fi(xi − µA)2

=
1

4
(d− 1

2
h)2 +

1

2
(h− 1

2
h)2 +

1

4
(−d− 1

2
h)2

=
1

4
d2 − 1

4
dh +

1

16
h2 +

1

8
h2 +

1

4
d2 +

1

4
dh +

1

16
h2

2This is an application of the method described in Section 2.2.1. It looks a bit more intim-
idating here because of (a) the multiplication by the frequency, and (b) the use of letters not
numbers. To gain confidence in this method, the reader may wish to choose values for d and h

and work through an example.
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=
1

2
d2 +

1

4
h2 (3.2)

For this single locus with equal gene frequencies, 1
2d2 is known as the additive

genetic variance, or VA, and 1
4h2 is known as the dominance variance, VD . When

more than one locus is involved, perhaps many loci as we envisage in the polygenic
model, Mendel’s law of independent assortment permits the simple summation of
the individual effects of separate loci in both the mean and the variance. Thus, for
(k) multiple loci,

µ =
1

2

k
∑

i=1

hi , (3.3)

and

σ2 =
1

2

k
∑

i=1

d2
i +

1

4

k
∑

i=1

h2
i

= VA + VD . (3.4)

It is the parameters VA and VD that we estimate using the structural equations in
this book.

In order to see how this biometrical model and the equations estimate VA and
VD , we need to consider the joint effect of genes in related individuals. That is, we
need to derive expectations for MZ and DZ covariances in terms of the genotypic
frequencies and the effects of d and h.

3.3 Derivation of Expected Twin Covariances

3.3.1 Equal Gene Frequencies

Twin correlations may be derived in a number of different ways, but the most
direct method is to list all possible twin-pair genotypes (taken as deviations from
the population mean) and the frequency with which they arise in a random-mating
population. Then, the expected covariance may be obtained by multiplying the
genotypic effects for each pair, weighting them by the frequency of occurrence,
and summing across all possible pairs. By this method the covariance among
pairs is calculated directly. The overall mean for such pairs is, of course, simply
the population mean, 1

2h, in the case of equal gene frequencies, as shown in the
previous section. There are shorter methods for obtaining the same result, but
these are less direct and less intuitively obvious.

The covariance calculations are laid out in Table 3.2 for MZ, DZ, and Unrelated
pairs of siblings, the latter being included in order to demonstrate the expected zero
covariance for genetically unrelated individuals. The nine possible combinations of
genotypes are shown in column 1, with their genotypic effects, x1i and x2i, in
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Table 3.2: Genetic covariance components for MZ, DZ, and Unrelated siblings
with equal gene frequencies at a single locus (u = v = 1

2 ).

Genotype Effect Frequency
Pair x1i x2i x1i − µ1 x2i − µ2 (x1i − µ1)(x2i − µ2) MZ DZ U

AA, AA d d d− 1

2
h d− 1

2
h d2

− dh + 1

4
h2 1

4

9

64

1

16

AA, Aa d h d− 1

2
h 1

2
h 1

2
dh− 1

4
h2 - 3

32

1

8

AA, aa d −d d− 1

2
h −d− 1

2
h −d2 + 1

4
h2 - 1

64

1

16

Aa, AA h d 1

2
h d− 1

2
h 1

2
dh− 1

4
h2 - 3

32

1

8

Aa, Aa h h 1

2
h 1

2
h 1

4
h2 1

2

5

16

1

4

Aa, aa h −d 1

2
h −d− 1

2
h −

1

2
dh− 1

4
h2 - 3

32

1

8

aa, AA −d d −d− 1

2
h d− 1

2
h −d2 + 1

4
h2 - 1

64

1

16

aa, Aa −d h −d− 1

2
h 1

2
h −

1

2
dh− 1

4
h2 - 3

32

1

8

aa, aa −d −d −d− 1

2
h −d− 1

2
h d2 + dh + 1

4
h2 1

4

9

64

1

16

µx1
= µx2

= 1

2
h in all cases; genetic covariance =

∑

i
fi(x1i − µ1)(x2i − µ2)

columns 2 and 3. From these values the mean of all pairs, 1
2h, is subtracted in

columns 4 and 5. Column 6 shows the products of these mean deviations. The
final three columns show the frequency with which each of the genotype pairs occurs
for the three kinds of relationship. For MZ twins, the genotypes must be identical,
so there are only three possibilities and these occur with the population frequency
of each of the possible genotypes. For unrelated pairs, the population frequencies
of the three genotypes are simply multiplied within each pair of siblings since
genotypes are paired at random. The frequencies for DZ twins, which are the same
as for ordinary siblings, are more difficult to obtain. All possible parental types
and the proportion of paired genotypes they can produce must be enumerated, and
these categories collected up across all possible parental types. These frequencies
and the method by which they are obtained may be found in standard texts (e.g.,
Crow and Kimura, 1970, pp. 136-137; Falconer, 1960, pp. 152-157; Mather and
Jinks, 1971, pp. 214-215).

The products in column 6, weighted by the frequencies for the three sibling
types, yield the degree of genetic resemblance between siblings. In the case of MZ
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twins, the covariance equals

Cov(MZ) = d2(
1

4
+

1

4
) + dh(−1

4
+

1

4
) +

1

4
h2(

1

4
+

2

4
+

1

4
)

=
1

2
d2 +

1

4
h2 , (3.5)

which is simply expression 3.2, the total genetic variance in the population. If
we sum over loci, as we did in expression 3.4, we obtain VA + VD , the additive
and dominance variance, as we would intuitively expect since identical twins share
all genetic variance. The calculation for DZ twins, with terms in d2, dh, and h2

initially separated for convenience, and collected together at the end, is

Cov(DZ) = d2(
9

64
− 1

64
− 1

64
+

9

64
)

+ dh(− 9

64
+

3

64
+

3

64
− 3

64
− 3

64
+

9

64
)

+
1

4
h2(

9

64
− 6

64
+

1

64
− 6

64
+

20

64
− 6

64
+

1

64
− 6

64
+

9

64
)

=
1

4
d2 +

1

16
h2 (3.6)

When summed over all loci, this expression gives 1
2VA + 1

4VD . The calculation for
unrelated pairs of individuals yields a zero value as expected, since, on average,
unrelated siblings have no genetic variation in common at all:

Cov(U) = d2(
1

16
− 1

16
− 1

16
+

1

16
)

= dh(− 1

16
+

1

16
+

1

16
− 1

16
− 1

16
+

1

16
)

=
1

4
h2(

1

16
− 2

16
+

1

16
− 2

16
+

4

16
− 2

16
+

1

16
− 2

16
+

1

16
)

= 0 (3.7)

It is the fixed coefficients in front of VA and VD , 1.0 and 1.0 in the case of MZ
twins and 1

2 and 1
4 , respectively, for DZ twins that allow us to specify the Mx

model and estimate VA and VD , as will be explained in subsequent chapters. These
coefficients are the correlations between additive and dominance deviations for the
specified twin types. This may be seen easily in the case where we assume that
dominance is absent. Then, MZ and DZ genetic covariances are simply VA and
1
2VA, respectively. The variance of twin 1 and twin 2 in each case, however, is the
population variance, VA. For example, the DZ genetic correlation is derived as

rDZ =
Cov(DZ)√

VT1VT2

=
1
2VA√
VAVA

=
1

2
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3.3.2 Unequal Gene Frequencies

The simple results for equal gene frequencies described in the previous section
were appreciated by a number of biometricians shortly after the rediscovery of
Mendel’s work (Castle, 1903; Pearson, 1904; Yule, 1902). However, it was not until
Fisher’s remarkable 1918 paper that the full generality of the biometrical model
was elucidated. Gene frequencies do not have to be equal, nor do they have to be
the same for the various polygenic loci involved in the phenotype for the simple
fractions, 1, 1

2 , 1
4 , and 0 to hold, providing we define VA and VD appropriately.

The algebra is considerably more complicated with unequal gene frequencies and
it is necessary to define carefully what we mean by VA and VD. However, the end
result is extremely simple, which is perhaps somewhat surprising. We give the
flavor of the approach in this section, and refer the interested reader to the classic
texts in this field for further information (Crow and Kimura, 1970; Falconer, 1990;
Kempthorne, 1960; Mather and Jinks, 1982). We note that the elaboration of this
biometrical model and its power and elegance has been largely responsible for the
tremendous strides in inexpensive plant and animal food production throughout
the world, placing these activities on a firm scientific basis.

Consider the three genotypes, AA, Aa, and aa, with genotypic frequencies P ,
Q, R:

Genotypes AA Aa aa
Frequency P Q R

The proportion of alleles, or gene frequency, is given by

gene frequency (A) = P +
Q

2
= u

(a) = R +
Q

2
= v . (3.8)

These expressions derive from the simple fact that the AA genotype contributes
only A alleles and the heterozygote, Aa, contributes 1

2 A and 1
2 a alleles. A Punnett

square showing the allelic form of gametes uniting at random gives the genotypic
frequencies in terms of the gene frequencies:

Male Gametes
u A v a

Female Gametes u A u2AA uvAa
v a uvAa v2aa

which yields an alternative representation of the genotypic frequencies

Genotypes AA Aa aa
Frequency u2 2uv v2
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That these genotypic frequencies are in Hardy-Weinberg equilibrium may be shown
by using them to calculate gene frequencies in the new generation, showing them
to be the same, and then reapplying the Punnett square. Using expression 3.8,
substituting u2, 2uv, and v2, for P , Q, and R, and noting that the sum of gene
frequencies is 1 (u+v = 1.0), we can see that the new gene frequencies are the same
as the old, and that genotypic frequencies will not change in subsequent generations

u1 = u2 +
1

2
2uv = u2 + uv = u(u + v) = u

v1 = v2 +
1

2
2uv = v2 + uv = v(u + v) = v . (3.9)

The biometrical model is developed in terms of these equilibrium frequencies and
genotypic effects as

Genotypes AA Aa aa
Frequency u2 2uv v2

Genotypic effect d h −d
(3.10)

The mean and variance of a population with this composition is obtained in
analogous manner to that in 3.1. The mean is

µ = u2d + 2uvh− v2d

= (u− v)d + 2uvh (3.11)

Because the mean is a reasonably complex expression, it is not convenient to sum
weighted deviations to express the variance as in 3.2, instead, we rearrange the
variance formula

σ2 =
∑

fi(xi − µ)2

=
∑

fi(x
2
i − 2xiµ + µ2)

=
∑

fix
2
i − 2µ

∑

fixi + µ2

=
∑

fix
2
i − 2µ2 + µ2

=
∑

fix
2
i − µ2 (3.12)

Applying this formula to the genotypic effects and their frequencies given in 3.10
above, we obtain

σ2 = u2d2 + 2uvh2 + v2d2 − [(u− v)d + 2uvh]2

= u2d2 + 2uvh2 + v2d2 − [(u− v)2d2 + 4uvdh(u− v) + 4u2v2h2]

= u2d2 + 2uvh2 + v2d2 − [(u2 − 2uv − v2)d2 + 4uvdh(u− v) + 4u2v2h2]

= 2uv[d2 + 2(v − u)dh + (1− 2uv)h2]

= 2uv[d2 + 2(v − u)dh + (v − u)h2 + 2uvh2]

= 2uv[d + (v − u)h]2 + 4u2v2h2 . (3.13)
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Figure 3.2: Regression of genotypic effects on gene dosage showing additive and
dominance effects under random mating. The figure is drawn to scale for u = v = 1

2 ,
d = 1, and h = 1

2 .

When the variance is arranged in this form, the first term (2uv[d+(v−u)h]2) defines
the additive genetic variance, VA, and the second term (4u2v2h2) the dominance
variance, VD . Why this particular arrangement is used to define VA and VD rather
than some other may be seen if we introduce the notion of gene dose and the
regression of genotypic effects on this variable, which essentially is how Fisher
proceeded to develop the concepts of VA and VD.

If A is the increasing allele, then we can consider the three genotypes, AA, Aa,
aa, as containing 2, 1, and 0 doses of the A allele, respectively. The regression of
genotypic effects on these gene doses is shown in Figure 3.2. The values that enter
into the calculation of the slope of this line are

Genotype AA Aa aa
Genotypic effect (y) d h −d
Frequency (f) u2 2uv v2

Dose (x) 2 1 0
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From these values the slope of the regression line of y on x in Figure 3.2 is given
by βy,x = σx,y/σ2

x. In order to calculate σ2
x we need µx, which is

µx = 2u2 + 2uv

= 2u(u + v)

= 2u . (3.14)

Then, σ2
x is

σ2
x = 22u2 + 122uv − 22u2

= 4u2 + 2uv − 4u2

= 2uv

using the variance formula in 3.12. In order to calculate σx,y we need to employ
the covariance formula

σx,y =
∑

fixiyi − µxµy , (3.15)

where µy and µx are defined as in 3.11 and 3.14, respectively. Then,

σxy = 2u2d + 2uvh− 2u[(u− v)d + 2uvh]

= 2u2d + 2uvh− 2u2d + 2uvd− 4u2vh

= 2uvd + h(2uv − 4u2v)

= 2uvd + 2uvh(1− 2u)

= 2uvd + 2uvh(1− u− u)

= 2uvd + 2uvh(v − u)

= 2uv[d + (v − u)h] . (3.16)

Therefore, the slope is

βy,x =
σxy

σ2
x

= 2uv[d + (v − u)h]/2uv

= d + (v − u)h . (3.17)

Following standard procedures in regression analysis, we can partition σ2
y into the

variance due to the regression and the variance due to residual. The former is
equivalent to the variance of the expected y; that is, the variance of the hypothetical
points on the line in Figure 3.2, and the latter is the variance of the difference
between observed y and the expected values.

The variance due to regression is

βσxy = 2uv[d + (v − u)h][d + (v − u)h]

= 2uv[d + (v − u)h]2

= VA (3.18)
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and we may obtain the residual variance simply by subtracting the variance due to
regression from the total variance of y. The variance of genotypic effects (σ2

y) was
given in 3.13, and when we subtract the expression obtained for the variance due
to regression 3.18, we obtain the residual variances:

σ2
y − βσx,y = 4u2v2h2

= VD . (3.19)

In this representation, genotypic effects are defined in terms of the regression
line and are known as genotypic values. They are related to d and h, the genotypic
effects we defined in Figure 3.1, but now reflect the population mean and gene
frequencies of our random mating population. Defined in this way, the genotypic
value (G) is G = A + D, the additive (A) and dominance (D) deviations of the
individual.

G = A + D frequency
GAA = 2v[d + h(v − u)] − 2v2h u2

GAa = (v − u)[d + h(v − u)] + 2uvh 2uv
Gaa = −2u[d + h(v − u)] − 2u2h v2

In the case of u = v = 1
2 , this table becomes

G = A + D frequency
GAA = d − 1

2h 1
4

GAa = 1
2h 1

2
Gaa = −d − 1

2h 1
4

from which it can be seen that the weighted sum of all G’s is zero (
∑

fiGi = 0). In
this case the additive effect is the same as the genotypic effect as originally scaled,
and the dominance effect is measured around a mean of 1

2h. This representation of
genotypic value accurately conveys the extreme nature of unusual genotypes. Let
d = h = 1, an example of complete dominance. In that case, GAA = GAa = 1

2 and
Gaa = −1 1

2 on our scale. Thus, aa genotypes, which form only 1
4 of the population,

fall far below the mean of 0, while the remaining 3
4 of the population genotypes

fall only slightly above the mean of 0. Thus, the bulk of the population appears
relatively normal, whereas aa genotypes appear abnormal or unusual. When dom-
inance is absent (h = 0), Aa genotypes, which form 1

2 of the population, have a
mean of 0 and the less frequent genotypes AA and aa appear deviant. This situa-
tion is accentuated as the gene frequencies depart from 1

2 . For example, with u = 3
4 ,

v = 1
4 , and h = d = 1, then AA and Aa combined form 15

16 of the population with
a genotypic value of 1

8 , just slightly above the mean of 0, whereas the aa genotype
has a value of −1 7

8 . In the limiting case of a very rare allele, AA and Aa tend to 0,
the population mean, while only aa genotypes take an extreme value. These values
intuitively correspond to our notion of a rare disorder of extreme effect, such as
untreated phenylketonuria (PKU).
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Table 3.3: Genetic covariance components for MZ, DZ, and Unrelated Siblings
with unequal gene frequencies at a single locus.

Genotype Effect Frequency
Pair x1i x2i MZ DZ U

AA, AA d d u2 u4 + u3v + 1
4u2v2 u4

AA, Aa d h – u3v + 1
2u2v2 2u3v

AA, aa d −d — 1
4u2v2 u2v2

Aa, AA h d — u3v + 1
2u2v2 2u3v

Aa, Aa h h 2uv u3v + 3u2v2 + uv3 4u2v2

Aa, aa h −d — 1
2u2v2 + uv3 2uv3

aa, AA −d d — 1
4u2v2 u2v2

aa, Aa −d h — 1
2u2v2 + uv3 2uv3

aa, aa −d −d u4 1
4u2v2 + uv3 + v4 v4

The genotypic values A and D that we employ in the Mx model have precisely
the expectations given above in 3.18 and 3.19, but are summed over all polygenic
loci contributing to the trait. Thus, the biometrical model gives a precise definition
to the latent variables employed in Mx for the analysis of twin data.

3.4 Summary

Table 3.3 replicates Table 3.2 employing genotypic frequencies appropriate to ran-
dom mating and unequal gene frequencies. Using the table to calculate covariances
among sibling pairs of the three types, MZ twins, DZ twins, and unrelated siblings,
gives

Cov(MZ) = 2uv[d + (v − u)h]2 + 4u2v2h2 = VA + VD

Cov(DZ) = uv[d + (v − u)h]2 + u2v2h2 = 1
2VA + 1

4VD

Cov(U) = 0 = 0

By similar calculations, the expectations for half-siblings and for parents and
their offspring may be shown to be 1

4VA and 1
2VA, respectively. That is, these

relationships do not reflect dominance effects. The MZ and DZ resemblances are
the primary focus of this text, but all five relationships we have just discussed may
be analyzed in the extended Mx approaches we discuss in Chapter ??.

With more extensive genetical data, we can assess the effects of epistasis, or non-
allelic interaction, since the biometrical model may be extended easily to include
such genetic effects. Another important problem we have not considered is that
of assortative mating, which one might have thought would introduce insuperable
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problems for the model. However, once we are working with genotypic values such
as A and D, the effects of assortment can be readily accommodated in the model by
means of reverse path analysis (Wright, 1968) and the Pearson–Aitken treatment
of selected variables (Aitken, 1934). Fulker (1988) describes this approach in the
context of Fisher’s (1918) model of assortment.

In this chapter, we have given a brief introduction to the biometrical model that
underlies the model fitting approach employed in this book, and we have indicated
how additional genetic complexities may be accommodated in the model. However,
in addition to genetic influences, we must consider the effects of the environment
on any phenotype. These may be easily accommodated by defining environmental
influences that are common to sib pairs and those that are unique to the individual.
If these environmental effects are unrelated to the genotype, then the variances
due to these influences simply add to the genetic variances we have just described.
If they are not independent of genotype, as in the case of sibling interactions
and cultural transmission, both of which are likely to occur in some behavioral
phenotypes, then the Mx model may be suitably modified to account for these
complexities, as we describe in Chapters 8 and ??.
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Chapter 4

Matrix Algebra

4.1 Introduction

Many people regard journal articles and books that contain matrix algebra as
prohibitively complicated and ignore them or shelve them indefinitely. This is a
sad state of affairs because learning matrix algebra is not difficult and can reap
enormous benefits. Science in general, and genetics in particular, is becoming
increasingly quantitative. Matrix algebra provides a very economical language to
describe our data and our models; it is essential for understanding Mx and other
data analysis packages. In common with most languages, the way to make it “stick”
is to use it. Those unfamiliar with, or out of practice at, using matrices will benefit
from doing the worked examples in the text. Readers with a strong mathematics
background may skim this chapter, or skip it entirely, using it for reference only.
We do not give an exhaustive treatment of matrix algebra and operations but limit
ourselves to the bare essentials needed for structural equation modeling. There are
many excellent texts for those wishing to extend their knowledge; we recommend
Searle (1982) and Graybill (1969).

In this chapter, we will introduce matrix notation in Section 4.2 and matrix
operations in Section 4.3. The general use of matrix algebra is illustrated in Sec-
tion 4.4 on equations and Section 4.5 on other applications.

4.2 Matrix Notation

Although matrices and certain matrix operations were used as long ago as 2000 BC
in ancient China, it is only relatively recently that a comprehensive matrix algebra
has been developed. During the 1850’s, Cayley worked on general algebraic systems
(Boyer, 1985 p. 627) and developed the basis of matrix algebra as it is used today.
The concept of a matrix is a very simple one, being just a table of numbers or

71
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symbols laid out in rows and columns,

e.g.,





1 4
2 5
3 6



 or





a11 a12 a13

a21 a22 a23

a31 a32 a33





In most texts, the table is enclosed in brackets, either: curved, (); square, [ ]; or
curly, {}.

It is conventional to specify the configuration of the matrix in terms of Rows ×
Columns and these are its dimensions or order. Thus the first matrix above is of
order 3 by 2 and the second is a 3× 3 matrix.

A common occurrence of matrices in behavioral sciences is the data matrix
where the rows are subjects and the columns are measures, e.g.,

Weight Height
S1 50 20
S2 100 40
S3 150 60
S4 200 80

It is convenient to let a single letter symbolize a matrix. This is written in
UPPERCASE boldface. Thus we might say that our data matrix is A, which in
handwriting we would underline with either a straight or a wavy line. Sometimes a
matrix is written 4A2 to specify its dimensions. The economy of using matrices is
immediately apparent: we can represent a whole table by a single symbol, whether
it contains just one row and one column, or a billion rows and a billion columns!
There are several special terms for matrices with one row or one column or both.
When a matrix consists of a single number, it is called a scalar; when it consists of
single column (row) of numbers it is called a column (row) vector. Scalars are usu-
ally represented as lower case, non-bold letters. Vectors are normally represented
as a bold lowercase letter. Thus, the weight measurements of our four subjects are









50
100
150
200









= a

We can refer to the specific elements of matrix A as aij where i indicates the row
number and j indicates the column number.

Certain special forms of matrices exist. We have already defined scalars and
row and column vectors. A matrix full of zeroes is called a null matrix and a matrix
full of ones is called a unit matrix. Matrices in which the number of rows is equal
to the number of columns are called square matrices. Among square matrices,
diagonal matrices have at least one non-zero diagonal element, with every off-
diagonal element zero. By diagonal, we mean the ‘leading diagonal’ from the top
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left element of the matrix to the bottom right element. A special form of the
diagonal matrix is the identity matrix, I, which has every diagonal element one
and every non-diagonal element zero. The identity matrix functions much like the
number one in ordinary algebra.

4.3 Matrix Algebra Operations

Matrix algebra defines a set of operations that may be performed on matrices.
These operations include addition, subtraction, multiplication, inversion (multipli-
cation by the inverse is similar to division) and transposition. We may separate
the operations into two mutually exclusive categories: unary and binary. Unary
operations are performed on a single matrix, and binary operations combine two
matrices to obtain a single matrix result. Binary operations will be described first.

4.3.1 Binary Operations

Addition and subtraction

Matrices may be added if and only if they have the same dimension. They are then
said to be conformable for addition. Each element in the first matrix is added to
the corresponding element in the second matrix to form the same element in the
solution.

e.g.





1 4
2 5
3 6



+





8 11
9 12

10 13



 =





9 15
11 17
13 19





or symbolically,
A + B = C.

One cannot add




1 4
2 5
3 6



+

(

8 10
9 11

)

because they have a different number of rows. Subtraction works in the same way
as addition, e.g.





1 4
2 5
3 6



−





2 5
2 5
2 5



 =





−1 −1
0 0
1 1





which is written
A−B = C.
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Matrix multiplication

Matrices are conformable for multiplication if and only if the number of columns in
the first matrix equals the number of rows in the second matrix. This means that
adjacent columns and rows must be of the same order. For example, the matrix
product 3A2× 2B1 may be calculated; the result is a 3× 1 matrix. In general, if
we multiply two matrices iAj× jBk, the result will be of order i× k.

Matrix multiplication involves calculating a sum of cross products among rows
of the first matrix and columns of the second matrix in all possible combinations.

e.g.





1 4
2 5
3 6





(

1 3
2 4

)

=





1× 1 + 4× 2 1× 3 + 4× 4
2× 1 + 5× 2 2× 3 + 5× 4
3× 1 + 6× 2 3× 3 + 6× 4



 =





9 19
12 26
15 33





This is written
AB = C

The only exception to the above rule is multiplication by a single number called
a scalar. Thus, for example,

2





1 4
2 5
3 6



 =





2 8
4 10
6 12





by convention this is often written as

2A = C.

Although convenient and often found in the literature, we do not recommend this
style of matrix formulation, but prefer use of the kronecker product. The kronecker
product of two matrices, symbolized A⊗B is formed by multiplying each element
of A by the matrix B. If A is a scalar, every element of the matrix B is multiplied
by the scalar.

The simplest example of matrix multiplication is to multiply a vector by itself.
If we premultiply a column vector (n × 1) by its transpose1, the result is a scalar
called the inner product. For example, if

a′ =
(

1 2 3
)

then the inner product is

a′a =
(

1 2 3
)





1
2
3



 = 12 + 22 + 32 = 14

which is the sum of the squares of the elements of the vector a. This has a simple
graphical representation when a is of dimension 2× 1 (see Figure 4.1).

1Transposition is defined in Section 4.3.2 below. Essentially the rows become columns and
vice versa.
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y

x

V

0

Figure 4.1: Graphical representation of the inner product a′a of a (2× 1) vector
a, with a′ = (xy). By Pythagoras’ theorem, the distance of the point V from the

origin O is
√

x2 + y2, which is the square root of the inner product of the vector.

4.3.2 Unary Operations

Transposition

A matrix is transposed when the rows are written as columns and the columns are
written as rows. This operation is denoted by writing A′ or AT . For our example
data matrix on page 72,

A′ =

(

50 100 150 200
20 40 60 80

)

a row vector is usually written

a′ =
(

50 100 150 200
)

Clearly, (A′)′ = A.

Determinant of a matrix

For a square matrix A we may calculate a scalar called the determinant which we
write as |A|. In the case of a 2× 2 matrix, this quantity is calculated as

|A| = a11a22 − a12a21.
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We shall be giving numerical examples of calculating the determinant when we
address matrix inversion. The determinant has an interesting geometric represen-
tation. For example, consider two standardized variables that correlate r. This
situation may be represented graphically by drawing two vectors, each of length
1.0, having the same origin and an angle a, whose cosine is r, between them (see
Figure 4.2).

0

V1

V2

a

r = cos(a)

Figure 4.2: Geometric representation of the determinant of a matrix. The an-
gle between the vectors is the cosine of correlation between two variables, so the
determinant is given by twice the area of the triangle OV1V2.

It can be shown (the proof involves symmetric square root decomposition of
matrices) that the area of the triangle OV1V2 is .5

√

|A|. Thus as the correlation
r increases, the angle between the lines decreases, the area decreases, and the
determinant decreases. For two variables that correlate perfectly, the determinant
of the correlation (or covariance) matrix is zero. Conversely, the determinant is at
a maximum when r = 0; the angle between the vectors is 90◦, and we say that
the variables are orthogonal. For larger numbers of variables, the determinant is
a function of the hypervolume in n-space; if any single pair of variables correlates
perfectly then the determinant is zero. In addition, if one of the variables is a linear
combination of the others, the determinant will be zero. For a set of variables
with given variances, the determinant is maximized when all the variables are
orthogonal, i.e., all the off-diagonal elements are zero.

Many software packages [e.g., Mx; SAS, 1985] and numerical libraries (e.g.,
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IMSL, 1987; NAG, 1990) have algorithms for finding the determinant and inverse
of a matrix. But it is useful to know how matrices can be inverted by hand, so we
present a method for use with paper and pencil. To calculate the determinant of
larger matrices, we employ the concept of a cofactor. If we delete row i and column
j from an n×n matrix, then the determinant of the remaining matrix is called the
minor of element aij . The cofactor, written Aij is simply:

Aij = (−1)i+jminor aij

The determinant of the matrix A may be calculated as

|A| =
n
∑

i=1

aijAij

where n is the order of A.
The determinant of a matrix is related to the concept of definiteness of a matrix.

In general, for a null column vector x, the quadratic form x′Ax is always zero. For
some matrices, this quadratic is zero only if x is the null vector. If x′Ax > 0 for all
non-null vectors x then we say that the matrix is positive definite. Conversely, if
x′Ax < 0 for all non-null x, we say that the matrix is negative definite. However,
if we can find some non-null x such that x′Ax = 0 then the matrix is said to be
singular, and its determinant is zero. As long as no two variables are perfectly
correlated, and there are more subjects than measures, a covariance matrix calcu-
lated from data on random variables will be positive definite. Mx will complain
(and rightly so!) if it is given a covariance matrix that is not positive definite. The
determinant of the covariance matrix can be helpful when there are problems with
model-fitting that seem to originate with the data. However, it is possible to have
a matrix with a positive determinant yet which is negative definite (consider −I

with an even number of rows), so the determinant is not an adequate diagnostic.
Instead we note that all the eigenvalues of a positive definite matrix are greater
than zero. Eigenvalues and eigenvectors may be obtained from software packages,
including Mx, and the numerical libraries listed above2.

Trace of a matrix

The trace of a matrix is simply the sum of its diagonal elements. Thus the trace
of the matrix





1 2 3
4 5 6
7 8 9



 = 1 + 5 + 9 = 15

2Those readers wishing to know more about the uses of eigenvalues and eigenvectors may
consult Searle (1982) or any general text on matrix algebra.
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Inverse of a matrix

In ordinary algebra the division operation a ÷ b is equivalent to multiplication of
the reciprocal a × 1

b
. Thus one binary operation, division, has been replaced by

two operations, one binary (multiplication) and one unary (forming 1
b
). In matrix

algebra we make an equivalent substitution of operations, and we call the unary
operation inversion. We write the inverse of the matrix A as A−1, and calculate
it so that

AA−1 = I

and
A−1A = I ,

where I is the identity matrix. In general the inverse of a matrix is not simply
formed by finding the reciprocal of each element (this holds only for scalars and
diagonal matrices3), but is a more complicated operation involving the determinant.

There are many computer programs available for inverting matrices. Some
routines are general, but there are often faster routines available if the program is
given some information about the matrix, for example, whether it is symmetric,
positive definite, triangular, or diagonal. Here we describe one general method that
is useful for matrix inversion; we recommend undertaking this hand calculation at
least once for at least a 3× 3 matrix in order to fully understand the concept of a
matrix inverse.

Procedure: In order to invert a matrix, the following four steps can be used:

1. Find the determinant

2. Set up the matrix of cofactors

3. Transpose the matrix of cofactors

4. Divide by the determinant

For example, the matrix

A =

(

1 2
1 5

)

can be inverted by:

1.

|A| = (1× 5)− (2× 1) = 3

2.

Aij =

[

(−1)2 × 5 (−1)3 × 1
(−1)3 × 2 (−1)4 × 1

]

=

(

5 −1
−2 1

)

3N.B. For a diagonal matrix one takes the reciprocal of only the diagonal elements!
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3.

A′
ij =

(

5 −2
−1 1

)

4.

A−1 =
1

3

(

5 −2
−1 1

)

=

(

5
3 − 2

3
− 1

3
1
3

)

To verify this, we can multiply AA−1 to obtain the identity matrix:

1

3

(

5 −2
−1 1

)(

1 2
1 5

)

=
1

3

(

3 0
0 3

)

=

(

1 0
0 1

)

The result that AA−1 = I may be used to solve the pair of simultaneous
equations:

x1 + 2x2 = 8

x1 + 5x2 = 17

which may be written

(

1 2
1 5

)(

x1

x2

)

=

(

8
17

)

i.e.,

Ax = y

premultiplying both sides by the inverse of A, we have

A−1Ax = A−1y

x = A−1y

=
1

3

(

5 −2
−1 1

)(

8
17

)

=
1

3

(

6
9

)

=

(

2
3

)

which may be verified by substitution.
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For a larger matrix it is more tedious to compute the inverse. Let us consider
the matrix

A =





1 1 0
1 0 1
1 −1 0





1. The determinant is

|A| = +1

∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

+ 0

∣

∣

∣

∣

1 0
1 −1

∣

∣

∣

∣

= +1 + 1 + 0 = 2

2. The matrix of cofactors is:

Aij =

















+

−

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1
−1 0

1 0
−1 0

1 0
0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

+

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
1 0
1 0
1 0
1 0
1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

−

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0
1 −1
1 1
1 −1
1 1
1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















=





1 1 −1
0 0 2
1 −1 −1





3. The transpose is

A′
ij =





1 0 1
1 0 −1
−1 2 −1





4. Dividing by the determinant, we have

A−1 =
1

2





1 0 1
1 0 −1
−1 2 −1



 =





.5 0 .5

.5 0 −.5
−.5 1 −.5





which may be verified by multiplication with A to obtain the identity matrix.

4.4 Equations in Matrix Algebra

Matrix algebra provides a very convenient short hand for writing sets of equations.
For example, the pair of simultaneous equations

y1 = 2x1 + 3x2

y2 = x1 + x2

may be written

y = Ax
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i.e.,
(

y1

y2

)

=

(

2 3
1 1

)(

x1

x2

)

Also if we have the following pair of equations:

y = Ax

x = Bz,

then

y = A(Bz)

= ABz

= Cz

where C = AB. This is very convenient notation compared with direct substitu-
tion. The Mx structural equations are written in this general form, i.e.,

Real variables (y) = Matrix × Hypothetical variables.

To show the simplicity of the matrix notation, consider the following equations:

y1 = 2x1 + 3x2

y2 = x1 + x2

x1 = z1 + z2

x2 = z1 − z2

Then we have

y1 = 2(z1 + z2) + 3(z1 − z2)

= 5z1 − z2

y2 = (z1 + z2) + (z1 − z2)

= 2z1 + 0

Similarly, in matrix notation, we have y = ABz, where

A =

(

2 3
1 1

)

,B =

(

1 1
1 −1

)

and

AB =

(

5 −1
2 0

)

,

or

y1 = 5z1 − z2

y2 = 2z2
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4.5 Applications of Matrix Algebra

Matrix algebra is used extensively throughout multivariate statistics (see e.g., Gray-
bill, 1969; Mardia et al., 1979; Maxwell, 1977; Searle, 1982). Here we do not propose
to discuss statistical methods, but simply to show two examples of the utility of
matrices in expressing general formulae applicable to any number of variables or
subjects.

4.5.1 Calculation of Covariance Matrix from Data Matrix

Suppose we have a data matrix A with rows corresponding to subjects and columns
corresponding to variables. We can calculate a mean for each variable and replace
the data matrix with a matrix of deviations from the mean. That is, each element
aij is replaced by aij −µj where µj is the mean of the jth variable. Let us call the
new matrix Z. The covariance matrix is then simply calculated as

1

N − 1
Z′Z

where N is the number of subjects.
For example, suppose we have the following data:

X Y X −X Y − Y
1 2 -2 -4
2 8 -1 2
3 6 0 0
4 4 1 -2
5 10 2 4

So the matrix of deviations from the mean is

Z =













−2 −4
−1 2

0 0
1 −2
2 4













and therefore the covariance matrix of the observations is

1

N − 1
Z′Z =

1

4

(

−2 −1 0 1 2
−4 2 0 −2 4

)













−2 −4
−1 2

0 0
1 −2
2 4












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=
1

4

(

10 12
12 40

)

=

(

2.5 3.0
3.0 10.0

)

=

(

S2
x Sxy

Sxy S2
y

)

The diagonal elements of this matrix are the variances of the variables, and the
off-diagonal elements are the covariances between the variables. The standard
deviation is the square root of the variance (see Chapter 2).

The correlation is
Sxy

√

S2
xS2

y

=
Sxy

SxSy

In general, a correlation matrix may be calculated from a covariance matrix by
pre- and post-multiplying the covariance matrix by a diagonal matrix D in which
each diagonal element dii is 1

Si
, i.e., the reciprocal of the standard deviation for

that variable. Thus, in our two variable example, we have:
(

1
Sx

0

0 1
Sy

)

(

S2
x Sxy

Sxy S2
y

)

(

1
Sx

0

0 1
Sy

)

=

(

1.0 Rxy

Rxy 1.0

)

4.5.2 Transformations of Data Matrices

Matrix algebra provides a natural notation for transformations. If we premultiply
the matrix iBj by another, say kTi, then the rows of T describe linear combinations
of the rows of B. The resulting matrix will therefore consist of k rows corresponding
to the linear transformations of the rows of B described by the rows of T. A very
simple example of this is premultiplication by the identity matrix, I, which, as
noted earlier, merely has 1’s on the leading diagonal and zeroes everywhere else.
Thus, the transformation described by the first row may be written as ‘multiply
the first row by 1 and add zero times the other rows.’ In the second row, we
have ‘multiply the second row by 1 and add zero times the other rows,’ and so the
identity matrix transforms the matrix B into the same matrix. For a less trivial
example, let our data matrix be X, then

X′ =

(

−2 −1 0 1 2
−4 2 0 −2 4

)

and let

T =

(

1 1
1 −1

)

then

Y′ = TX′

=

(

−6 1 0 −1 6
2 −3 0 3 −2

)

.
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In this case, the transformation matrix specifies two transformations of the data:
the first row defines the sum of the two variates, and the second row defines the
difference (row 1 − row 2). In the above, we have applied the transformation to the
raw data, but for these linear transformations it is easy to apply the transformation
to the covariance matrix. The covariance matrix of the transformed variates is

1

N − 1
Y′Y =

1

N − 1
(TX′)(TX′)′

=
1

N − 1
TX′XT′

= T(Vx)T′

which is a useful result, meaning that linear transformations may be applied directly
to the covariance matrix, instead of going to the trouble of transforming all the
raw data and recalculating the covariance matrix.

4.5.3 Further Operations and Applications

There exists a great variety of matrix operations and functions with much broader
scope than the limited selection given in this chapter. For example, there are two
other forms of matrix multiplication in common use, direct or kronecker products,
and dot products. Similar extensions to addition and subtraction exist, and nu-
merous matrix functions beyond determinant and trace can be defined. One place
to study further operations is Searle (1982); applications and some definitions can
be found in Neale (2003). We hope that the outline provided here will make un-
derstanding structural equation modeling of twin data much easier, and provide a
starting point for those who wish to study the subject in more detail.

4.6 Exercises

If you find these exercises insufficient practice, more may be found in almost any
text on matrix algebra. Further practice may be obtained by computing the ex-
pected covariance matrix of almost any model in this book, selecting a set of trial
values for the parameters. The exercise can be extended by computing fit func-
tions for the model and parameter values selected. For the purposes of general
introduction, however, the few given in this section should suffice.

4.6.1 Binary operations

Let

A =

(

3 6
2 1

)

, B =

(

1 0 3 2
0 −1 −1 1

)
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1. Form AB.

2. Form BA. (Careful, this might be a trick question!)

Let

C =

(

3 6
2 1

)

, D =

(

1 2
3 4

)

1. Form CD.

2. Form DC.

3. In ordinary algebra, multiplication is commutative, i.e. xy = yx. In general,
is matrix multiplication commutative?

Let

E′ =

(

1 0 3
1 2 1

)

1. Form E(C + D).

2. Form EC + ED.

3. In ordinary algebra, multiplication is distributive over addition, i.e. x(y+z) =
xy+xz. In general, is matrix multiplication distributive over matrix addition?
Is matrix multiplication distributive over matrix subtraction?

4.6.2 Unary operations

1. Show for two (preferably non-trivial) matrices conformable for multiplication
that

(AB)
′
= B′A′

2. If C is
(

2 6
.5 4

)

,

find the determinant of C.

3. What is the inverse of matrix C?

4. If D is
(

.2 .3

.4 .6

)

,

find the determinant of D.

5. What is the inverse of D?

6. If tr(A) means the trace of A, what is tr(C) + tr(D)?



86 CHAPTER 4. MATRIX ALGEBRA



Chapter 5

Path Analysis and Structural

Equations

5.1 Introduction

Path analysis was invented by the geneticist Sewall Wright (1921a, 1934, 1960,
1968), and has been widely applied to problems in genetics and the behavioral
sciences. It is a technique which allows us to represent, in diagrammatic form, linear
‘structural’ models and hence derive predictions for the variances and covariances
(the covariance structure) of our variables under that model. The books by Kenny
(1979), Li (1975), or Wright (1968) supply good introductory treatments of path
analysis, and general descriptions of structural equation modeling can be found
in Bollen (1989) and Loehlin (1987). In this chapter we provide only the basic
background necessary to understand models used in the genetic analyses presented
in this text.

A path diagram is a useful heuristic tool to graphically display causal and
correlational relations or the paths between variables. Used correctly, it is one
of several mathematically complete descriptions of a linear model, which include
less visually immediate forms such as (i) structural equations and (ii) expected
covariances derived in terms of the parameters of the model. Since all three forms
are mathematically complete, it is possible to translate from one to another for such
purposes as applying it to data, increasing understanding of the model, verifying
its identification, or presenting results.

The advantage of the path method is that it goes beyond measuring the de-
gree of association by the correlation coefficient or determining the best prediction
by the regression coefficient. Instead, the user makes explicit hypotheses about
relationships between the variables which are quantified by path coefficients. Bet-
ter still, the model’s predictions may be statistically compared with the observed

87
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data. Path models are in fact extremely general, subsuming a large number of
multivariate methods, including (but not limited to) multiple regression, principle
component or factor analysis, canonical correlation, discriminant analysis and mul-
tivariate analysis of variance and covariance. Therefore those that take exception
to ‘path analysis’ in its broadest sense, should be aware that they dismiss a vast
array of multivariate statistical methods.

We begin by considering the conventions used to draw and read a path di-
agram, and explain the difference between correlational paths and causal paths
(Section 5.2). In Sections 5.3 and 5.4 we briefly describe assumptions of the method
and tracing rules for path diagrams, respectively. Then, to illustrate their use, we
present simple linear regression models familiar to most readers (Section 5.5). We
define these both as path diagrams and as structural equations — some individ-
uals handle path diagrams more easily, others respond better to equations! We
also apply the method to two basic representations of a simple genetic model for
covariation in twins (Section 5.6), with special reference to the identity between
the matrix specification of a model and its graphical representation. Finally we
discuss identification of models and parameters in Section 5.7.

5.2 Conventions Used in Path Analysis

A path diagram usually consists of boxes and circles, which are connected by ar-
rows. Consider the diagram in Figure 5.1 for example.

Squares or rectangles are used to enclose observed (manifest or measured) vari-
ables, and circles or ellipses surround latent (unmeasured) variables.

Single-headed arrows (‘paths’) are used to define causal relationships in the
model, with the variable at the tail of the arrow causing the variable at the head.
Omission of a path from one variable to another implies that there is no direct causal
influence of the former variable on the latter. In the path diagram in (Figure 5.1) D
is determined by A and B, while E is determined by B and C. When two variables
cause each other, we say that there is a feedback-loop, or ‘reciprocal causation’
between them. Such a feedback-loop is shown between variables D and E in our
example.

Double-headed arrows are used to represent a covariance between two variables,
which might arise through a common cause or their reciprocal causation or both.
In many treatments of path analysis, double-headed arrows may be placed only be-
tween variables that do not have causal arrows pointing at them. This convention
allows us to discriminate between dependent/endogenous variables and indepen-
dent/ultimate/exogenous variables.

Dependent variables are those variables we are trying to predict (in a regres-
sion model) or whose intercorrelations we are trying to explain (in a factor model).
Dependent variables may be determined or caused by either independent variables
or other dependent variables or both. In Figure 5.1, D and E are the dependent
variables. Independent variables are the variables that explain the intercorrelations
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A B C

D E

w x y z

r

p

q

s

Figure 5.1: Path diagram for three latent (A, B and C) and two observed (D and
E) variables, illustrating correlations (p and q) and path coefficients (r, s, w, x, y
and z).

between the dependent variables or, in the case of the simplest regression mod-
els, predict the dependent variables. The causes of independent variables are not
represented in the model. A, B and C are the independent variables in Figure 5.1.

Omission of a double-headed arrow reflects the hypothesis that two indepen-
dent variables are uncorrelated. In Figure 5.1 the independent variables B and
C correlate, C also correlates with A, but A does not correlate with B. This
illustrates (i) that two variables which correlate with a third do not necessarily
correlate with each other, and (ii) that when two factors cause the same dependent
variable, it does not imply that they correlate. In some treatments of path analysis,
a double-headed arrow from an independent variable to itself is used to represent
its variance, but this is often omitted if the variable is standardized to unit vari-
ance. However, for completeness and mathematical correctness, we do recommend
to always include the standardized variance arrows.

By convention, lower-case letters (or numeric values, if these can be specified)
are used to represent the values of paths or double-headed arrows, in contrast to
the use of upper-case for variables. We call the values corresponding to causal
paths path coefficients, and those of the double-headed arrows simply correlation
coefficients (see Figure 5.1 for examples). In some applications, subscripts identify
the origin and destination of a path. The first subscript refers to the variable being
caused, and the second subscript tells which variable is doing the causing. In most
genetic applications we assume that the variables are scaled as deviations from the
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means, in which case the constant intercept terms in equations will be zero and
can be omitted from the structural equations.

Each dependent variable usually has a residual, unless it is fixed to zero ex-
hypothesi. The residual variable does not correlate with any other determinants
of its dependent variable, and will usually (but not always) be uncorrelated with
other independent variables.

In summary therefore, the conventions used in path analysis:

• Observed variables are enclosed in squares or rectangles. Latent variables
are enclosed in circles or ellipses. Error variables are included in the path
diagram, and may be enclosed by circles or ellipses or (occasionally) not
enclosed at all.

• Upper-case letters are used to denote observed or latent variables, and lower-
case letters or numeric values represent the values of paths or two-way arrows,
respectively called path coefficients and correlation coefficients.

• A one-way arrow between two variables indicates a postulated direct influ-
ence of one variable on another. A two-way arrow between two variables
indicates that these variables may be correlated without any assumed direct
relationship.

• There is a fundamental distinction between independent variables and depen-
dent variables. Independent variables are not caused by any other variables
in the system.

• Coefficients may have two subscripts, the first indicating the variable to which
arrow points, the second showing its origin.

5.3 Assumptions of Path Analysis

Sewall Wright (Wright, 1968, p. 299) described path diagrams in the following
manner:

“[In path analysis] every included variable, measured or hypothetical, is
represented by arrows as either completely determined by certain others
(the dependent variables), which may in turn be represented as simi-
larly determined, or as an ultimate variable (our independent variables).
Each ultimate factor in the diagram must be connected by lines with ar-
rowheads at both ends with each of the other ultimate factors, to indicate
possible correlations through still more remote, unrepresented factors,
except in cases in which it can safely be assumed that there is no corre-
lation .... the strict validity of the method depends on the properties of
formally complete linear systems of unitary variables.”
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Some assumptions of the method, implicit or explicit in Wright’s description,
are:

• Linearity: All relationships between variables are linear. The assumption of
a linear model seems valid as a wide variety of non-linear functions are well
approximated by linear ones particularly within a limited range. (Sometimes
non-linearity can be removed by appropriate transformation of the data prior
to statistical analysis; but some models are inherently non-linear).

• Causal closure: All direct influences of one variable on another must be in-
cluded in the path diagram. Hence the non-existence of an arrow between two
variables means that it is assumed that these two variables are not directly
related. The formal completeness of the diagram requires the introduction of
residual variables if they are not represented as one of the ultimate variables,
unless there is reason to assume complete additivity and determination by
the specified factors.

• Unitary Variables: Variables may not be composed of components that be-
have in different ways with different variables in the system, but they should
vary as a whole. For example, if we have three variables, A, B, and C, but
A is really a composite of A1 and A2, and A1 is positively correlated with B
and C, but A2 is positively correlated with B but negatively correlated with
C, we have a potential for disaster!

5.4 Tracing Rules of Path Analysis

One of the greatest advantages of path diagrams is their foundation upon standard
rules for reading paths, called “tracing rules,” which yield the expected variances
and covariances among the variables in the diagram.

In this section we first describe the tracing rules for standardized variables,
following Wright’s (1934, 1968) development of the method, and then outline the
rules for unstandardized variables. Although nearly all path diagrams may be
traced using rules for unstandardized variables1, we present path derivations for
standardized and unstandardized variables separately because the former are much
easier to trace than the latter, and because rules for unstandardized variables are
fairly simple generalizations of the principles used in tracing paths between stan-
dardized variables. An excellent resource for learning tracing rules is the program
RAMPATH (McArdle and Boker, 1990), which has a ‘draw bridges’ command that
illustrates the rules for any model.

1Multivariate path diagrams, including delta path (van Eerdewegh, 1982), copath (Cloninger,
1980), and conditional path diagrams (Carey, 1986a) employ slightly different rules, but are
outside the scope of this book. See Vogler (1985) for a general description.
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5.4.1 Tracing Rules for Standardized Variables

The basic principle of tracing rules is described by Sewall Wright (1934) with the
following words:

“Any correlation between variables in a network of sequential relations
can be analyzed into contributions from all the paths (direct or through
common factors) by which the two variables are connected, such that the
value of each contribution is the product of the coefficients pertaining to
the elementary paths. If residual correlations are present (represented by
bidirectional arrows) one (but never more than one) of the coefficients
thus multiplied together to give the contribution of the connecting path,
may be a correlation coefficient. The others are all path coefficients.”

In general, the expected correlation between two variables in a path diagram of
standardized variables may be derived by tracing all connecting routes (or “chains”)
between the variables, while adhering to the following conditions. One may:

1. Trace backwards along an arrow and then forward, or simply forwards from
one variable to the other but never forward and then back

2. Pass through each variable only once in each chain of paths

3. Trace through at most one two-way arrow in each chain of paths

A corollary of the first rule is that one may never pass through adjacent arrowheads.
The contribution of each chain traced between two variables to their expected

correlation is the product of its standardized coefficients. The expected correlation
between two variables is the sum of the contributions of all legitimate routes be-
tween those two variables. Note that these rules assume that there are no feedback
loops; i.e., that the model is ‘recursive’.

5.4.2 Tracing Rules for Unstandardized Variables

If we are working with unstandardized variables, the tracing rules of the previous
section are insufficient to derive expected correlations. However, in the absence of
paths from dependent variables to other dependent variables, expected covariances,
rather than correlations, may be derived with only slight modifications to the
tracing rules (see Heise, 1975):

1. At any change of direction in a tracing route which is not a two-way ar-
row connecting different variables in the chain, the expected variance of the
variable at the point of change is included in the product of path coefficients;
thus, any path from an dependent variable to an independent variable will in-
clude the double-headed arrow from the independent variable to itself, unless
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it also includes a double-headed arrow connecting that variable to another in-
dependent variable (since this would violate the rule against passing through
adjacent arrowheads)

2. In deriving variances, the path from a dependent variable to an independent
variable and back to itself is only counted once.

Perhaps a simpler approach to unstandardized path analysis is to make certain
that all residual variances are included explicitly in the diagram with double-headed
arrows pointing to the variable itself. Then the chains between two variables are
formed simply if we

1. Trace backwards, change direction at a two-headed arrow, then trace for-
wards.

As before, the expected covariance is computed by multiplying all the coefficients in
a chain and summing over all possible chains. We consider chains to be different if
either a) they don’t have the same coefficients, or b) the coefficients are in a different
order. For a clear and thorough mathematical treatment, see the RAMPATH
manual (McArdle and Boker, 1990).

5.5 Path Models for Linear Regression

In this Section we attempt to clarify the conventions, the assumptions and the
tracing rules of path analysis by applying them to regression models. The path
diagram in Figure 5.2a represents a linear regression model, such as might be
used, for example, to predict systolic blood pressure [SBP], Y1 from sodium intake
X1. The model asserts that high sodium intake is a cause, or direct effect, of high
blood pressure (i.e., sodium intake → blood pressure), but that blood pressure also
is influenced by other, unmeasured (‘residual’), factors. The regression equation
represented in Figure 5.2a is

Y1 = a1 + b11X1 + E1, (5.1)

where a is a constant intercept term, b11 the regression or ‘structural’ coefficient,
and E1 the residual error term or disturbance term, which is uncorrelated with X1.
This is indicated by the absence of a double-headed arrow between X1 and E1 or
an indirect common cause between them [Cov(X1,E1) = 0]. The double-headed
arrow from X1 to itself represents the variance of this variable: Var(X) = s11; the
variance of E1 is Var(E) = z11. In this example SBP is the dependent variable and
sodium intake is the independent variable.

We can extend the model by adding more independent variables or more de-
pendent variables or both. The path diagram in Figure 5.2b represents a multiple
regression model, such as might be used if we were trying to predict SBP (Y1)
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Figure 5.2: Regression path models with manifest variables. Univariate regres-
sion (top left). multiple regression (top middle), multivariate regression, case 1
(top right), multivariate regression, case 2 (bottom left), multivariate regression
(reciprocal feedback, bottom right).

from sodium intake (X1), exercise (X2), and body mass index [BMI] (X3), allow-
ing once again for the influence of other residual factors (E1) on blood pressure.
The double-headed arrows between the three independent variables indicate that
correlations are allowed between sodium intake and exercise (s21), sodium intake
and BMI (s31), and BMI and exercise (s32). For example, a negative covariance
between exercise and sodium intake might arise if the health-conscious exercised
more and ingested less sodium; positive covariance between sodium intake and BMI
could occur if obese individuals ate more (and therefore ingested more sodium); and
a negative covariance between BMI and exercise could exist if overweight people
were less inclined to exercise. In this case the regression equation is

Y1 = a1 + b11X1 + b12X2 + b13X3 + E1. (5.2)

Note that the estimated values for a1, b11 and E1 will not usually be the same
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as in equation 5.1 due to the inclusion of additional independent variables in the
multiple regression equation 5.2. Similarly, the only difference between Figures 5.2a
and 5.2b is that we have multiple independent or predictor variables in Figure 5.2b.

Figure 5.2c represents a multivariate regression model, where we now have two
dependent variables (blood pressure, Y1, and a measure of coronary artery disease
[CAD], Y2), as well as the same set of independent variables (case 1). The model
postulates that there are direct influences of sodium intake and exercise on blood
pressure, and of exercise and BMI on CAD, but no direct influence of sodium intake
on CAD, nor of BMI on blood pressure. Because the X2 variable, exercise, causes
both blood pressure, Y1, and coronary artery disease, Y2, it is termed a common
cause of these dependent variables. The regression equations are

Y1 = a1 + b11X1 + b12X2 + E1

and
Y2 = a2 + b22X2 + b23X3 + E2. (5.3)

Here a1 and E1 are the intercept term and error term, respectively, and b11 and
b12 the regression coefficients for predicting blood pressure, and a2, E2, b22, and
b23 the corresponding coefficients for predicting coronary artery disease. We can
rewrite equation 5.3 using matrices (see Chapter 4 on matrix algebra),

(

Y1

Y2

)

=

(

a1

a2

)

+

(

b11 b12 0
0 b22 b23

)





X1

X2

X3



+

(

1 0
0 1

)(

E1

E2

)

or, using matrix notation,

y = a + Bx + Ie,

where y, a, x, and e are column vectors and B is a matrix of regression coef-
ficients and I is an identity matrix. Note that each variable in the path diagram
which has an arrow pointing to it appears exactly one time on the left side of the
matrix expression.

Figure 5.2d differs from Figure 5.2c only by the addition of a causal path (f12)
from blood pressure to coronary artery disease, implying the hypothesis that high
blood pressure increases CAD (case 2). The presence of this path also provides
a link between Y2 and X1 (Y2 ← Y1 ← X1); this type of process with multiple
intervening variables is typically called an indirect effect (of X1 on Y2). Thus we
see that dependent variables can be influenced by other dependent variables, as
well as by independent variables. Figure 5.2e adds an additional causal path from
CAD to blood pressure (f21), thus creating a ‘feedback-loop’ (hereafter designated
as ⇐⇒) between CAD and blood pressure. If both f parameters are positive, the
interpretation of the model would be that high SBP increases CAD and increased
CAD in turn increases SBP. Such reciprocal causation of variables requires special
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treatment and is discussed further in Chapters 8 and ??. Figure 5.2e implies the
structural equations

Y1 = a1 + f12Y2 + b11X1 + b12X2 + E1

and
Y2 = a2 + f21Y1 + b22X2 + b23X3 + E2 (5.4)

In matrix form, we may write these equations as

(

Y1

Y2

)

=

(

a1

a2

)

+

(

0 f12

f21 0

)(

Y1

Y2

)

+

(

b11 b12 0
0 b22 b23

)





X1

X2

X3





+

(

1 0
0 1

)(

E1

E2

)

i.e.,
y = a + Fy + Bx + Ie

Now that some examples of regression models have been described both in the
form of path diagrams and structural equations, we can apply the tracing rules of
path analysis to derive the expected variances and covariances under the models.
The regression models presented in this chapter are all examples of unstandardized
variables. We illustrate the derivation of the expected variance or covariance be-
tween some variables by applying the tracing rules for unstandardized variables in
Figures 5.2a, 5.2b and 5.2c. As an exercise, the reader may wish to trace some
of the other paths.

In the case of Figure 5.2a, to derive the expected covariance between X1 and
Y1, we need trace only the path:

(i) X1
s11←→ X1

b11−→ Y1

yielding an expected covariance of (s11b11). Two paths contribute to the ex-
pected variance of Y1,

(i) Y1
b11←− X1

s11←→ X1
b11−→ Y1,

(ii) Y1
1←− E1

z11←→ E1
1−→ Y1;

yielding an expected variance of Y1 of (b2
11s11 + z11).

In the case of Figure 5.2b, to derive the expected covariance of X1 and Y1, we
can trace paths:

(i) Y1
b11←− X1

s11←→ X1,

(ii) Y1
b12←− X2

s21←→ X1,

(iii) Y1
b13←− X3

s31←→ X1,
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to obtain an expected covariance of (b11s11 + b12s21 + b13s31). To derive the
expected variance of Y1, we can trace paths:

(i) Y1
b11←− X1

s11←→ X1
b11−→ Y1,

(ii) Y1
b12←− X2

s22←→ X2
b12−→ Y1,

(iii) Y1
b13←− X3

s33←→ X3
b13−→ Y1,

(iv) Y1
1←− E1

z11←→ E1
1−→ Y1,

(v) Y1
b11←− X1

s21←→ X2
b12−→ Y1,

(vi) Y1
b12←− X2

s21←→ X1
b11−→ Y1,

(vii) Y1
b11←− X1

s31←→ X3
b13−→ Y1,

(viii) Y1
b13←− X3

s31←→ X1
b11−→ Y1,

(ix) Y1
b12←− X2

s32←→ X3
b13−→ Y1,

(x) Y1
b13←− X3

s32←→ X2
b12−→ Y1,

yielding a total expected variance of (b2
11s11 + b2

12s22 + b2
13s33 + 2b11b12s21 +

2b11b13s31 + 2b12b13s32 + z11).
In the case of Figure 5.2c, we may derive the expected covariance of Y1 and Y2

as the sum of

(i) Y1
b11←− X1

s21←→ X2
b22−→ Y2,

(ii) Y1
b11←− X1

s31←→ X3
b23−→ Y2,

(iii) Y1
b12←− X2

s22←→ X2
b22−→ Y2,

(iv) Y1
b12←− X2

s32←→ X3
b23−→ Y2,

giving [b11(s21b22 + s31b23) + b12(s22b22 + s32b23)] for the expected covariance.
This expectation, and the preceding ones, can be derived equally (and arguably
more easily) by simple matrix algebra. For example, the expected covariance matrix
(Σ) for Y1 and Y2 under the model of Figure 5.2c is given as

Σ = BSB′ + Z,

=

(

b11 b12 0
0 b22 b33

)





s11 s12 s13

s21 s22 s23

s31 s32 s33









b11 0
b12 b22

0 b23



+

(

z11 0
0 z22

)

in which the elements of B are the paths from the X variables (columns) to the
Y variables (rows); the elements of S are the covariances between the independent
variables; and the elements of Z are the residual error variances.
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5.6 Path Models for the Classical Twin Study

To introduce genetic models and to further illustrate the tracing rules both for
standardized variables and unstandardized variables, we examine some simple ge-
netic models of resemblance. The classical twin study, in which MZ twins and DZ
twins are reared together in the same home is one of the most powerful designs for
detecting genetic and shared environmental effects. Once we have collected such
data, they may be summarized as observed covariance matrices (Chapter 2), but
in order to test hypotheses we need to derive expected covariance matrices from
the model. We first digress briefly to review the biometrical principles outlined in
Chapter 3, in order to express the ideas in a path–analytic context.

In contrast to the regression models considered in previous sections, many ge-
netic analyses of family data postulate independent variables (genotypes and envi-
ronments) as latent rather than manifest variables. In other words, the genotypes
and environments are not measured directly but their influence is inferred through
their effects on the covariances of relatives. However, we can represent these mod-
els as path diagrams in just the same way as the regression models. The brief
introduction to path-analytic genetic models we give here will be treated in greater
detail in Chapter 6, and thereafter.

From quantitative genetic theory (see Chapter 3), we can write equations relat-
ing the phenotypes Pi and Pj of relatives i and j (e.g., systolic blood pressures of
first and second members of a twin pair), to their underlying genotypes and envi-
ronments. We may decompose the total genetic effect on a phenotype into that due
to the additive effects of alleles at multiple loci, that due to the dominance effects
at multiple loci, and that due to the epistatic interactions between loci (Mather
and Jinks, 1982). Similarly, we may decompose the total environmental effect
into that due to environmental influences shared by twins or sibling pairs reared
in the same family (‘shared’, ‘common’, or ‘between-family’ environmental effects),
and that due to environmental effects which make family members differ from one
another (‘random’, ‘specific’, or ‘within-family’ environmental effects). Thus, the
observed phenotypes, Pi and Pj , are assumed to be linear functions of the underly-
ing additive genetic variance (Ai and Aj), dominance variance (Di and Dj), shared
environmental variance (Ci and Cj) and random environmental variance (Ei and
Ej). In quantitative genetic studies of human populations, epistatic genetic effects
are usually confounded with dominance genetic effects, and so will not be consid-
ered further here. Assuming all variables are scaled as deviations from zero, we
have

P1 = e1E1 + c1C1 + a1A1 + d1D1

and
P2 = e2E2 + c2C2 + a2A2 + d2D2

Particularly for pairs of twins, we do not expect the magnitude of genetic or
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environmental effects to vary as a function of relationship2 so we set e1 = e2 = e,
c1 = c2 = c, a1 = a2 = a, and d1 = d2 = d. In matrix form, we write

(

P1

P2

)

=

(

e c a d 0 0 0 0
0 0 0 0 e c a d

)

























E1

C1

A1

D1

E2

C2

A2

D2

























.

Unless two or more waves of measurement are used, or several observed variables
index the phenotype under study, residual effects are included in the random envi-
ronmental component, and are not separately specified in the model.

Figures 5.3a and 5.3b represent two alternative parameterizations of the ba-
sic genetic model, illustrated for the case of pairs of monozygotic twins (MZ) or
dizygotic twins (DZ), who may be reared together (MZT, DZT) or reared apart
(MZA, DZA). In Figure 5.3a, the traditional path coefficients model, the vari-
ances of the latent variables A1, C1, E1, D1 and A2, C2, E2, D2 are standardized
(VE = VC = VA = VD = 1, and the path coefficients e, c, a, or d — quantifying the
paths from the latent variables to the observed variable, measured on both twins,
P1 and P2 — are free parameters to be estimated. Figure 5.3b is called a variance
components model because it fixes e = c = a = d = 1, and estimates separate ran-
dom environmental, shared environmental, additive genetic and dominance genetic
variances instead.

The traditional path model illustrates tracing rules for standardized variables,
and is straightforward to generalize to multivariate problems; the variance com-
ponents model illustrates an unstandardized path model. Provided all parameter
estimates are non-negative, tracing the paths in either parameterization will give
the same solution, with VA = a2, VD = d2, VC = c2 and VE = e2.

5.6.1 Path Coefficients Model

When applying the standardized tracing rules, it helps to draw out each tracing
route to ensure that they are neither forgotten nor traced twice. In the traditional
path model of Figure 5.3a, to derive the expected twin covariance for the case of
monozygotic twin pairs reared together, we can trace the following routes:

(i) P1
c←− C1

1←→ C2
c−→ P2

(ii) P1
a←− A1

1←→ A2
a−→ P2

2i.e. we do not expect different heritabilities for twin 1 and twin 2; however for other rela-
tionships such as parents and children, the assumption may not be valid, as could be established
empirically if we had genetically informative data in both generations.
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a)
1P

1A 1C 1E

2P

2A 2C 2E1D 2D

1.0 1.0 1.0

a c e a c e

1.0 1.0 1.0

1.0 / 0.5 1.0

1.0

d

1.0

d

1.0 / 0.25

b)
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1A 1C 1E

2P

2A 2C 2E1D 2D
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1.0 1.0 1.0 1.0 1.0 1.0

AV CV EV
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DV

1.0

DV

1.0

1.0 / 0.25

Figure 5.3: Alternative representations of the basic genetic model: a) traditional
path coefficients model, and b) variance components model.



5.6. PATH MODELS FOR THE CLASSICAL TWIN STUDY 101

(iii) P1
d←− D1

1←→ D2
d−→ P2

so that the expected covariance between MZ twin pairs reared together will be

rMZ = c2 + a2 + d2. (5.5)

In the case of dizygotic twin pairs reared together, we can trace the following
routes:

(i) P1
c←− C1

1←→ C2
c−→ P2

(ii) P1
a←− A1

0.5←→ A2
a−→ P2

(iii) P1
d←− D1

0.25←→ D2
d−→ P2

yielding an expected covariance between DZ twin pairs of

rDZ = c2 + 0.5a2 + 0.25d2. (5.6)

The expected variance of a variable — again assuming we are working with
standardized variables — is derived by tracing all possible routes from the variable
back to itself, without violating any of the tracing rules given in Section 5.4.1 above.
Thus, following paths from P1 to itself we have

(i) P1
e←− E1

e−→ P1

(ii) P1
c←− C1

c−→ P1

(iii) P1
a←− A1

a−→ P1

(iv) P1
d←− D1

d−→ P1

yielding the predicted variance for P1 or P2 in Figure 5.3a of

VP = e2 + c2 + a2 + d2. (5.7)

An important assumption implicit in Figure 5.3 is that an individual’s additive
genetic deviation is uncorrelated with his or her shared environmental or dominance
deviation (i.e., there are no arrows connecting the latent C and A variables of an
individual). In Chapter ?? we shall discuss how this assumption can be relaxed.
Also implicit in the coefficient of 0.5 for the covariance of the additive genetic values
of DZ twins or siblings is the assumption of random mating, which we shall also
relax in Chapter ??.

5.6.2 Variance Components Model

Following the unstandardized tracing rules, the expected covariances of twin pairs
in the variance components model of Figure 5.3b, are also easily derived. For the
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case of monozygotic twin pairs reared together (MZT), we can trace the following
routes:

(i) P1
1←− C1

VC←→ C2
1−→ P2

(ii) P1
1←− A1

VA←→ A2
1−→ P2

(iii) P1
1←− D1

VD←→ D2
1−→ P2

so that the expected covariance between MZ twin pairs reared together will be

Cov(MZT ) = VC + VA + VD.

Only the latter two chains contribute to the expected covariance of MZ twin
pairs reared apart, as they do not share their environment. The expected covariance
of MZ twin pairs reared apart (MZA) is thus

Cov(MZA) = VA + VD.

In the case of dizygotic twin pairs reared together (DZT), we can trace the
following routes:

(i) P1
1←− C1

VC←→ C2
1−→ P2

(ii) P1
1←− A1

0.5VA←→ A2
1−→ P2

(iii) P1
1←− D1

0.25VD←→ D2
1−→ P2

yielding an expected covariance between DZ twin reared together of

Cov(DZT ) = VC + 0.5VA + 0.25VD.

Similarly, the expected covariance of DZ twin pairs reared apart (DZA) is

Cov(DZA) = 0.5VA + 0.25VD.

In deriving expected variances of unstandardized variables, any chain from a
dependent variable to an independent variable will include the double-headed arrow
from the independent variable to itself (unless it also includes a double-headed
arrow connecting that variable to another independent variable) and each path
from an dependent variable to an independent variable and back to itself is only
counted once. In this example the expected phenotypic variance, for all groups of
relatives, is easily derived by tracing all the paths from P1 to itself:

(i) P1
1←− E1

VE←→ E1
1−→ P1

(ii) P1
1←− C1

VC←→ C1
1−→ P1

(iii) P1
1←− A1

VA←→ A1
1−→ P1

(iv) P1
1←− D1

VD←→ D1
1−→ P1
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yielding the predicted variance for P1 or P2 in Figure 5.3b of

VP = VE + VC + VA + VD .

The equivalence between Figures 5.3a and 5.3b comes from the biometrical
principles outlined in Chapter 3: a2, c2, e2, and d2 are defined as VA

VP
, VC

VP
, VE

VP
, and

VD

VP
, respectively. Since correlations are calculated as covariances divided by the

product of the square roots of the variances (see Chapter 2), the twin correlations
in Figure 5.3a may be derived using the covariances and variances in Figure 5.3b.
Thus, in Figure 5.3b, the correlation for MZ pairs reared together is

rMZT =
VC + VA + VD

√

(VC + VA + VD + VE)
√

(VC + VA + VD + VE)

=
VC + VA + VD

VP

=
VC

VP

+
VA

VP

+
VD

VP

= c2 + a2 + d2

Similarly, the correlations for MZ twins reared apart, and for DZ twins together
and apart are

rMZA = a2 + d2

rDZT = c2 + 0.5a2 + 0.25d2

rDZA = 0.5a2 + 0.25d2,

as in the case of Figure 5.3a.

5.7 Identification of Models and Parameters

One key issue with structural equation modeling is whether a model, or a parameter
within a model is identified. We say that the free parameters of a model are either
(i) overidentified; (ii) just identified; or (iii) underidentified. If all of the parameters
fall into the first two classes, we say that the model as a whole is identified, but if
one or more parameters are in class (iii), we say that the model is not identified.
In this section, we briefly address the identification of parameters in structural
equation models, and illustrate how data from additional types of relative may or
may not identify the parameters of a model.

When we applied the rules of standardized path analysis to the simple path
coefficient model for twins (Figure 5.3a), we obtained expressions for MZ and DZ
covariances and the phenotypic variance:

Cov(MZ) = c2 + a2 + d2 (5.8)

Cov(DZ) = c2 + .5a2 + .25d2 (5.9)

VP = c2 + a2 + d2 + e2 (5.10)
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These three equations have four unknown parameters c, a, d and e, and illustrate
the first point about identification. A model is underidentified if the number of free
parameters is greater than the number of distinct statistics that it predicts. Here
there are four unknown parameters but only three distinct statistics, so the model
is underidentified.

One way of checking the identification of simple models is to represent the
expected variances and covariances as a system of equations in matrix algebra:

Ax = b

where x is the vector of parameters, b is the vector of observed statistics, and A

is the matrix of weights such that element Aij gives the coefficient of parameter j
in equation i. Then, if the inverse of A exists, the model is identified. Thus in our
example we have:





1 1 1 0
1 .5 .25 0
1 1 1 1













c2

a2

d2

e2









=





b1

b2

b3



 . (5.11)

where b1 is Cov(MZ), b2 is Cov(DZ), and b3 is VP . Now, what we would really
like to find here is the left inverse, L, of A such that LA = I. However, it is easy
to show that left inverses may exist only when A has at least as many rows as it
does columns (for proof see, e.g., Searle, 1982, p. 147). Therefore, if we are limited
to data from a classical twin study, i.e. MZ and DZ twins reared together, it is
necessary to assume that one of the parameters a, c or d is zero to identify the
model. Let us suppose that we have reason to believe that c can be ignored, so
that the equations may be rewritten as:





1 1 0
.5 .25 0
1 1 1









a2

d2

e2



 =





b1

b2

b3





and in this case, the inverse of A exists3. Another, generally superior, approach
to resolving the parameters of the model is to collect new data. For example, if we
collected data from separated MZ or DZ twins, then we could add a fourth row to
A in equation 5.11 to get (for MZ twins apart)









1 1 1 0
1 .5 .25 0
1 1 1 1
0 1 1 0

















c2

a2

d2

e2









=









b1

b2

b3

b4









(5.12)

3The reader may like to verify this by calculating the determinant according to the method
laid out in Section 4.3.2 or with the aid of a computer.
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where b4 is Cov(MZA), and again the inverse of A exists. Now it is not neces-
sarily the case that adding another type of relative (or type of rearing environment)
will turn an underidentified model into one that is identified! Far from it, in fact,
as we show with reference to siblings reared together, and half-siblings and cousins
reared apart. Under our simple genetic model, the expected covariances of the
siblings and half-siblings are

Cov(Sibs) = c2 + .5a2 + .25d2 (5.13)

Cov(Half − sibs) = .25a2 (5.14)

Cov(Cousins) = .125a2 (5.15)

VP = c2 + a2 + d2 + e2 (5.16)

as could be shown by extending the methods outlined in Chapter 3. In matrix
form the equations are:









1 .5 .25 0
0 .25 0 0
0 .125 0 0
1 1 1 1

















c2

a2

d2

e2









=









b1

b2

b3

b4









. (5.17)

where b1 is Cov(Sibs), b2 is Cov(Half-sibs), b3 is Cov(Cousins), and b4 is VP .
Now in this case, although we have as many types of relationship with different
expected covariance as there are unknown parameters in the model, we still cannot
identify all the parameters, because the matrix A is singular. The presence of
data collected from cousins does not add any information to the system, because
their expected covariance is exactly half that of the half-siblings. In general, if any
row (column) of a matrix can be expressed as a linear combination of the other
rows (columns) of a matrix, then the matrix is singular and cannot be inverted.
Note, however, that just because we cannot identify the model as a whole, it does
not mean that none of the parameters can be estimated. In this example, we can
obtain a valid estimate of additive genetic variance a2 simply from, say, eight times
the difference of the half-sib and cousin covariances. With this knowledge and the
observed full sibling covariance, we could estimate the combined effect of dominance
and the shared environment, but it is impossible to separate these two sources.

Throughout the above examples, we have taken advantage of their inherent
simplicity. The first useful feature is that the parameters of the model only occur
in linear combinations, so that, e.g., terms of the form c2a are not present. While
true of a number of simple genetic models that we shall use in this book, it is
not the case for them all. Nevertheless, some insight may be gained by examining
the model in this way, since if we are able to identify both c and c2a then both
parameters may be estimated. Yet for complex systems this can prove a difficult
task, so we suggest an alternative, numerical approach. The idea is to simulate
expected covariances for certain values of the parameters, and then see whether a
program such as Mx can recover these values from a number of different starting
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points. If we find another set of parameter values that generates the same expected
variances and covariances, the model is not identified. We shall not go into this
procedure in detail here, but simply note that it is very similar to that described
for power calculations in Chapter 7.

5.8 Summary

In this chapter we have reviewed briefly the use of path analysis to represent cer-
tain linear and genetic models. We have discussed the conventions of path analysis,
and shown how it may be used to derive the covariance matrices predicted under a
particular model. We emphasize that the systems described here have been chosen
as simple examples to illustrate elementary principles of path analysis. Although
these examples are somewhat simplistic in the sense that they do not elucidate
many of the characteristics of which structural equation models are capable, famil-
iarity with them should provide sufficient skills for comprehension of other, more
advanced, genetic models described in this text and for development of one’s own
path models.

However, one aspect of structural models which has not been discussed in this
chapter is that of multiple indicators. While not strictly a feature of path analysis,
multiple indicator models, — those with more than one measure for each dependent
or independent variable — warrant some attention because they are used often in
genetic analyses of twin data, and in analyses of behavioral data in general. Our
initial regression examples from Figure 5.2 assumed that we had only a single
measure for each variable (systolic blood pressure, sodium intake, etc), and could
ignore measurement error in these observed variables. Inclusion of multiple indica-
tors allows for explicit representation of assumptions about measurement error in
a model. In our regression example of Figures 5.2d and e, for example, we might
have several measures of our independent (x) variables, a number of measures of
sodium intake (e.g., diet diary and urinary sodium), multiple measures of exercise
(e.g., exercise diary and frequency checklist), and numerous measures of obesity
(e.g., self-report body mass index, measures of skinfold thickness). Likewise, we
might have many estimates of our dependent η variables, such as repeated mea-
sures of blood pressure, and several tests for coronary artery disease. Figure 5.4
expands Figure 5.2a by illustrating the cases of (a) one variable per construct, (b)
two variables per construct, and (c) three or more observed variables per construct.

Covariance and variance expectations for multiple indicator models such as
those shown in Figure 5.4 follow without exception from the path tracing rules
outlined earlier in this chapter. However, the increase in number of variables in
these models often results in substantial increases in model complexity. One of the
important attractions of Mx is its flexibility in specifying models using matrix alge-
bra. Various commands are available that allow changing the number of variables
with relative ease. It is to the Mx model specification that we now turn.
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Figure 5.4: Regression path models with multiple indicators. Single indicator
variable model (left), two indicator variable model (middle), multiple indicator
variable model (right).
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Chapter 6

Univariate Analysis

6.1 Introduction

In this chapter we take the univariate model as described in Chapter 5, and apply
it to twin data. The main goals of this chapter are i) to enable the readers to apply
the models to their own data, and ii) deepen their understanding of both the scope
and the limitations of the method. In Section 6.2.1 a model of additive genetic
(A), dominance genetic (D), common environment (C), and random environment
(E) effects is presented although D and C are confounded when our data have
been obtained from pairs of twins reared together. The first example concerns a
continuous variable: body mass index (BMI), a widely used measure of obesity,
and Section 6.2.2 describes how these data were obtained and summarized. In
Section 6.2.3 we fit this model to authentic data, using Mx in a path coefficients
approach, and discuss the output in Section 6.2.4. Section 6.2.5 illustrates the
univariate model fitted with variance components, an alternative treatment which
may be skipped without loss of continuity. The results of initial model-fitting to
BMI data appear in Section 6.2.6 and two extensions to the model, the use of means
(Section 6.2.7) and of unmatched twins (Section 6.2.8), are described before drawing
general conclusions about the BMI analyses in Section 6.2.9. In Section 6.3 the
basic model is applied to ordinal data. The second example (Section 6.3.1) describes
the collection and analysis of major depressive disorder in a sample of adult female
twins. This application serves to contrast the data summary and analysis required
for an ordinal variable against those appropriate for a continuous variable. In most
twin studies there is considerable heterogeneity of age between pairs. As shown in
Section 6.4, such heterogeneity can give rise to inflated estimates of the effects of the
shared environment. We, therefore, provide a method of incorporating age into the
structural equation model to separate its effects from other shared environmental
influences.

109
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6.2 Fitting Genetic Models to Continuous Data

6.2.1 Basic Genetic Model

Derivations of the expected variances and covariances of relatives under a simple
univariate genetic model have been reviewed briefly in the chapters on biometrical
genetics and path analysis (Chapters 3 and 5). In brief, from biometrical genetic
theory we can write structural equations relating the phenotypes, P , of relatives
i and j (e.g., BMI values of first and second members of twin pairs) to their
underlying genotypes and environments which are latent variables whose influence
we must infer. We may decompose the total genetic effect on a phenotype into
contributions of:

• Additive effects of alleles at multiple loci (A),

• Dominance effects at multiple loci (D),

• Higher-order epistatic interactions between pairs of loci (additive × additive,
additive × dominance, dominance × dominance: AA, AD, DD), and so on.

In practice even additive × dominance and dominance × dominance epistasis are
confounded with dominance in studies of humans, and the power of resolving ge-
netic dominance and additive × additive epistasis is very low. We shall therefore
limit our consideration to additive and dominance genetic effects.

Similarly, we may decompose the total environmental effect into that due to
environmental influences shared by twins or sibling pairs reared in the same family
(shared, common, or between-family environmental (C) effects), and that due to
environmental effects that make family members differ from one another (within-
family, specific, or random environmental (E) effects). Thus, the observed phe-
notypes, Pi and Pj , will be linear functions of the underlying additive genetic
deviations (Ai and Aj), dominance genetic deviations (Di and Dj), shared envi-
ronmental deviations (Ci and Cj), and random environmental deviations (Ei and
Ej). Assuming all variables are scaled as deviations from zero, we have

P1 = e1E1 + c1C1 + a1A1 + d1D1

P2 = e2E2 + c2C2 + a2A2 + d2D2 (6.1)

In most models we do not expect the magnitude of genetic effects, or the environ-
mental effects, to differ between first and second twins, so we set e1 = e2 = e, c1 =
c2 = c, a1 = a2 = a, d1 = d2 = d. Likewise, we do not expect the values of e, c, a,
and d to vary as a function of relationship. In other words, the effects of genotype
and environment on the phenotype are the same regardless of whether one is an
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MZ twin, a DZ twin, or not a twin at all. In matrix form, we may write

(

P1

P2

)

=

(

a c e d 0 0 0 0
0 0 0 0 a c e d

)

























A1

C1

E1

D1

A2

C2

E2

D2

























As shown in Chapter 5, this model generates a predicted covariance matrix (Σ)
which is equal to

[

a2 + c2 + ee + d2 a2 + c2 + d2

a2 + c2 + d2 a2 + c2 + ee + d2

]

Unless two or more waves of measurement are used, or several variables index
the phenotype under study, residual effects (such as measurement error) will form
part of the random environmental component, and are not explicitly included in
the model.

To obtain estimates for the genetic and environmental effects in this model,
we must also specify the variances and covariances among the latent genetic and
environmental factors. Two alternative parameterizations are possible: 1) the vari-
ance components approach (Chapter 3), or 2) the path coefficients model (Chap-
ter 5). The variance components approach becomes cumbersome for designs in-
volving more complex pedigree structures than pairs of relatives, but it does have
some numerical advantages.

In the variance components approach we estimate variances of the latent non-
shared and shared environmental and additive and dominance genetic variables,
VE , VC , VA, or VD , and fix a = c = e = d = 1. Thus, the phenotypic variance is
simply the sum of the four variance components. In the path coefficients approach
we standardize the variances of the latent variables to unity (VE = VC = VA =
VD =1) and estimate a combination of a, c, e, and d as free parameters. Thus, the
phenotypic variance is a weighted sum of standardized variables. In this volume
we will often refer to models that have particular combinations of free parameters
in the general path coefficients model. Specifically, we refer to an ACE model as
one having only additive genetic, common environment, and random environment
effects; an ADE model as one having additive genetic, dominance, and random
environment effects; an AE model as one having additive genetic and random
environment effects, and so on.

Figures 5.3a and 5.3b in Chapter 5 represent path diagrams for the two alter-
native parameterizations of the full basic genetic model, illustrated for the case of
pairs of monozygotic twins (MZ) or dizygotic twins (DZ), who may be reared to-
gether (MZT, DZT) or reared apart (MZA, DZA). For simplicity, we make certain
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strong assumptions in this chapter, which are implied by the way we have drawn
the path diagrams in Figure 5.3:

1. No genotype-environment correlation, i.e., latent genetic variables A are un-
correlated with latent environmental variables C and E;

2. No genotype × environment interaction, so that the observed phenotypes are
a linear function of the underlying genetic and environmental variables;

3. Random mating, i.e., no tendency for like to marry like, an assumption which
is implied by fixing the covariance of the additive genetic deviations of DZ
twins or full sibs to 0.5VA;

4. Random placement of adoptees, so that the rearing environments of separated
twin pairs are uncorrelated.

We discuss ways in which these assumptions may be relaxed in subsequent chapters,
particularly Chapter 9 and Chapter ??.

6.2.2 Body Mass Index in Twins

Table 6.1 summarizes twin correlations and other summary statistics (see Chap-
ter 2) for untransformed BMI, defined as weight (in kilograms) divided by the
square of height (in meters). BMI is an index of obesity which has been widely
used in epidemiologic research (Bray, 1976; Jeffrey and Knauss, 1981), and has
recently been the subject of a number of genetic studies (Grilo and Pogue-Guile,
1991; Cardon and Fulker, 1992; Stunkard et al., 1986). Values between 20–25
are considered to fall in the normal range for this population, with BMI < 20
taken to indicate underweight, BMI > 25 overweight, and BMI > 28 obesity (Aus-
tralian Bureau of Statistics, 1977) though standards vary across nations. The data
analyzed here come from a mailed questionnaire survey of volunteer twin pairs
from the Australian NH&MRC twin register conducted in 1981 (Martin and Jar-
dine, 1986; Jardine, 1985). Questionnaires were mailed to 5967 pairs age 18 years
and over, with completed questionnaires returned by both members of 3808 (64%)
pairs, and by one twin only from approximately 550 pairs, yielding an individual
response rate of 68%. The total sample has been subdivided into a young cohort,
aged 18-30 years, and an older cohort aged 31 and above. This allows us to exam-
ine the consistency of evidence for environmental or genetic determination of BMI
from early adulthood to maturity. For each cohort, twin pairs have been subdi-
vided into five groups: monozygotic female pairs (MZF), monozygotic male pairs
(MZM), dizygotic female pairs (DZF), dizygotic male pairs (DZM) and opposite-
sex pairs (DZFM). We have avoided pooling MZ or like-sex DZ twin data across
sex before computing summary statistics. Pooling across sexes is inappropriate
unless it is known that there is no gender difference in mean, variance, or twin pair
covariance, and no genotype × sex interaction; it should almost always be avoided.
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Table 6.1: Twin correlations and summary statistics for untransformed BMI in
twins concordant for participation in the Australian survey. BMI is calculated as
kg/m2. Notation used is N : sample size in pairs; r: correlation; x̄: mean; σ2:
variance; skew: skewness; kurt: kurtosis. Groups consist of monozygotic (MZ) or
dizygotic (DZ) twin pairs who are male (M), female (F) or opposite-sex (FM) and
young (Y) or older (O).

First Twin† Second Twin
N r x̄ σ2 skew kurt x̄ σ2 skew kurt

MZFY 534 .78 21.25 7.73 1.82 6.84 21.30 8.81 2.14 9.44
MZFO 637 .69 23.11 11.87 1.22 2.53 22.97 11.25 1.08 2.11
DZFY 328 .30 21.58 8.56 1.75 6.04 21.64 9.84 2.38 12.23
DZFO 380 .32 22.77 10.93 1.40 4.03 22.95 12.63 1.26 2.43
MZMY 251 .77 22.09 5.95 0.28 0.10 22.13 5.77 0.40 0.30
MZMO 281 .70 24.22 6.42 0.11 -0.05 24.30 7.85 0.43 0.63
DZMY 184 .32 22.71 8.16 1.00 1.71 22.61 9.63 1.55 6.24
DZMO 137 .37 24.18 8.28 0.41 0.70 24.08 7.42 0.72 0.43
DZFMY 464 .23 21.33 6.89 1.06 1.84 22.47 6.81 0.76 1.72
DZFMO 373 .24 23.07 12.63 1.23 2.24 24.65 8.52 0.88 1.49
† Female twins are ‘first twin’ in opposite-sex pairs.

Among same-sex pairs, twins were assigned as first or second members of a pair
at random. In the case of opposite-sex twin pairs, data were ordered so that the
female is always the first member of the pair.

In both sexes and both cohorts, MZ twin correlations are substantially higher
than like-sex DZ correlations, suggesting that there may be a substantial genetic
contribution to variation in BMI. In the young cohort, the like-sex DZ correlations
are somewhat lower than one-half of the corresponding MZ correlations, but this
finding does not hold up in the older cohort. In terms of additive genetic (VA) and
dominance genetic (VD) variance components, the expected correlations between
MZ and DZ pairs are respectively rMZ = VA + VD and rDZ = 0.5VA + 0.25VD,
(see Chapters 3). Thus the fact that the like-sex DZ twin correlations are less than
one-half the size of the MZ correlations in the young cohort suggests a contribution
of genetic dominance, as well as additive genetic variance, to individual differences
in BMI. Model-fitting analyses (e.g., (Heath et al., 1989b) are needed to determine
whether the data:

1. Are consistent with simple additive genetic effects

2. Provide evidence for significant dominance genetic effects

3. Enable us to reject a purely environmental model
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Table 6.2: Polynomial regression of absolute intra-pair difference in BMI
(|BMIT1−BMIT2|) on pair sum (BMIT1 + BMIT2), sum2, and sum3. The mul-
tiple regression on these three quantities is shown for raw and log-transformed
BMI scores.

Young Cohort Older Cohort
Sample Raw BMI R2 Log BMI R2 Raw BMI R2 Log BMI R2

MZF 0.11*** 0.04*** 0.16*** 0.06***
MZM 0.10*** 0.04* 0.09*** 0.03*
DZF 0.34*** 0.15*** 0.27*** 0.12***
DZM 0.15*** 0.06* 0.03 0.01
***p < .001; *p < .05.

4. Indicate significant genotype × age-cohort interaction.

Skewness and kurtosis measures in Table 6.1 indicate substantial non-normality
of the marginal distributions for raw BMI. We have also computed the polynomial
regression of absolute intra-pair difference in BMI values on pair sum1 separately
for each like-sex twin group. These are summarized in Table 6.2. If the joint
distribution of twin pairs for BMI is bivariate normal, these regressions should
be non-significant. Here, however, we observe a highly significant regression: on
average, pairs with high BMI values also exhibit larger intra-pair differences in
BMI. This is likely to be an artefact of scale, since using a log-transformation sub-
stantially reduces the magnitude of the polynomial regression (as well as reducing
marginal measures of skewness and kurtosis).

In general, raw data or variance-covariance matrices, not correlations, should be
used for model-fitting analyses with continuously distributed variables such as BMI.
The simple genetic models we fit here predict no difference in variance between
like-sex MZ and DZ twin pairs, but the presence of such variance differences may
indicate that the assumptions of the genetic model are violated. This is an important
point which we must consider in some detail. To many researchers the opportunity
to expose an assumption as false may seem like something to be avoided if possible,
because it may mean i) more work or b) difficulty publishing the results. But there
are better reasons not to use a technique that hides assumption failure. For sure,
if we fitted models to correlation matrices, variance differences would never be
observed, but to do so would be like, in physics, breaking the thermometer if a
temperature difference did not agree with the theory. Rather, we should look
at failures of assumptions as opportunities in disguise. First, a novel effect may
have been discovered! Second, if the effect biases the parameters of interest, it
may be possible to contol for the effect statistically, and therefore obtain unbiased

1i.e. the unsigned difference between twin 1 and twin 2 of each pair, |BMItwin 1−BMItwin 2|
with BMItwin 1 + BMItwin 2



6.2. FITTING GENETIC MODELS TO CONTINUOUS DATA 115

Table 6.3: Covariances of Twin Pairs for Body Mass Index: 1981 Australian
Survey. BMI = 7× ln(kg/(m2)).

w
Young Cohort (< 30) Older Cohort (≥ 30)
Covariance Matrix Meansa Covariance Matrix Meansa

N Twin 1 Twin 2 x̄′ N Twin 1 Twin 2 x̄′

MZF T1 534 0.725 0.589 0.341 637 0.976 0.666 0.909
MZF T2 0.589 0.792 0.351 0.666 0.954 0.869
DZF T1 328 0.779 0.246 0.444 380 0.915 0.312 0.810
DZF T2 0.246 0.837 0.459 0.312 1.042 0.858
MZM T1 251 0.597 0.448 0.625 281 0.545 0.413 1.271
MZM T2 0.448 0.569 0.638 0.413 0.643 1.288
DZM T1 184 0.719 0.245 0.808 137 0.689 0.238 1.250
DZM T2 0.245 0.818 0.769 0.238 0.597 1.228
DZFM T1 464 0.683 0.153 0.372 373 1.036 0.196 0.892
DZFM T2 0.153 0.663 0.740 0.196 0.646 1.386
ax̄′ = x̄− 21.

estimates. Third, we may have the opportunity to develop a new and useful method
of analysis.

To return to the task in hand, we present summary twin pair covariance matrices
in Table 6.3. These statistics have been computed for 7 ln (BMI), and means have
been computed as (7ln (BMI)− 21), to yield summary statistics with magnitudes
of approximately unity. Rescaling the data in this way will often improve the
efficiency of the optimization routines used in model-fitting analyses (Gill et al.,
1981)2

6.2.3 Building a Path Coefficients Model Mx Script

With the introduction from the previous sections and chapters, we are now in a
position to set up a simple genetic model using Mx. The script in Appendix A.1
fits a simple univariate genetic model, estimating path coefficients, to covariance
matrices for two like-sex twin groups: MZ twin pairs reared together, and DZ twin
pairs reared together. The script is written to ignore information on means. The
full path diagram is given in Figure 6.1 We have drawn this figure to correspond to
the variables in the model. The latent genetic and environmental variables A, C, E
and D cause the observed variables P1 and P2. The script is written to fit a model
with free parameters e, a, and d, and fixing c to zero — implying that there are

2small observed variances (< .5) can be problematic as the predicted covariance matrix may
become non-positive definite.
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Figure 6.1: Univariate genetic model for data from monozygotic (MZ) or dizygotic
(DZ) twins reared together. Genetic and environmental latent variables cause the
phenotypes P1 and P2. The correlation between A1 and A2 is 1.0 for MZ and 0.5
for DZ twins. The correlation between D1 and D2 is 1.0 for MZ and 0.25 for DZ
twins.

no effects of shared environment on BMI. The script is extensively documented
using the comment facility in Mx: any line beginning with an exclamation mark is
interpreted as a comment. We shall consider this first example Mx script in detail.
Please note that reading this section is not a substitute for reading in detail the
Mx manual (Neale et al., 2003), but merely a quick introduction to the essentials
of a Mx script for genetic applications.

Each new statement in a script begins on a new line. For each group, we will
have the following structure:

1. Title

2. Group type

3. Read and select any observed data, supply labels

4. Declare matrices to express the model

5. Specify parameters, (starting) values, equality constraints

6. Define matrix formulae for the model or use matrix algebra

7. Request fit functions, output and optimization options
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8. End

We shall now examine the structure in greater detail, focusing on our BMI model.
We plan to test hypotheses about the contributions of genetic and environmental
factors to individual differences in BMI using data collected from MZ and DZ twins
reared together. The Mx script therefore will have at least two groups. To simplify
the structure of the script, we have added a calculation group at the beginning.
We start the Mx script by indicating how many groups our job consists of with the
#NGroups 3 statement.

• Title

Calculate genetic and environmental variance components

A new title must be given at the start of each group.

• Set the Group Type

Calculation

Calculation groups allow the specification of matrix operations in an algebra
section which can greatly simplify the structure of the script. Here, we use the
calculation group to specify the free and fixed parameters in the model, e, a, d,
and c, and calculate their squared quantities, to be used in the expectations of
the variances and the MZ and DZ covariances of the model (see Section ??).

• Matrices Declaration

Begin Matrices;

X Lower 1 1 Free ! additive genetic path coefficient, a

Y Lower 1 1 Fixed ! common environmental path coefficient, c

Z Lower 1 1 Free ! specific environmental path coefficient, e

W Lower 1 1 Free ! dominance genetic path coefficient, d

H Full 1 1 ! scalar, 0.5

Q Full 1 1 ! scalar, 0.25

End Matrices;

The matrices declaration section begins with a Begin Matrices; line and
ends with a End Matrices; line. Up to 26 matrices can be declared, each
starting on a new line. Matrix names are restricted to one letter, from A
to Z. The name is followed by the matrix type (see Mx manual for details
on available matrix types), the number of rows and the number of colums.
All matrix elements are fixed by default. If the keyword Free appears, each
modifiable element has a free parameter specified to be estimated. In this
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example, four 1 × 1 matrices have been declared. Matrices X, Z and W rep-
resent free parameters a, e and d, respectively. The parameter c in matrix
Y is fixed to zero (the word Fixed appears only for clarification). Two addi-
tional matrices, H and Q, are declared for fixed scalars to be used in the model
specification.

• Labels, Numbers and Parameters

Label Row X add_gen

Label Row Y comm_env

Label Row Z spec_env

Label Row W dom_gen

Matrix H .5

Matrix Q .25

Start .6 All

Labels can be given for the row or column (or both) of any matrix. Values can
be assigned to matrix elements using the Matrix command. If the matrix
element is modifiable, the assigned value will be the starting value. The
Start command here is used to assign the same starting value to All the free
parameters in the model.

In genetic problems, we must assign starting values to parameters. In the
present case, the only parameters to be estimated are a, d and e. In choosing
starting values for twin data, a useful rule of thumb is to assume that the total
variance is divided equally between the parameters that are to be estimated.
In this case the predicted total variance is 3 × .62 = 1.08 which is close to
the observed total variance in these data. For other data, other starting
values may be required. Good starting values can save a significant amount
of computer time, whereas bad starting values may cause any optimizer to
fail to find a global minimum, or to hit a maximum number of iterations
before converging.

• Algebra Section

Begin Algebra;

A= X*X’; ! additive genetic variance, a^2

C= Y*Y’; ! common environmental variance, c^2

E= Z*Z’; ! specific environmental variance, e^2

D= W*W’; ! dominance genetic variance, d^2

End Algebra;

The algebra section begins with a Begin Algebra; statement and ends with
a End Algebra; statement. Each algebra operation starts on a new line and
ends with a semi-colon (it may run over several lines so a ; is essential to
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mark the end of a formula). The matrix on the left side of the = sign is newly
defined as the result of the matrix operation on the right side of the = sign.
Matrices on the right have to be declared in the matrices declaration section
or defined in a previous algebra statement. In this example the quantities
a2, c2, e2 and d2 are calculated in matrices A, C, E and D, respectively, as the
model in the data groups is specified in these terms.

• End

Every group ends with an End statement.

The structure for the data groups for MZ and DZ twins is very similar. We will
only discuss the first data group in detail. The first line gives the title for this
group.

• Data Section

Data NInput_vars=2 NObservations=534

Labels bmi_t1 bmi_t2

CMatrix Symmetric File=ozbmimzf.cov

where:

1. NInputvars is number of input variables, i.e., 2n, if there are n variables
assessed for each member of a twin pair

2. NObservations is number of observations or sample size, i.e., number
of pairs used to compute the data matrix in this group.

Mx allows the user the option of reading a list of names for the observed
variables (Labels). This is very useful for clarification of the Mx output. Mx
will read a covariance matrix (CMatrix), a correlation matrix (KMatrix), or a
matrix of polychoric and polyserial correlations (PMatrix). The matrix may
be read as a lower triangle in free format (the default, the keyword Symmetric

is optional), or as a full matrix if the keyword Full is specified. It will also
read means (Means) when these are needed. Summary statistics can be read
from within the Mx script, for example,

CMatrix Symmetric

0.7247

0.5891 0.7915

Alternatively, the data matrices can be read from separate files, e.g.,

CMatrix Symmetric File=ozbmimzf.cov
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The lines referring to the actual data, Data, Labels and CMatrix can be
saved in a dat file (e.g. ozbmimzf.dat which can then be included in the Mx
script with the following statement:

#include ozbmimzf.dat

• Matrices declaration

Begin Matrices= Group 1;

The = Group 1; command includes all the declared and defined matrices
from the group 1 into the current group.

• Model specification

Covariances A+C+D+E | A+C+D_

A+C+D | A+C+D+E;

The expected covariance matrix is specified using a matrix formulation with
the expected variances for twin 1 and twin 2 on the diagonal and the expected
covariance between twins, in this case for MZ’s, as the off-diagonal element.
The expectation for the variance, a2 +c2+d2+e2, is translated into A+C+D+E;
that for the MZ covariance, a2 + c2 + d2, into A+C+D. The resulting four 1 ×
1 matrices are concatenated using the horizontal bar | and the vertical bar
_ operators to form the 2 × 2 expected covariance matrix, corresponding to
the 2 × 2 observed covariance matrix. Note that the covariance statement
needs to end with a semicolon.

• Options

Option RSiduals

Various options for statistical output and optimization can be specified. Usu-
ally, the choice of estimation procedure will be either maximum likelihood if
covariance matrices are being analyzed, or weighted least squares if matrices
of polychoric, polyserial, or product-moment correlations are being analyzed.
The RSiduals option is very useful as it results in the printing of the ob-
served, expected and residual matrices in the output.

The specification for the DZ group is very similar to that of the MZ group. Note
the different number of observations, the new filename containing the DZ observed
covariance matrix and the expected covariance matrix to match the expectation of
the DZ covariance, .5a2 + c2 + .25d2. A special form of matrix multiplication, the
Kronecker product, represented by the symbol @, is used to premultiply the matrix
A by the scalar .5 and the matrix D by the scalar .25. The specification extends
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easily to the multivariate case (see Chapter 10).

After successfully running the Mx input script, by default, Mx generates an
output file which prints the

1. User’s input script

2. Parameter Specifications

3. Parameter Estimates

4. Measures of overall goodness-of-fit.

Other useful output can be requested by additional options, including:

• NDecimals=x – set number of decimals in printed output (0 < x < 8, default:
x =4) — useful for simulation work.

• Iterations=xx – set maximum number of iterations (default: 1000).

The Mx manual should be consulted for a full description of the options.

6.2.4 Interpreting the Mx Output

We can run the example of Appendix A.1 on a personal computer with Mx installed
by typing:

Mx univar.mx univar.mxo

where univar.mx is the name of the script file, and univar.mxo is the name of
the output file. We recommend mx and mxo as file extensions to make Mx input
and output distinct from input and output of other programs. This example fits
a model allowing for random environmental effects, additive genetic effects, and
dominance genetic effects, to the young female like-sex MZ and DZ covariance
matrices for log-transformed BMI. The Mx output includes:

1. Listing of the Mx script.

2. Parameter Specifications for each group, indicating the parameters to be
estimated. Matrices are ordered alphabetically.

MATRIX W

This is a LOWER matrix of order 1 by 1

1

1 3

MATRIX X

This is a LOWER matrix of order 1 by 1
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1

1 1

MATRIX Y

This is a LOWER matrix of order 1 by 1

It has no free parameters specified

MATRIX Z

This is a LOWER matrix of order 1 by 1

1

1 2

If no labels are specified in the input script, Mx will use consecutive numbers
for the rows and columns of each matrix. The matrix element 1 identifies the
first free parameter to be estimated (a), referring to the first matrix element
that was declared free (Free) in the matrices declaration section. Similarly,
2 identifies parameter e, and 3 identifies parameter d. It is important to
check these to confirm that parameters have been correctly specified and
that the total number of estimated parameters corresponds to the number of
free parameters in the model to be fitted.

3. Mx Parameter Estimates for each group, obtained at the solution. In the
case of Appendix A.1, for example, we obtain

MATRIX W

This is a LOWER matrix of order 1 by 1

1

1 .5441

MATRIX X

This is a LOWER matrix of order 1 by 1

1

1 .5621

MATRIX Y

This is a LOWER matrix of order 1 by 1

It has no free parameters specified

MATRIX Z

This is a LOWER matrix of order 1 by 1

1

1 .4119

In other words, our maximum-likelihood parameter estimates are a = 0.56,
d = 0.54, and e = 0.41 for these data.
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4. If we include the option RSiduals in a group, the observed, and expected
(‘fitted’) covariance matrix and residuals for that group are printed; Com-
parison of models should normally be based on likelihood-ratio chi-squared
tests, since significance tests based on standard errors may be misleading for
this example (Neale et al., 1989b).

5. The goodness-of-fit chi-squared is reported. In this example, χ2
3 = 3.71, p =

0.29, indicating that the model gives a good fit to the data. A small p value
(e.g. < .05) would indicate a lack of agreement between the data and the
predictions of the model.

6. Finally, standardized parameter estimates can be calculated for each group.
In this univariate case, we may standardize a2 by computing a2/(a2+c2+e2+
d2) to give the proportion of the total variance in BMI which is accounted for
by additive genetic effects (40.4%). Similarly, we can calculate the proportion
of variance accounted for by random environmental effects (21.7%), and by
dominance genetic effects (37.9%). These analyses suggest that in young
women age 30 and under, additive and non-additive genetic factors account
for approximately 78% of the variance in BMI. These calculations can be
easily done in an algebra section.

Discussion of these results continues in Section 6.2.6.

6.2.5 Building a Variance Components Model Mx Script

We include the variance components parameterization of the basic structural equa-
tion model for completeness. It will not be developed and applied in as great detail
as the path coefficients parameterization because (i) it is difficult to generalize to
more complex pedigree structures or multivariate problems, and (ii) doing so would
contribute much by weight but little by insight to this volume. Readers seeking
an easy introduction to twin models in Mx may skip this section and focus their
attention on Section 6.2.3, the path coefficients parameterization.

For MZ and DZ twin pairs reared in the same family, the variance components
parameterization is presented in (Figure 5.3b). Under the simplifying assumptions
of the present chapter, the 2× 2 expected covariance matrix of twin pairs (Σ) will
be, in terms of variance components,

[

VE + VC + VA + VD ωiVC + αiVA + δiVD

ωiVC + αiVA + δiVD VE + VC + VA + VD

]

where ωi is 1 for twins, full sibs or adoptees reared in the same household, but 0
for separated twins or other biological relatives reared apart; αi is 1 for MZ twin
pairs, 0.5 for DZ pairs, full sibs, or parents and offspring, and 0 for genetically
unrelated individuals; and δi is 1 for MZ pairs, 0.25 for DZ pairs or full sibs, and 0
for most other relationships. In terms of path coefficients, we need only substitute
VE = e2, VC = c2, VA = h2, and VD = d2.
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In data on twin pairs reared together the effects of shared environment and
genetic dominance are confounded. If both additive genetic effects and shared en-
vironmental effects contribute to variation in a trait, the covariance of DZ twin
pairs will be less than the MZ covariance, but greater than one-half the MZ covari-
ance. If both additive genetic effects and dominance genetic effects contribute to
variation in a trait, the covariance of DZ pairs will be less than one-half the MZ
covariance. In terms of variance components, therefore, a substantial dominance
genetic effect will lead to a negative estimate of the shared environmental vari-
ance component, if a model allowing for additive genetic and shared environmental
variance components is fitted; while conversely a substantial shared environmental
effect will lead to a negative estimate of the dominance genetic variance compo-
nent, if a model allowing for additive and dominance genetic variance components
is fitted (Martin et al., 1978). In terms of path coefficients, however, since we are
estimating parameters c or d, c2 or d2 can never take negative values, and so we
will obtain an estimate of c = 0 in the presence of dominance, or d = 0 in the
presence of shared environmental effects. Additional data on separated twin pairs
(Jinks and Fulker, 1970) or on the parents or other relatives of twins (Fulker, 1982;
Heath, 1983) are needed to resolve the effects of shared environment and genetic
dominance when both are present.

Appendix A.2 illustrates an example script for fitting a variance components
model to twin pair covariance matrices for two like-sex twin pair groups. We
estimate additive genetic, dominance genetic and random environmental variance
components in the matrices A, D and E. The covariance statement is the same as
for the path model example. The only change is in the calculation group, which
does not square the estimates to construct A, C, E and D.

For the young male like-sex pairs, the estimates are VE = 0.14, VA = 0.25,
and VD = 0.29. We can calculate standardized variance components by hand, as
V ∗

E = VE/VP , V ∗
A = VA/VP , and V ∗

D = VD/VP , where VP = VE +VA +VD = 0.6804
(which can be read directly from the variance in the expected covariance matrix).
In this example, random environmental effects account for 20.3% of the variance,
additive genetic effects for 36.4% of the variance, and dominance genetic effects for
43.3% of the variance of BMI in young adult males. By χ2 test of goodness-of-fit,
our model gives only a marginally acceptable fit to the data (χ2

3 = 7.28, p = 0.06).

6.2.6 Interpreting Univariate Results

In model-fitting to univariate twin data, whether we use a variance components or
a path coefficients model, we are essentially testing the following hypotheses:

1. No family resemblance (“E” model: e > 0: a = c = d = 0)

2. Family resemblance solely due to additive genetic effects (“AE” model: a >
0, e > 0, c = d = 0)
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Table 6.4: Results of fitting models to covariance matrices for Body Mass Index:
Two-group analyses, complete pairs only.

Young Older
Females Males Females Males

Model (df) χ2 p χ2 p χ2 p χ2 p
CE (4) 160.72 <.001 97.20 <.001 87.36 <.00v1 37.14 <.001
AE (4) 8.06 .09 10.88 .03 2.38 .67 5.03 .28
ACE (3) 8.06 <.05 10.88 .01 2.38 .50 5.03 .17
ADE (3) 3.71 .29 7.28 .06 1.97 .58 5.03 .17

3. Family resemblance solely due to shared environmental effects (“CE” model:
e > 0, c > 0, a = d = 0)

4. Family resemblance due to additive genetic plus dominance genetic effects
(“ADE” model: a > 0, d > 0, e > 0, c = 0)

5. Family resemblance due to additive genetic plus shared environmental effects
(“ACE” model: a > 0, c > 0, e > 0, d = 0).

Note that we never fit a model that excludes random environmental effects, because
it predicts perfect MZ twin pair correlations, which in turn generate a singular
expected covariance matrix3. From inspection of the twin pair correlations for
BMI, we noted that they were most consistent with a model allowing for additive
genetic, dominance genetic, and random environmental effects. Model-fitting gives
three important advantages at this stage:

1. An overall test of the goodness of fit of the model

2. A test of the relative goodness of fit of different models, as assessed by
likelihood-ratio χ2. For example, we can test whether the fit is significantly
worse if we omit genetic dominance for BMI

3. Maximum-likelihood parameter estimates under the best-fitting model.

Table 6.4 tabulates goodness-of-fit chi-squares obtained in four separate anal-
yses of the data from younger or older, female or male like-sex twin pairs. Let us
consider the results for young females first. The non-genetic model (CE) yields
a chi-squared of 160.72 for 4 degrees of freedom4, which is highly significant and

3A singular matrix cannot be inverted (see Chapter 4) and, therefore, the maximum likelihood
fit function cannot be computed.

4The degrees of freedom associated with this test are calculated as the difference between the
number of observed statistics (ns) and the number of estimated parameters (np) in the model.
Our data consist of two variances and a covariance for each of the MZ and DZ groups, giving
ns = 6 in total. The CE model has two parameters c and e, so ns − np = 6 − 2 = 4df.
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implies a very poor fit to the data indeed. In stark contrast, the alternative model
of additive genes and random environment (AE) is not rejected by the data, but
fits moderately well (p = .09). Adding common environmental effects (the ACE
model) does not improve the fit whatsoever, but the loss of a degree of freedom
makes the χ2 significant at the .05 level. Finally, the ADE model which substitutes
genetic dominance for common environmental effects, fits the best according to the
probability level. We can test whether the dominance variation is significant by
using the likelihood ratio test. The difference between the χ2 of a general model
(χ2

G) and the that of a submodel (χ2
S ) is itself a χ2 and has dfS − dfG degrees

of freedom (where subscripts S and G respectively refer to the submodel and gen-
eral model, in other words, the difference in df between the general model and the
submodel). In this case, comparing the AE and the ADE model gives a likelihood
ratio χ2 of 8.06− 3.71 = 4.35 with 4− 3 = 1df. This is significant at the .05 level,
so we say that there is significant deterioration in the fit of the model when the
parameter d is fixed to zero, or simply that the parameter d is significant.

Now we are in a position to compare the results of model-fitting in females and
males, and in young and older twins. In each case, a non-genetic (CE) model yields
a significant chi-squared, implying a very poor fit to the data: the deviations of
the observed covariance matrices from the expected covariance matrices under the
maximum-likelihood parameter estimates are highly significant. In all groups, a
full model allowing for additive plus dominance genetic effects and random envi-
ronmental effects (ADE) gives an acceptable fit to the data, although in the case
of young males the fit is somewhat marginal. In the two older cohorts, however,
a model which allows for only additive genetic plus random environmental effects
(AE) does not give a significantly worse fit than the full (ADE) model, by likelihood-
ratio χ2 test. In older females, for example, the likelihood-ratio chi-square is
2.38 − 1.97 = 0.41, with degrees of freedom equal to 4 − 3 = 1, i.e., χ2

1 = 0.41
with probability p = 0.52; while in older males we have χ2

1 = 0.00, p = 1.00.
For the older cohorts, therefore, we find no significant evidence for genetic dom-
inance. In young adults, however, significant dominance is observed in females
(as noted above) and the dominance genetic effect is almost significant in males
(χ2

1 = 3.6, p = 0.06).
Table 6.5 summarizes variance component estimates under the best-fitting mod-

els. Random environment accounts for a relatively modest proportion of the total
variation in BMI, but appears to be having a larger effect in older than in younger
individuals (30-31% versus 20-22%). Although the estimate of the narrow heritabil-
ity (i.e., proportion of the total variance accounted for by additive genetic factors)
is higher in the older cohort (69-70% vs 36-40%), the broad heritability (additive
plus non-additive genetic variance) is higher in the young twins (78-80%).
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Table 6.5: Standardized parameter estimates under best-fitting model. Two-
group analyses, complete pairs only.

Parameter Estimates
a2 c2 e2 d2

Young females 0.40 0 0.22 0.38
Older females 0.69 0 0.31 0
Young males 0.36 0 0.20 0.44
Older males 0.70 0 0.30 0

6.2.7 Testing the Equality of Means

Applications of structural equation modeling to twin and other family data typi-
cally tend to ignore means. That is, observed measures are treated as deviations
from the phenotypic mean (and are thus termed deviation phenotypes)5, and like-
wise genetic and environmental latent variables are expressed as deviations from
their means, which usually are fixed at 0. Most simple genetic models predict the
same mean for different groups of relatives, so, for example, MZ twins, DZ twins,
males from opposite-sex twin pairs, and males from like-sex twin pairs should have
(within sampling error) equal means. Where significant mean differences are found,
they may indicate sampling problems with respect to the variable under study or
other violations of the assumptions of the basic genetic model. Testing for mean
differences also may be important in follow-up studies, where we are concerned
about the bias introduced by sample attrition, but we can compare mean scores
at baseline for those relatives who remain in a study with those who drop out.
Fortunately, Mx facilitates tests for mean differences between groups.

For Mx to fit a model to means and covariances, both observed means and a
model for them must be supplied. Appendix A.3 contains a Mx script for fitting a
univariate genetic model which also estimates the means of first and second twins
from MZ and DZ pairs. The first change we make is to feed Mx the observed means
in our sample, which we do with the Means command:

Means 0.9087 0.8685

Second, we declare a matrix for the means, e.g. M Full 1 2 in the matrices decla-
ration section. Third, we can equate parameters for the first and second twins by
using a Specify statement such as

Specify M 101 101

5Except where explicitly noted, all models presented in this text treat observed variables as
deviation phenotypes.
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Table 6.6: Results of fitting models to twin pair covariance matrices and twin
means for Body Mass Index: Two-group analyses, complete pairs only.

Young Older
Females Males Females Males

df χ2 p χ2 p df χ2 p χ2 p
Model I 6 7.84 .25 12.81 .05 7 5.74 .57 5.69 .58
Model II 5 3.93 .56 7.72 .17 6 4.75 .58 5.36 .50
Model III 3 3.71 .29 7.28 .06 4 2.38 .67 5.03 .17
Genetic Model ADE ADE AE AE

where 101 is a parameter number that has not been used elsewhere in the script.
By using the same number for the two means, they are constrained to be equal.
Fourth, we include a model for the means:

Means M;

In the DZ group we also supply the observed means, and adjust the model for the
means. We can then either (i) equate the mean for MZ twins to that for DZ twins
by using the same matrix M, ’copied’ from the MZ group or equated to that of the
MZ group as follows:

M Full 1 2 = M2

where M2 refers to matrix M in group 2; to fit a no heterogeneity model (Model I); or
(ii) equate DZ twin 1 and DZ twin 2 means but allow them to differ from the MZ
means by declaring a new matrix (possibly called M too; matrices are specific to the
group in which they are defined, unless they are equated to a matrix or copied from
a previous group) to fit a zygosity dependent means model (MZ 6= DZ, Model II);
or (iii) estimate four means, i.e., first and second twins in each of the MZ and DZ
groups; to fit the heterogeneity model (Model III). This third option gives a perfect
fit to the data with regard to mean structure, so that the only contribution to the
fit function comes from the covariance structure. Hence the four means model gives
the same goodness-of-fit χ2 as in the analyses ignoring means.

Table 6.6 reports the results of fitting models incorporating means
to the like-sex twin pair data on BMI. In each analysis, we have considered only

the best-fitting genetic model identified in the analyses ignoring means. Again we
subtract the χ2 of a more general model from the χ2 of a more restricted model to
get a likelihood ratio test of the difference in fit between the two. For the two older
cohorts we find no evidence for mean differences either between zygosity groups or
between first and second twins. That is, the model that assumes no heterogeneity
of means (model 1) does not give a significantly worse fit than either (i) estimating
separate MZ and DZ means (model 2), or (ii) estimating 4 means. For older females,
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likelihood-ratio chi-squares are χ2
1 = 0.99, p = 0.32 and χ2

3 = 3.36, p = 0.34;
and for older males, χ2

1 = 0.36, p = 0.55 and χ2
3 = 0.43, p = 0.33. Maximum-

likelihood estimates of mean log BMI in the older cohort are, respectively, 21.87
and 22.26 for females and males; estimates of genetic and environmental parameters
are unchanged from those obtained in the analyses ignoring means. In the younger
cohorts, however, we do find significant mean differences between zygosity groups,
both in females (χ2

1 = 3.91, p < 0.05) and in males (χ2
1 = 5.09, p < 0.02). In both

sexes, mean log BMI values are lower in MZ pairs (21.35 for females, 21.63 for
males) than for DZ pairs (21.45 for females, 21.79 for males). As these data are
not age-corrected, it is possible that BMI values are still changing in this age-group,
and that the zygosity difference reflects a slight mean difference in age. We shall
return to this question in Section 6.2.9.

6.2.8 Incorporating Data from Singleton Twins

In most twin studies, there are many twin pairs in which only one twin agrees
to cooperate. We call these pairs discordant-participant as opposed to concordant-
participant pairs, in which data are collected from both members of the pair. Sadly,
data from discordant-participant pairs are often just thrown away. This is unfortu-
nate not only because of the wasted effort on the part of the twins, researchers, and
data entry personnel, but also because they provide valuable information about the
representativeness of the sample for the variable under study. If sampling is satis-
factory, then we would expect to find the same mean and variance in concordant-
participant pairs as in discordant-participant pairs. Thus, the presence of mean
differences or variance differences between these groups is an indication that bi-
ased sampling may have occurred with respect to the variable under investigation.
To take a concrete example, suppose that overweight twins are less likely to re-
spond to a mailed questionnaire survey. Given the strong twin pair resemblance
for BMI demonstrated in previous sections, we might expect to find that individu-
als from discordant-participant pairs are on average heavier than individuals from
concordant-participant pairs. Such sampling biases will have differential effects on
the covariances of MZ and DZ twin pairs, and thus may lead to biased estimates
of genetic and environmental parameters (Lykken et al., 1987; Neale et al., 1989b).

Table 6.7 reports means and variances for transformed BMI from
individuals from discordant-participant pairs in the 1981 Australian survey. Zy-

gosity assignment for MZ twins must be regarded as somewhat tentative, since most
algorithms for zygosity diagnosis based on questionnaire data require reports from
both members of a twin pair to confirm monozygosity (e.g., Eaves et al., 1989b).
In most groups, comparing Table 6.7 to Table 6.3, we observe both higher means
and higher variances in the discordant-participant pairs. It is clearly important to
test whether these differences are statistically significant.

To fit a model simultaneously to the means, variances, and covariances of
concordant-participant pairs and the means and variances of discordant-participant
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Table 6.7: Means and variances for BMI of twins whose cotwin did not cooperate
in the 1981 Australian survey.

Young Cohort Older Cohort
Group N x̄′ σ2 N x̄′ σ2

MZF 33 0.179 1.064 44 0.685 1.146
DZF 55 0.584 0.898 62 1.017 1.736
MZM 24 1.327 1.248 36 1.359 1.104
DZM 47 1.271 1.531 48 1.038 1.672
DZOS F 65 0.655 1.439 81 0.976 1.269
DZOS M 28 0.872 0.975 27 1.715 1.002

pairs, requires that we analyze data where there are different numbers of observed
variables per group, which is easily done in Mx.

Appendix A.4 presents a Mx script for testing for differences in mean or vari-
ance. We constrain the means of the responding twin in groups four (MZ discordant-
participant) and five (DZ discordant-participant) to equal those of twins from the
concordant-participant pairs. Our test for significant differences in means between
the concordant-participant and discordant-participant groups is the improvement
in goodness-of-fit obtained when we allow these latter, discordant-participant pairs,
to take their own mean value.

Table 6.8 summarizes the results of model-fitting. Model I is the no het-
erogeneity model of means and variances between concordant-participant versus
discordant-participant twins. Model II allows for heterogeneity of variances, Model
III for heterogeneity of means. Finally, Model IV tests both differences in means
and variances. For these analyses, we considered only the best-fitting genetic model
based on the results of the analyses ignoring means, and allowed for zygosity dif-
ferences in means only if these were found to be significant in the analyses of the
previous section. In the younger cohorts, young female pairs are the only group in
which we find no difference between concordant-participant pairs and discordant-
participant pairs. In the two older cohorts a model allowing for heterogeneity of
means (Model III) gives a substantially better fit than one that assumes no hetero-
geneity of means or variances (Model I: older females: χ2

2 = 12.86, p < 0.001; older
males: χ2

2 = 30.87, p < 0.001). Specifying heterogeneity of variances in addition
to heterogeneity of means does not produce a further improvement in fit (older
females: χ2

2 = 2.02, p = 0.36; older males: χ2
2 = 1.99, p = 0.37). Such a result is

not atypical because the power to detect differences in mean is much greater than
that to detect a difference in variance.

When considering these results, we must bear in mind several possibilities.
Numbers of twins from the discordant-participant groups are small, and estimates
of mean and variance in these groups will be particularly vulnerable to outlier-
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Table 6.8: Results of fitting models to twin pair covariance matrices and twin
means for Body Mass Index: Two like-sex twin groups, plus data from twins from
incomplete pairs. Models test for heterogeneity of means or variances between
twins from pairs concordant vs discordant for cooperation in 1981 survey.

Young Older
Females Males Females Males

df χ2 p χ2 p df χ2 p χ2 p
Model I 11 8.16 .70 54.97 .001∗ 13 20.62 .08 48.55 .001∗

Model II 9 6.03 .74 29.22 .001∗ 11 17.84 .09 44.58 .001∗

Model III 9 5.70 .77 22.76 .01 11 7.76 .74 7.68 .74
Model IV 7 3.93 .79 7.72 .36 9 5.74 .77 5.69 .77
Genetic Model ADE ADE AE AE
Means Model MZ 6= DZ MZ 6= DZ MZ = DZ MZ = DZ

∗ p < .001

effects; that is, to inflation by one or two individuals of very high BMI. Further
outlier analyses (e.g., Bollen, 1989) would be needed to determine whether this is an
explanation of the variance difference. In the young males, it is also possible that
age differences between concordant-participant pairs and discordant-participant
pairs could generate the observed mean differences.

6.2.9 Conclusions: Genetic Analyses of BMI Data

The analyses of Australian BMI data which we have presented indicate a significant
and substantial contribution of genetic factors to variation in BMI, consistent with
other twin studies referred to at the beginning of Section 6.2.2. In the young cohort
like-sex pairs, we find significant evidence for genetic dominance (or other genetic
non-additivity), in addition to additive genetic effects, but in the older cohort
non-additive genetic effects are non-significant. Further analyses are needed to
determine whether genetic and environmental parameters are significantly different
across cohorts, or indeed between males and females (see Chapter 9).

We have discovered unexpected mean differences between zygosity groups (in
the young cohort), and between twins whose cotwin refused to participate in the
1981 survey, and twins from concordant-participant pairs. It is possible that these
differences reflect only outlier effects caused by a handful of observations. In this
case, if we recode BMI as an ordinal variable, we might expect to find no significant
differences in the proportions of twins falling into each category6. Alternatively,

6Excessive contributions to the χ2 by a small number of outliers could also be detected by
fitting models directly to the raw data using Mx. Though a more powerful method of assessing
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it is possible that there is an overall shift in the distribution of BMI, in which
case we must be concerned about the undersampling of obese individuals. If the
latter finding were confirmed, further work would be needed to explore the degree
to which genetic and environmental parameters might be biased (cf. Lykken et al.,
1987; Neale et al., 1989a; Neale and Eaves, 1992).

6.3 Fitting Genetic Models to Binary Data

It is very important to realize that binary or ordinal data do not preclude model-
fitting. A large number of applications, from item analysis (e.g., Neale, et al, 1986;
Kendler et al., 1987) to psychiatric or physical illness (e.g., Kendler et al, 1992b,c)
do not have measures on a quantitative scale but are limited to discontinuous forms
of assessment. In Chapter 2 we discussed how ordinal data from twins could be
summarized as contingency tables from which polychoric correlations and their
asymptotic variances could be computed. Fitting models to this type of summary
statistic or directly to the contingency table data themselves involves a number of
additional considerations, which we illustrate here with data on major depressive
disorder. Although details of the sample and measures used have been provided
in several published articles (Kendler et al., 1991a,b; 1992a), we briefly reiterate
the methods to emphasize some of the practical issues involved with an interview
study of twins.

6.3.1 Major Depressive Disorder in Twins

Data for this example come from a study of genetic and environmental risk factors
for common psychiatric disorders in Caucasian female same-sex twin pairs sampled
from the Virginia Twin Registry. The Virginia Twin Registry is a population-based
register formed from a systematic review of all birth certificates in the Common-
wealth of Virginia. Twins were eligible to participate in the study if they were born
between 1934 and 1971 and if both members of the pair had previously responded
to a mailed questionnaire, to which the individual response rate was approximately
64%. The cooperation rate was almost certainly higher than this, as an unknown
number of twins did not receive their questionnaire due to faulty addresses, im-
proper forwarding of mail, and so on. Of the total 1176 eligible pairs, neither
twin was interviewed in 46, one twin was interviewed and the other refused in 97,
and both twins were interviewed in 1033 pairs. Of the completed interviews, 89.3%
were completed face to face, nearly all in the twins’ home, and 10.7% (mostly twins
living outside Virginia) were interviewed by telephone. The mean age (±SD) of
the sample at interview was 30.1 (7.6) and ranged from 17 to 55.

Zygosity determination was based on a combination of review of responses to
questions about physical similarity and frequency of confusion as children — which

the impact of outliers, it is beyond the scope of this volume.
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Table 6.9: Contingency tables of twin pair diagnosis of lifetime Major Depressive
Disorder in Virginia adult female twins.

MZ DZ
Twin 1 Normal Depressed Normal Depressed

Twin 2 Normal 329 83 201 94
Depressed 95 83 82 63

alone have proved capable of determining zygosity with over 95% accuracy (Eaves
et al., 1989b) — and, in over 80% of cases, photographs of both twins. From this
information, twins were classified as either: definitely MZ, definitely DZ, probably
MZ, probably DZ, or uncertain. For 118 of the 186 pairs in the final three cat-
egories, blood was taken and eight highly informative DNA polymorphisms were
used to resolve zygosity. If all probes are identical then there is a .9997 prob-
ability that the pair is MZ (Spence et al., 1988). Final zygosity determination,
using blood samples where available, yielded 590 MZ pairs, 440 DZ pairs and 3
pairs classified as uncertain. The DNA methods validated the questionnaire- and
photograph-based ‘probable’ diagnoses in 84 out of 104 pairs; all 26 of 26 pairs in
the definite categories were confirmed as having an accurate diagnosis. The error
rate in zygosity assignment is probably well under 2%.

Lifetime psychiatric illness was diagnosed using an adapted version of the Struc-
tured Clinical Interview for DSM-III-R Diagnosis (Spitzer et al., 1987) an instru-
ment with demonstrable reliability in the diagnosis of depression (Riskind et al.,
1987). Interviewers were initially trained for 80 hours and received bimonthly re-
view sessions during the course of the study. Each member of a twin pair was
invariably interviewed by a different interviewer. DSM-III-R criteria were applied
by a blind review of the interview by K.S. Kendler, an experienced psychiatric diag-
nostician. Diagnosis of depression was not given when the symptoms were judged to
be the result of uncomplicated bereavement, medical illness, or medication. Inter-
rater reliability was assessed in 53 jointly conducted interviews. Chance corrected
agreement (kappa) was .96, though this is likely to be a substantial overestimate
of the value that would be obtained from independent assessments7.

Contingency tables of MZ and DZ twin pair diagnoses are shown in Table 6.9.
PRELIS estimates of the correlation in liability to depression are .435 for MZ
and .186 for DZ pairs. Details of using PRELIS to derive these statistics and
associated estimates of their asymptotic variances are given in Section 2.3. The
PMatrix command is used to read in the tetrachoric correlation matrix, and the

7Such independent assessments would risk retest effects if they were close together in time.
Conversely, assessments separated by a long interval would risk actual phenotypic change from
one occasion to the next. For a methodological review of this area, see Helzer (1977)
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Table 6.10: Major depressive disorder in Virginia adult female twins. Parameter
estimates and goodness-of-fit statistics for models and submodels including additive
genetic (A), common environment (C), random environment (E), and dominance
genetic (D) effects.

Parameter Estimates Fit statistics
Model a c e d χ2 df p
E — — 1.00 — 56.40 2 .00
CE — 0.58 0.81 — 6.40 1 .01
AE 0.65 — 0.76 — .15 1 .70
ACE 0.65 — 0.76 — .15 0 —
ADE 0.56 — 0.75 0.36 .00 0 —

ACov command reads the asymptotic weight matrices. In both cases we use the
File= keyword in order to read these data from files. Therefore our univariate Mx
input script is unchanged from that shown in Appendix A.1 on page 229, except
for the title and the dat file used.

Major depressive disorder in adult female MZ twins

Data NInput_vars=2 NObservations=590

#Include mzdepsum.dat

where the dat file reads

PMatrix File=MZdep.cov

ACov File=MZdep.asy

in the MZ group, with the same commands for the DZ group except for the number
of observations (NObs=440) and a global replacement of DZ for MZ. For clarity, the
comments at the beginning also should be changed.

Results of fitting the ACE and ADE models and submodels are summarized in
Table 6.10. First, note that the degrees of freedom for fitting to correlation matrices
are fewer than when fitting to covariance matrices. Although we provide Mx with
two correlation matrices, each consisting of 1’s on the diagonal and a correlation on
the off-diagonal, the 1’s on the diagonal cannot be considered unique. In fact, only
one of them conveys information which effectively ‘scales’ the covariance. There
is no information in the remaining three 1’s on the diagonals of the MZ and DZ
correlation matrices, but Mx does not make this distinction. Therefore, we must
adjust the degrees of freedom by adding the option Option DFreedom=-3. Another
way of looking at this is that the diagonal 1’s convey no information whatsoever,
but that we use one parameter to estimate the diagonal elements (e; it appears
only in the expected variances, not the expected covariances). Thus, there are 4
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imaginary variances and 1 parameter to estimate them — giving 3 statistics too
many.

Second, the substantive interpretation of the results is that the model with just
random environment fails, indicating significant familial aggregation for diagnoses
of major depressive disorder. The environmental explanation of familial covariance
also fails (χ2

1 = 6.40) but a model of additive genetic and random environment
effects fits well (χ2

1 = .15). There is no possible room for significant improvement
with the addition of any other parameter, since there are only .15 χ2 units left.
Nevertheless, we fitted both ACE and ADE models and found that dominance
genetic effects could account for the remaining variability whereas shared environ-
mental effects could not. This finding is in agreement with the observation that the
MZ correlation is slightly greater than twice the DZ correlation. The heritability
of liability to Major Depressive Disorder is moderate but significant at 42%, with
the remaining variability associated with random environmental sources including
error of measurement. These results are not compatible with the view that shared
family experiences such as parental rearing, social class, or parental loss are key
factors in the etiology of major depression. More modest effects of these factors
may be detected by including them in multivariate model fitting (Kendler et al.,
1992a; Neale et al., 1992).

Of course, every study has its limitations, and here the primary limitations are
that: (i) the results only apply to females; (ii) the twin population is not likely to be
perfectly representative of the general population, as it lacks twins who moved out
of or into the state, or failed to respond to initial questionnaire surveys; (iii) a small
number of the twins diagnosed as having major depression may have had bipolar
disorder (manic depression), which may be etiologically distinct; (iv) the reliance
on retrospective reporting of lifetime mental illness may be subject to bias by either
currently well or currently ill subjects or both; (v) MZ twins may be treated more
similarly as children than DZ twins; and (vi) not all twins were past the age at risk
of first onset of major depression. Consideration of the first five of these factors
is given in Kendler et al. (1992c). Of particular note is that a test of limitation
(v), the ‘equal environments’ assumption, was performed by logistic regression of
absolute pair difference of diagnosis (scored 0 for normal and 1 for affected) on a
quasi-continuous measure of similarity of childhood treatment. Although MZ twins
were on average treated more similarly than DZ twins, this regression was found
to be non-significant. General methods to handle the effects of zygosity differences
in environmental treatment form part of the class of data-specific models to be
discussed in Section ??. Overall there was no marked regression of age on liability
to disease in these data, indicating that correction for the contribution of age to
the common environment is not necessary (see the next section). Variable age
at onset has been considered by Neale et al. (1989) but a full treatment of this
problem is beyond the scope of this volume. Such methods incorporate not only
censoring of the risk period, but also the genetic architecture of factors involved
in age at onset and their relationship to factors relevant in the etiology of liability
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Table 6.11: Conservatism in Australian females: standardized parameter esti-
mates for additive genotype (A), common environment (C), random environment
(E) and dominance genotype (D).

Parameter Estimates Fit statistics
Model a c e d χ2 df p
E — — 1.000 — 823.76 5 .000
CE — 0.804 0.595 — 19.41 4 .001
AE 0.836 — 0.549 — 56.87 4 .000
ACE 0.464 0.687 0.559 — 3.07 3 .380
ADE 0.836 — 0.549 0.000 56.87 3 .000

to disease. Note, however, that this problem, like the problem of measured shared
environmental effects, may also be considered as part of the class of data-specific
models.

6.4 Model for Age-Correction of Twin Data

We now turn to a slightly more elaborate example of univariate analysis, using data
from the Australian twin sample that were used in the BMI example earlier, but
in this case data on social attitudes. Factor analysis of the item responses revealed
a major dimension with low scores indicating radical attitudes and high scores
indicating attitudes commonly labelled as “conservative.” Our a priori expectation
is that variation in this dimension will be largely shaped by social environment
and that genetic factors will be of little or no importance. This expectation is
based on the differences between the MZ and DZ correlations; rMZ = 0.68 and
rDZ = 0.59, indicating little, if any, genetic influence on social attitudes. We also
might expect that conservatism scores are affected by age. We can use the Mx
script in Appendix A.5 to examine the age effects, reading in the age of each twin
pair and the conservatism scores for twin 1 (Cons_t1) and twin 2 (Cons_t2). Since
in this specification we have 3 indicator variables, we adjust NInput_vars=3. If we
initially ignore age, as an exploratory analysis, we can select only the conservatism
scores for analysis, using the Select command (note that the list of variables
selected must end with a semicolon ‘;’).

The script fits the ACE model. The results of this model are presented in the
fourth line of the standardized results of Table 6.11, which shows that the squares
of parameters estimated from the model sum to one, because these correspond to
the proportions of variance associated with each source (A, C, and E).

The significance of common environmental contributions to variance in conser-
vatism may be tested by dropping c (AE model) but this leads to a worsening of
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χ2 by 53.8 for 1 d.f., confirming its importance. Similarly, the poor fit of the CE
model confirms that genetic factors also contribute to individual differences (sig-
nificance of a is 19.41− 3.07 = 16.34 for 1 df, which is highly significant). The e
model, which hypothesizes that there is no family resemblance for conservatism, is
overwhelmingly rejected, illustrating of the great power of this data set to discrimi-
nate between competing hypotheses. For interest, we also present the results of the
ADE model. Since we have already noted that the DZ correlation is appreciably
greater than half the MZ correlation, it is clear that this model is inappropriate.
Symmetric with the results of fitting an ACE model to the BMI data (where 2rDZ

was still less than rMZ , indicating dominance), we now find that the estimate of
d gets “stuck” on its lower bound of zero. The BMI and conservatism examples
illustrate in a practical way the perfect reciprocal dependence of c and d in the
classical twin design of which only one may be estimated. The issue of the recip-
rocal confounding of shared environment and genetic non-additivity (dominance
or epistasis) in the classical twin design has been discussed in detail in papers by
Martin et al., (1978), Grayson (1989), and Hewitt (1989).

It is clear from the results above that there are major influences of the shared
environment on conservatism. One aspect of the environment that is shared with
perfect correlation by cotwins is their age. If a variable is strongly related to age
and if a twin sample is drawn from a broad age range, as opposed to a cohort
sample covering a narrow range of birth years, then differences between twin pairs
in age will contribute to estimated common environmental variance. This is the
case for the twins in the Australian sample, who range from 18 to 88 years old.
It is clearly of interest to try to separate this variance due to age differences from
genuine cultural differences contributing to the estimate of c.

Fortunately, structural equation modeling, which is based on linear regression,
provides a very easy way of allowing for the effects of age regression while simulta-
neously estimating the genetic and environmental effects (Neale and Martin, 1989).
Figure 6.2 illustrates the method with a path diagram, in which the regression of
Const1 and Const2 on Age is s (for senescence), and this is specified in the script
excerpt below.

We now work with the full 3× 3 covariance matrices (so the Select statement
is dropped from the previous job). We estimate simultaneously the contributions
of additive genetic, shared and unique environmental factors on conservatism, the
variance of age V*V’, and the contribution of age to conservatism S*V’.

Group 2: female MZ twin pairs

Data NInput_vars=3 NOberservations=941

Labels age cons_t1 cons_t2

CMatrix Symmetric File=ozconmzf.cov

Matrices= Group 1

Covariances V*V’ | V*S’ | V*S’ _

S*V’ | A+C+E+G | A+C+G _

S*V’ | A+C+G | A+C+E+G;
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Figure 6.2: Path model for additive genetic (A), shared environment (C) and
specific environment (E) effects on phenotypes P1 and P2. The correlation between
A1 and A2 is 1.0 for MZ and 0.5 for DZ twins. The effects of age are modelled as a
standardized latent variable, LAge, which is the sole cause of variance in observed
Age.

The matrix algebra here is more complex than usual, and for univariate analysis
it would be easier to draw the diagram with the MxGui. However, the algebraic
approach has the advantage that it is much easier to generalize to the multivariate
case.

Results of fitting the ACE model with age correction are in the first row of
Table 6.12. Standardized results are presented, from which we see that the stan-
dardized regression of conservatism on age (constrained equal in twins 1 and 2)
is 0.422. In the unstandardized solution, the first loading on the age factor is the
standard deviation of the sample for age, in this case 13.2 years. The latter is
an estimated parameter, making five free parameters in total. In each group we
have k(k+1)/2 statistics, where k is the number of observed variables, so there are
2× (k(k+1)/2-5 =7 degrees of freedom. Dropping either c or a still causes signif-
icant worsening of the fit, and it also is very clear that one cannot omit the age
regression itself (final ACE model; χ2

8 = 370.17, p = .000).
It is interesting to compare the results of the ACE model in Table 6.11 with

those of the ACES model in Table 6.12. We see that the estimates of e and a are
identical in the two tables, accounting for 0.5592 = 31% and 0.4642 = 22% of the
total variance, respectively. However, in the first table the estimate of c = 0.687,
accounting for 47% of the variance. In the analysis with age however, c = 0.534
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Table 6.12: Age correction of Conservatism in Australian females: standardized
parameter estimates for models of additive genetic (A), common environment (C),
random environment (E), and senescence or age (S).

Parameter Estimates Fit statistics
Model a c e s χ2 df p
ACES 0.474 0.534 0.558 0.422 7.41 7 .388
AES 0.720 — 0.547 0.426 31.56 8 .000
CES — 0.685 0.595 0.421 25.49 8 .001
ACE 0.464 0.687 0.559 — 370.17 8 .000

and accounts for 29% of variance, and age accounts for 0.4222 = 18%. Thus, we
have partitioned our original estimate of 47% due to shared environment into 18%
due to age regression and the remaining 29% due to ‘genuine’ cultural differences.
If we choose, we may recalculate the proportions of variance due to a, c, and e, as
if we were estimating them from a sample of uniform age — assuming of course
that the causes of variation do not vary with age (see Chapter 9). Thus, genetic
variance now accounts for 22/(100− 18) = 27% and shared environment variance
is estimated to be 29/82 = 35%.

Our analysis suggests that cultural differences are indeed important in deter-
mining individual differences in social attitudes. However, before accepting this
result too readily, we should reflect that estimates of shared environment may not
only be inflated by age regression, but also by the effects of assortative mating —
the tendency of like to marry like. Since there is known to be considerable assorta-
tive mating for conservatism (spouse correlations are typically greater than 0.6), it
is possible that a substantial part of our estimate of c2 may arise from this source
(Martin et al., 1986). This issue will be discussed in greater detail in Chapter ??.

Age is a somewhat unusual variable since it is perfectly correlated in both
MZ and DZ twins (so long as we measure the members of a pair at the same
time). There are relatively few variables that can be handled in the same way,
partly because we have assumed a strong model that age causes variability in the
observed phenotype. Thus, for example, it would be inappropriate to model length
of time spent living together as a cause of cancer, even though cohabitation may
lead to greater similarity between twins. In this case a more suitable model would
be one in which the shared environment components are more highly correlated
the longer the twins have been living together. Such a model would predict greater
twin similarity, but would not predict correlation between cohabitation and cancer.
Some further discussion of this type of model is given in Section ?? in the context of
data-specific models. One group of variables that may be treated in a similar way
to the present treatment of age consists of maternal gestation factors. Vlietinck et
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al. (1989) fitted a model in which both gestational age and maternal age predicted
birthweight in twins.

Finally we note that at a technical level, age and similar putative causal agents
might most appropriately be treated as x-variables in a multiple regression model.
Thus the observed covariance of the x-variables is incorporated directly into the
expected matrix, so that the analysis of the remaining y-variables is conditional
on the covariance of the x-variables. This type of approach is free of distributional
assumptions for the x-variables, and is analogous to the analysis of covariance.
However, when we fit a model that estimates a single parameter for the variance
of age in each group, the estimated and observed variances are generally equal, so
the same results are obtained.



Chapter 7

Power and Sample Size

7.1 Introduction

In this chapter we discuss the power of the twin study to detect variance compo-
nents in behavioral characters. Our discussion is not in any way intended to be
an exhaustive description of the power of the twin study under all possible com-
binations of causal factors and model parameters. Such a description is in large
part available for the continuous case (Martin et al., 1978) and the ordinal case
(Neale et al., 1994), and there is an extensive comparison of the power of various
designs to detect cultural transmission (Heath et al., 1985). As we move out of
the framework of the univariate classical twin study to consider multivariate hy-
potheses and data from additional classes of relatives, a comprehensive treatment
rapidly becomes unmanageably large. Fortunately, it seems rather unnecessary
because the prospective researcher usually has certain specific aims of a study in
mind, and often has a reasonable idea about the values of some of the parameters
in the model. This information can be used to prune the prodigious tree of possible
scenarios to manageable proportions. All that is required is an understanding of
the factors contributing to power and the principles involved, which we aim to pro-
vide in Section 7.2 and Section 7.3 respectively. We illustrate these methods with a
limited range of examples for continuous (Section 7.4) and categorical (Section 7.5)
twin data.

7.2 Factors Contributing to Power

One of the greatest advantages of the model-fitting approach is that it allows us to
conduct tests of significance of alternative hypotheses. We can ask, for example,
whether a given data set really supports our assertion that shared environmental
effects contribute to variation in one trait or another (i.e., is c2 > 0?).

141
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Our ability to show that a specific effect is important obviously depends on a
number of factors. These include:

1. The effect under consideration, for example, a2 or c2;

2. The actual size of the effect in the population being studied — larger values
are detected more easily than small values;

3. The probability level adopted as the conventional criterion for rejection of
the null-hypothesis that the effect is zero — rejection at higher significance
levels will be less likely to occur for a given size of effect;

4. The actual size of the sample chosen for study — larger samples can detect
smaller effects;

5. The actual composition of the sample with respect to the relative frequencies
of the different biological and social relationships selected for study;

6. The level of measurement used — categorical, ordinal, or continuous.

All of these considerations lead us to the important question of power. If we are
trying to get a sense of what we are likely to be able to infer from our own data set,
or if we are considering a new study, we must ask either “What inferences can we
hope to be able to make with our data set?” or “What kind of data set and sample
sizes is it likely we will need to answer a particular set of questions?” In the next
section we show how to answer these questions in relation to simple hypotheses
with twin studies and suggest briefly how these issues may be explored for more
complex designs and hypotheses.

7.3 Steps in Power Analysis

The basic approach to power analysis is to imagine that we are doing an identical
study many times. For example, we pretend that we are trying to estimate a, c, and
e for a given population by taking samples of a given number of MZ and DZ twins.
Each sample would give somewhat different estimates of the parameters, depending
on how many twins we study, and how big a, c, and e are in the study population.
Suppose we did a very large number of studies and tabulated all the estimates of
the shared environmental component, c2. In some of the studies, even though there
was some shared environment in the population, we would find estimates of c2 that
were not significant. In these cases we would commit “type II errors.” That is, we
would not find a significant effect of the shared environment even though the value
of c2 in the population was truly greater than zero. Assuming we were using a χ2

test for 1 df to test the significance of the shared environment, and we had decided
to use the conventional 5% significance level, the probability of Type II error would
be the expected proportion of samples in which we mistakenly decided in favor of
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the null hypothesis that c2 = 0. These cases would be those in which the observed
value of χ2 was less than 3.84, the 5% critical value for 1 df. The other samples in
which χ2 was greater than 3.84 are those in which we would decide, correctly, that
there was a significant shared environmental effect in the population. The expected
proportion of samples in which we decide correctly against the null hypothesis is
the power of the test.

Designing a genetic study boils down to deciding on the numbers and types of
relationships needed to achieve a given power for the test of potentially important
genetic and environmental factors. There is no general solution to the problem of
power. The answers will depend on the specific values we contemplate for all the
factors listed above. Before doing any power study, therefore, we have to decide
the following questions in each specific case:

1. What kinds of relationships are to be considered?

2. What significance level is to be used in hypothesis testing?

3. What values are we assuming for the various effects of interest in the popu-
lation being studied?

4. What power do we want to strive for in designing the study?

When we have answered these questions exactly, then we can conduct a power
analysis for the specified set of conditions by following some basic steps:

1. Obtain expected covariance matrices for each set of relationships by substi-
tuting the assumed values of the population parameters in the model for each
relationship.

2. Assign some initial arbitrary sample sizes to each separate group of relatives.

3. Use Mx to analyze the expected covariance matrices just as we would to
analyze real data and obtain the χ2 value for testing the specific hypothesis
of interest.

4. Find out (from statistical tables) how big that χ2 has to be to guarantee the
power we need.

5. Use a simple formula (given below) to multiply our assumed sample size and
solve for the sample size we need.

It is essential to remember that the sample size we obtain in step five only
applies to the particular effect, design, sample sizes, and even to the distribution of
sample sizes among the different types of relationship assumed in a specific power
calculation. To explore the question of power fully, it often will be necessary to
consider a number, sometimes a large number, of different designs and population
values for the relevant effects of genes and environment.
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7.4 Power for the continuous case

A common question in genetic research concerns the ability of a study of twins
reared together to detect the effects of the shared environment. Let us investigate
this issue using Mx. Following the steps outlined above, we start by stipulating
that we are going to explore the power of a classical twin study — that is, one in
which we measure MZ and DZ twins reared together. We shall assume that 50%
of the variation in the population is due to the unique environmental experiences
of individuals (e2 = 0.5). The expected MZ twin correlation is therefore 0.50. This
intermediate value is chosen to be typical of many of the less-familial traits. An-
thropometric traits, and many cognitive traits, tend to have higher MZ correlations
than this, so the power calculations should be conservative as far as such variables
are concerned. We assume further that the additive genetic component explains
30% of the total variation (a2 = 0.30) and that the shared family environment
accounts for the remaining 20% (c2 = 0.20). We now substitute these parameter
values into the algebraic expectations for the variances and covariances of MZ and
DZ twins:

Total variance = a2 + c2 + e2 = 0.30 + 0.2 + 0.5 = 1.00
MZ covariance = a2 + c2 = 0.30 + 0.2 = 0.50
DZ covariance = .5a2 + c2 = 0.15 + 0.2 = 0.35

In Appendix B.1 we show a version of the Mx code for fitting the ACE model
to the simulated covariance matrices. In addition to the expected covariances we
must assign an arbitrary sample size and structure. Initially, we shall assume the
study involves equal numbers, 1000 each, of MZ and DZ pairs. In order to conduct
the power calculations for the c2 component, we can run the job for the full (ACE)
model first and then the AE model, obtaining the expected difference in χ2 under
the full and reduced models just as we did earlier for testing the significance of the
shared environment in real data.

Notice that fitting the full ACE model yields a goodness-of-fit χ2 of zero. This
should always be the case when we use Mx to solve for all the parameters of the
model we used to generate the expected covariance matrices because, since there is
no sampling error attached to the simulated covariance matrices, there is perfect
agreement between the matrices supplied as “data” and the expected values under
the model. In addition, the parameter estimates obtained should agree precisely
with those used to simulate the data; if they are not, but the fit is still perfect, it
suggests that the model is not identified (see Section 5.7). w Therefore, as long as
we are confident that we have specified the structural model correctly and that the
full model is identified, there is really no need to fit the full model to the simulated
covariances matrices since we know in advance that the “χ2” is expected to be
zero. In practice it is often helpful to recover this known result to increase our
confidence that both we and the software are doing the right thing.

For our specific case, with samples of 1000 MZ and DZ pairs, we obtain a
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Table 7.1: Non-centrality parameter, λ, of non-central χ2 distribution for 1 df
required to give selected values of the power of the test at the 5% significance level
(selected from Pearson and Hartley, 1972).

Desired Power λ
0.25 1.65
0.50 3.84
0.75 6.94
0.80 7.85
0.90 10.51
0.95 13.00

goodness-of-fit χ2
4 of 11.35 for the AE model. Since the full model yields a perfect

fit (χ2
3 = 0), the expected difference in χ2 for 1 df — testing for the effect of the

shared environment — is 11.35. Such a value is well in excess of the 3.84 necessary
to conclude that c2 is significant at the 5% level. However, this is only the value
expected in the ideal situation. With real data, individual χ2 values will vary
greatly as a function of sampling variance. We need to choose the sample sizes to
give an expected value of χ2 such that observed values exceed 3.84 in a specified
proportion of cases corresponding to the desired power of the test.

It turns out that such problems are very familiar to statisticians and that the
expected values of χ2 needed to give different values of the power at specified
significance levels for a given df have been tabulated extensively (see Pearson and
Hartley, 1972). The expected χ2 is known as the centrality parameter (λ) of the
non-central χ2 distribution (i.e., when the null-hypothesis is false). Selected values
of the non-centrality parameter are given in Table 7.1 for a χ2 test with 1 df and
a significance level of 0.05.

With 1000 pairs of MZ and DZ twins, we find a non-centrality parameter of
11.35 when we use the χ2 test to detect c2 which explains 20% of the variation
in our hypothetical population. This corresponds to a power somewhere between
90% (λ = 10.51) and 95% (λ = 13.00). That is, 1000 pairs each of MZ and DZ
twins would allow us to detect, at the 5% significance level, a significant shared
environmental effect when the true value of c2 was 0.20 in about 90-95% of all
possible samples of this size and composition. Conversely, we would only fail to
detect this much shared environment in about 5-10% of all possible studies.

Suppose now that we want to figure out the sample size needed to give a power
of 80%. Let this sample size be N∗. Let N0 be the sample size assumed in the initial
power analysis (2000 pairs, in our case). Let the expected χ2 for the particular
test being explored with this sample size be χ2

E (11.35, in this example). From
Table 7.1, we see that the non-centrality parameter, λ, needs to be 7.85 to give a
power of 0.80. Since the value of χ2 is expected to increase linearly as a function of
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sample size we can obtain the sample size necessary to give 80% power by solving:

N∗ =
λ

χ2
E

N0 (7.1)

=
7.85

11.35
× 2000

= 1383

That is, in a sample comprising 50% MZ and 50% DZ pairs reared together, we
would require 1,383 pairs in total, or approximately 692 pairs of each type to be
80% certain of detecting a shared environmental effect explaining 20% of the total
variance, when a further 30% is due to additive genetic factors.

It must be emphasized again that this particular sample size is specific to the
study design, sample structure, parameter values and significance level assumed in
the simulation. Smaller samples will be needed to detect larger effects. Greater
power requires larger samples. Larger studies can detect smaller effects, and finally,
some parameters of the model may be easier to detect than others.

7.5 Loss of Power with Ordinal Data

An important factor which affects power but is often overlooked is the form of
measurement used. So far we have considered only continuous, normally distributed
variables, but of course, these are not always available in the biosocial sciences. An
exhaustive treatment of the power of the ordinal classical twin study is beyond the
scope of this text, but we shall simply illustrate the loss of power incurred when we
use more crude scales of measurement (Neale et al., 1994). Consider the example
above, but suppose this time that we wish to detect the presence of additive genetic
effects, a2, in the data. For the continuous case this is a trivial modification of the
input file to fit a model with just c and e parameters. The chi-squared from running
this program is 19.91, and following the algebra above (equation 7.1) we see that
we would require 2000 × 7.85/19.91 = 788 pairs in total to be 80% certain of
rejecting the hypothesis that additive genes do not affect variation when in the
true world they account for 30%, with shared environment accounting for a further
20%. Suppose now that rather than measuring on a continuous scale, we have a
dichotomous scale which bisects the population; for example, an item on which
50% say ‘yes’ and 50% say no. The data for this case may be summarized as a
contingency table, and we wish to generate tables that: (i) have a total sample size
of 1000; (ii) reflect a correlation in liability of .5 for MZ and .35 for DZ twins; and
(iii) reflect our threshold value of 0 to give 50% either side of the threshold. Any
routine that will compute the bivariate normal integral for given thresholds and
correlation is suitable to generate the expected proportions in each cell. In this
case we use a short Mx script (Neale, 1991) to generate the data for PRELIS. We
can use the weight option in PRELIS to indicate the cell counts for our contingency
tables. Thus, the PRELIS script might be:
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Power calculation MZ twins

DA NI=3 NO=0

LA; SIM1 SIM2 FREQ

RA FI=expectmz.frq

WE FREQ

OR sim1 sim2

OU MA=PM SM=SIMMZ.COV SA=SIMMZ.ASY PA

with the file expectmz.frq looking like this:

0 0 333.333

0 1 166.667

1 0 166.667

1 1 333.333

A similar approach with the DZ correlation and thresholds gives expected fre-
quencies which can be used to compute the asymptotic variance of the tetrachoric
correlation for this second group. The simulated DZ frequency data might appear
as

0 0 306.9092

0 1 193.0908

1 0 193.0908

1 1 306.9092

The cells display considerable symmetry — there are as many concordant ‘no’
pairs as there are concordant ‘yes’ pairs because the threshold is at zero. Running
PRELIS generates output files, and we can see immediately that the correlations
for MZ and DZ twins remain the desired .5 and .35 assumed in the population.
The next step is to feed the correlation matrix and the weight matrix (which only
contains one element, the asymptotic variance of the correlation between twins)
into Mx, in place of the covariance matrix that we supplied for the continuous
case. This can be achieved by changing just three lines in each group of our Mx
power script:

#NGroups 2

Data NInput_vars=2 NObservations=1000

PMatrix File=SIMMZ.COV

ACov File=SIMMZ.ASY

with corresponding filenames for the DZ group, of course. When we fit the model
to these summary statistics we observe a much smaller χ2 than we did for the
continuous case; the χ2 is only 6.08, which corresponds to a requirement of 2,582
pairs in total for 80% power at the .05 level. That is, we need more than three
times as many pairs to get the same information about a binary item than we
need for a continuous variable. The situation further deteriorates as we move the



148 CHAPTER 7. POWER AND SAMPLE SIZE

threshold to one side of the distribution. Simulating contingency tables, computing
tetrachorics and weight matrices, and fitting the false model when the threshold is
one standard deviation (SD) to the right (giving 15.9% in one category and 84.1%
in the other), the χ2 is a mere 3.29, corresponding a total sample size of 4,772 total
pairs. More extreme thresholds further reduce power, so that for an item (or a
disease) with a 95:5% split we would require 13,534 total pairs. Only in the largest
studies could such sample sizes be attained, and they are quite unrealistic for data
that could be collected by personal interview or laboratory measurement. On the
positive side, it seems unlikely that given the advantages of the clinical interview or
laboratory setting, our only measure could be made at the crude ‘yes or no’ binary
response level. If we are able to order our data into more than two categories, some
of the lost power can be regained. Following the procedure outlined above, and
assuming that there are two thresholds, one at −1 SD and one at +1 SD, then the
χ2 obtained is 8.16, corresponding to ‘only’ 1,924 pairs for 80% chance of finding
additive variance significant at the .05 level. If one threshold is 0 and the other at
1 SD then the χ2 rises slightly to 9.07, or 1,730 pairs. Further improvement can be
made if we increase the measurements to comprise four categories. For example,
with thresholds at −1, 0, and 1 SD the χ2 is 12.46, corresponding to a sample size
of 1,240 twin pairs.

While estimating tetrachoric correlations from a random sample of the popula-
tion has considerable advantages, it is not always the method of choice for studies
focused on a single outcome, such as schizophrenia. In cases where the base rates
are so low (e.g., 1%) then it becomes inefficient to sample randomly, and an ascer-
tainment scheme in which we select cases and examine their relatives is a practical
and powerful alternative, if we have good information on the base rate in the pop-
ulation studied. The necessary power calculations can be performed using the
computer packages LISCOMP (Muthén, 1987) or Mx (Neale, 1997).

7.6 Exercises

1. Change the example program to obtain the expected χ2 for the test for addi-
tive genetic effects. Find out how many pairs are needed to obtain significant
estimates of a2 in 80% of all possible samples.

2. Explore the effect of power of a particular test of altering the proportion of
MZ and DZ twins in the sample.

3. Show that the change in expected χ2 is proportional to the change in sample
size.

4. Obtain and tabulate the sample sizes necessary to detect a significant a2

when the population parameter values are as follows:
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a2 c2

0.10 0.00
0.30 0.00
0.60 0.00
0.90 0.00

In what way do these values change if there are shared environmental effects?

5. Show that with small sample sizes for the number of pairs in each group,
some bias in the chi-squared is introduced. Consider whether or not this may
be due to the n− 1 part of the maximum likelihood loss function.
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Chapter 8

Social Interaction

8.1 Introduction

This chapter introduces a technique for specifying and estimating paths between
dependent variables, so called non-recursive models. Uses of this technique include:
modeling social interactions, for example, sibling competition and cooperation;
testing for direction of causation in bivariate data, e.g., whether life events cause
depression or vice versa; and developmental models for longitudinal or repeated
measurements.

Models for sibling interaction have been popular in genetics for some time
(Eaves, 1976b), and the reader should see Carey (1986b) for a thorough treatment
of the problem in the context of variable family size. Here we provide an introduc-
tory outline and application for the restricted case of pairs of twins, and we assume
no effects of other siblings in the family. We further confine our treatment to sib-
ling interactions within variables. Although multivariate sibling interactions (such
as aggression in one twin causing depression in the cotwin) may in the long run
prove to be more important than those within variables, they are beyond the scope
of this introductory text. Section 8.2 provides a summary of the basic univariate
genetic model without interaction. The extension to include sibling interaction is
described in Section 8.3. Details on the consequences of sibling interaction on the
variation and covariation are discussed in Section 8.4

8.2 Basic Univariate Model without Interaction

Up to this point, we have been concerned primarily with decomposing observed
phenotypic variation into its genetic and environmental components. This has
been accomplished by estimating the paths from latent or independent variables to
dependent variables. A basic univariate path diagram is set out in Figure 8.1. This
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Figure 8.1: Basic path diagram for univariate twin data for P1 and P2. The
correlation between A1 and A2 is 1.0 for MZ and 0.5 for DZ twins.

path diagram shows the deviation phenotypes P1 and P2, of a pair of twins. Here
we refer to the phenotypes as deviation phenotypes to emphasize the point that the
model assumes variables to be measured as deviations from the means, which is
the case whenever we fit models to covariance matrices and do not include means.
The deviation phenotypes P1 and P2 result from their respective additive genetic
deviations, A1 and A2, their shared environment deviations, C1 and C2, and their
non-shared environmental deviations, E1 and E2. The linear model corresponding
to the path diagram is:

P1 = aA1 + cC1 + eE1

P2 = aA2 + cC2 + eE2

In matrix form we can write:

(

P1

P2

)

=

(

a c e 0 0 0
0 0 0 a c e

)

















A1

C1

E1

A2

C2

E2

















or as a matrix expression
y = Gx
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Details of specifying and estimating this basic univariate model are given in
Chapter 6. One of the interesting assumptions of this basic ACE model is that the
siblings’ or twins’ phenotypes have no influence on each other. This assumption
may well be true of height or finger print ridge count, but is it necessarily true for a
behavior like smoking, a psychiatric condition like depression, delinquent behavior
in children or even an anthropometric measure like the body mass index? We should
not, in general, assume a priori that a source of variation is absent, especially
when an empirical test of the assumption may be readily performed. However,
we may as well recognize from the onset that evidence for social interactions or
sibling effects is pretty scarce. The fact is that usually one form or another of
the basic univariate model adequately describes a twin or family data set, within
the power of the study. This tells us that there will not be evidence of significant
social interactions since, were such effects substantial, they would lead to failure
of basic univariate models. Nevertheless, this extension of the basic models is
of considerable theoretical interest and studying its outcome on the expectations
derived from the models can provide insight into the nature and results of social
influences. The applications to bivariate and multivariate causal modeling are
perhaps even more intriguing and will be taken up in Chapter ??.

8.3 Sibling Interaction Model

Suppose that we are considering a phenotype like number of cigarettes smoked.
For the sake of exposition we will set aside questions about the appropriate scale of
measurement, what to do about non-smokers and so on, and assume that there is
a well-behaved quantitative variable, which we can call ‘smoking’ for short. What
we want to specify is the influence of one sibling’s (twin’s) smoking on the other
sibling’s (cotwin’s) smoking. Figure 8.2 shows a path diagram which extends the
basic univariate model for twins to include a path of magnitude s from each twin’s
smoking to the cotwin. If the path s is positive then the sibling interaction is essen-
tially cooperative, i.e., the more (less) one twin smokes the more (less) the cotwin
will smoke as a consequence of this direct influence. We can easily conceive of a
highly plausible mechanism for this kind of influence when twins are cohabiting; as
a twin lights up she offers her cotwin a cigarette. If the path s is negative then the
sibling interaction is essentially competitive. The more (less) one twin smokes the
less (more) the cotwin smokes. Although such competition contributes negatively
to the covariance between twins, it may well not override the positive covariance
resulting from shared familial factors. Thus, even in the presence of competition
the observed phenotypic covariation may still be positive. If interactions are coop-
erative in some situations and competitive in others, our analyses will reveal the
predominant mode. But before considering the detail of our expectations, let us
look more closely at how the model is specified. The linear model is now:

P1 = sP2 + aA1 + cC1 + eE1 (8.1)
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Figure 8.2: Path diagram for univariate twin data with sibling interaction for P1

and P2. The correlation between A1 and A2 is 1.0 for MZ and 0.5 for DZ twins.

P2 = sP1 + aA2 + cC2 + eE2 (8.2)

In matrix form we have

(

P1

P2

)

=

(

0 s
s 0

)(

P1

P2

)

+
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a c e 0 0 0
0 0 0 a c e
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or
y = By + Gx

In this form the B matrix is a square matrix with the number of rows and
columns equal to the number of dependent variables. The leading diagonal of the
B matrix contains zeros. The element in row i and column j represents the path
from the jth dependent variable to the ith dependent variable. From this equation
we can deduce, as shown in more detail below, that:

y(I −B) = Gx

y = (I−B)
−1

Gx
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8.3.1 Application to CBC Data

By way of illustration we shall analyze data collected using the Achenbach Child
Behavior Checklist (CBC; Achenbach & Edelbrock, 1983) on juvenile twins aged
8 through 16 years living in Virginia. Mothers were asked the extent to which a
series of problem behaviors were characteristic of each of their twin children over
the last six months. The 118 problem behaviors that were rated can be categorized,
on the basis of empirical clustering, into two broad dimensions of internalizing and
externalizing problems. The former are typified by fears, psychosomatic complaints,
and symptoms of anxiety and depression. Externalizing behaviors are characterized
by “acting out” — delinquent and aggressive behaviors. The factor patterns vary
somewhat with the age and sex of the child but there are core items which load on
the broad factors in both boys and girls at younger (6-11 years) and older (12-16
year) ages. The 24 core items for the externalizing dimension analyzed by Silberg
et al. (1992) and Hewitt et al. (1992) include among other things: arguing a lot,
destructive behavior, disobedience, fighting, hanging around with children who
get into trouble, running away from home, stealing, and bad language. For such
behaviors we might suspect that siblings will influence each other in a cooperative
manner through imitation or mutual reinforcement. The Mx script in Appendix C.1
specifies the model for sibling interactions shown in Figure 8.2.

By varying the script, the standard E, AE, CE, and ACE models may be fitted
to the data to obtain the results shown in Table 8.1. Clearly the variation and

Table 8.1: Preliminary results of model fitting to externalizing behavior problems
in Virginia boys from larger families.

Fit statistics Parameter Estimates
Model df χ2 AIC a c e
AE 4 32.57 24.6 0.78 — 0.33
CE 4 29.80 21.8 — 0.78 0.43
AC E 3 4.95 -1.0 0.50 0.64 0.34

co-aggregation of boys’ behaviors problems cannot be explained either by a model
which allows only for additive genetic effects (along with non-shared environmental
influences), nor by a model which excludes genetic influences altogether. The ACE
model fits very well (p = .18) and suggests a heritability of 33% with shared
environmental factors accounting for 52% of the variance1. But is the ACE model
the best in this case? We observe that the pooled individual phenotypic variances of
the MZ twins (0.915) are greater than those of the DZ twins (0.689) and, although

1The reader might like to consider what the components of this shared variance might include
in these data obtained from the mothers of the twins and think forward to our treatment of rating
data in Chapter 11.
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this discrepancy is apparently not statistically significant with our sample sizes (171
MZ pairs and 194 DZ pairs), we might be motivated to consider sibling interactions.

Fitting the model shown in Figure 8.2 yields results given in Table 8.2. Our gen-

Table 8.2: Parameter estimates and goodness of fit statistics from fitting models
of sibling interaction to CBC data.

Fit statistics Parameter estimates
Model df χ2 AIC a c e s
E+s 4 29.80 21.8 — — * *
AE+s 3 1.80 -4.2 0.61 — 0.42 0.23
CE+s 3 29.80 21.8 — 0.88 0.28 -0.10
ACE+s 2 1.80 -2.2 0.61 .0001 0.42 0.23
* Indicates parameters out of bounds.
1This parameter is fixed on the lower bound (0.0) by Mx

eral conclusion is that while the evidence for social interactions is not unequivocal,
a model including additive genetic effects, non-shared environments, and reciprocal
sibling cooperation provides the best account of these data.

8.4 Consequences for Variation and Covariation

In this section we will work through the matrix algebra to derive expected variance
and covariance components for a simplified model of sibling interaction. We then
show how this model can be adapted to handle the specific cases of additive and
dominant genetic, and shared and non-shared environmental effects. Numerical
examples of strong competition and cooperation will be used to illustrate their
effects on the variances and covariances of twins and unrelated individuals reared
in the same home.

8.4.1 Derivation of Expected Covariances

To understand what it is about the observed statistics that suggests sibling inter-
actions in our twin data we must follow through a little algebra. We shall try to
keep this as simple as possible by considering the path model in Figure 8.3, which
depicts the influence of an arbitrary latent variable, X , on the phenotype P . As
long as our latent variables — A, C, E, etc. — are independent of each other, their
effects can be considered one at a time and then summed, even in the presence of
social interactions. The linear model corresponding to this path diagram is

P1 = sP2 + xX1 (8.3)
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Figure 8.3: Path diagram showing influence of arbitrary exogenous variable X on
phenotype P in a pair of relatives (for univariate twin data, incorporating sibling
interaction).

P2 = sP1 + xX2 (8.4)

Or, in matrices:
(

P1

P2

)

=

(

0 s
s 0

)(

P1

P2

)

+

(

x 0
0 x

)(

X1

X2

)

which in turn we can write more economically as

y = By + Gx

Following the rules for matrix algebra set out in Chapters 4 and ??, we can rear-
range this equation, as before:

y −By = Gx (8.5)

Iy −By = Gx (8.6)

(I−B)y = Gx , (8.7)

and then, multiplying both sides of this equation by the inverse of (I - B), we have

y = (I−B)−1Gx . (8.8)

In this case, the matrix (I - B) is simply

(

1 −s
−s 1

)

,
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which has determinant 1− s2, so (I−B)−1 is

1

1− s2
⊗
(

1 s
s 1

)

.

The symbol ⊗ is used to represent the Kronecker product, which in this case simply
means that each element in the matrix is to be multiplied by the constant 1

1−s2 .
We have a vector of phenotypes on the left hand side of equation 8.8. In the

chapter on matrix algebra (p. 82) we showed how the covariance matrix could be
computed from the raw data matrix T by expressing the observed data as deviations
from the mean to form matrix U, and computing the matrix product UU′. The
same principle is applied here to the vector of phenotypes, which has an expected
mean of 0 and is thus already expressed in mean deviate form. So to find the
expected variance-covariance matrix of the phenotypes P1 and P2, we multiply by
the transpose:

E {yy′} =
{

(I−B)−1Gx
}{

(I−B)−1Gx
}′

(8.9)

= (I−B)−1GE {xx′}G′(I−B)−1
′

. (8.10)

Now in the middle of this equation we have the matrix product E {xx′}. This is
the covariance matrix of the x variables. For our particular example, we want two
standardized variables, X1 and X2 to have unit variance and correlation r so the
matrix is:

(

1 r
r 1

)

.

We now have all the pieces required to compute the covariance matrix, recalling
that for this case,

G =

(

x 0
0 x

)

(8.11)

(I−B)−1 =
1

1− s2
⊗
(

1 s
s 1

)

(8.12)

E {xx′} =

(

1 r
r 1

)

. (8.13)

The reader may wish to show as an exercise that by substituting the right hand sides
of equations 8.11 to 8.13 into equation 8.10, and carrying out the multiplication,
we obtain:

E {yy′} =
x2

(1− s2)2
⊗
(

1 + 2sr + s2 r + 2s + rs2

r + 2s + rs2 1 + 2sr + s2

)

(8.14)

We can use this result to derive the effects of sibling interaction on the variance
and covariance due to a variety of sources of individual differences. For example,
when considering:



8.4. CONSEQUENCES FOR VARIATION AND COVARIATION 159

1. additive genetic influences, x2 = a2 and r = α, where α is 1.0 for MZ twins
and 0.5 for DZ twins;

2. shared environment influences, x2 = c2 and r = 1;

3. non-shared environmental influences, x2 = e2 and r = 0;

4. genetic dominance, x2 = d2 and r = δ, where δ = 1.0 for MZ twins and
δ = 0.25 for DZ twins.

These results are summarized in Table 8.3.

Table 8.3: Effects of sibling interaction(s) on variance and covariance components
between pairs of relatives.

Source Variance Covariance
Additive genetic ω(1 + 2sα + s2)a2 ω(α + 2s + αs2)a2

Dominance genetic ω(1 + 2sδ + s2)d2 ω(δ + 2s + δs2)d2

Shared environment ω(1 + 2s + s2)c2 ω(1 + 2s + s2)c2

Non-shared environment ω(1 + s2)e2 ω2se2

ω represents the scalar 1
(1−s2)2 obtained from equation 8.14.

8.4.2 Numerical Illustration

To illustrate these effects numerically, let us consider a simplified situation in which
a2 = .5, d2 = 0, c2 = 0, e2 = .5 in the absence of social interaction (i.e., s = 0);
in the presence of strong cooperation, s = .5; and in the presence of strong com-
petition, s = −.5. Table 8.4 gives the numerical values for MZ and DZ twins and
unrelated pairs of individuals reared together (e.g., adoptive siblings). In terms
of correlations, phenotypic cooperation mimics the effects of shared environment
while phenotypic competition may mimic the effects of non-additive genetic vari-
ance. However, the effects can be distinguished because social interactions result in
different total phenotypic variances for differently related pairs of individuals. All
of the other kinds of models we have considered predict that the population vari-
ance of individuals is not affected by the presence or absence of relatives. However,
cooperative interactions increase the variance of more closely related individuals
the most, while competitive interactions increase them the least and under some
circumstances may decrease them. Thus, in twin data, cooperation is distinguished
from shared environmental effects because cooperation results in greater total phe-
notypic variance in MZ than in DZ twins. Competition is distinguished from non-
additive genetic effects because it results in lower total phenotypic variance in MZ
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Table 8.4: Effects of strong sibling interaction on the variance and covariance
between MZ, DZ, and unrelated individuals reared together. The interaction pa-
rameter s takes the values 0, .5, and −.5 for no sibling interaction, cooperation,
and competition, respectively.

MZ twins DZ twins Unrelated
Interaction Var Cov r Var Cov r Var Cov r
None 1.00 .50 .50 1.00 .25 .25 1.00 .00 .00
Cooperation 3.11 2.89 .93 2.67 2.33 .88 2.22 1.78 .80
Competition 1.33 .44 .33 1.78 -.67 -.38 2.22 -1.78 -.80

than in DZ twins. This is the bottom line: social interactions cause the variance
of a phenotype to depend on the degree of relationship of the social actors.

There are three observations we should make about this result. First, a test
of the contrary assumption, i.e., that the total observed variance is independent
of zygosity in twins, was set out by Jinks and Fulker (1970) as a preliminary re-
quirement of their analyses and, as has been noted, is implicitly provided whenever
we fit models without social interactions to covariance matrices. For I.Q., educa-
tional attainment, psychometric assessments of personality, social attitudes, body
mass index, heart rate reactivity, and so on, the behavior genetic literature is re-
plete with evidence for the absence of the effects of social interaction. Second,
analyses of family correlations (rather than variances and covariances) effectively
standardize the variances of different groups of individuals and throw away the
very information we need to distinguish social interactions from other influences.
Third, if we are working with categorical data and adopting a threshold model (see
Chapter 2), we can make predictions about the standardized thresholds in different
groups. Higher quantitative variances lead to smaller (i.e., less deviant) thresholds
and therefore higher prevalence for the extreme categories. Thus, for example, if
abstinence vs. drinking status is influenced by sibling cooperation on a latent un-
derlying phenotype, and abstinence has a frequency of 10% in DZ twins, we should
expect a higher frequency of abstinence in MZ twins. These models are relatively
simple to implement in Mx (Neale, 1997).



Chapter 9

Sex-limitation and G × E

Interaction

9.1 Introduction

As described in Chapter 6, the basic univariate ACE model allows us to estimate
genetic and environmental components of phenotypic variance from like-sex MZ
and DZ twin data. When data are available from both male and female twin pairs,
an investigator may be interested in asking whether the variance profile of a trait
is similar across the sexes or whether the magnitude of genetic and environmental
influences are sex-dependent. To address this issue, the ACE model may be fitted
independently to data from male and female twins, and the parameter estimates
compared by inspection. This approach, however, has three severe limitations: (1)
it does not test whether the heterogeneity observed across the sexes is significant;
(2) it does not attempt to explain the sex differences by fitting a particular sex-
limitation model; and (3) it discards potentially useful information by excluding
dizygotic opposite-sex twin pairs from the analysis. In the first part of this chapter
(Section 9.2), we outline three models for exploring sex differences in genetic and
environmental effects (i.e., models for sex-limitation) and provide an example of
each by analyzing twin data on body mass index (BMI) (Section 9.2.4).

Just as the magnitude of genetic and environmental influences may differ ac-
cording to sex, they also may vary under disparate environmental conditions. If
differences in genetic variance across environmental exposure groups result in differ-
ential heritability estimates for these groups, a genotype × environment interaction
is said to exist. Historically, genotype × environment (G × E) interactions have
been noted in plant and animal species (Mather and Jinks, 1982); however, there
is increasing evidence that they play an important role in human variability as well
(Heath and Martin, 1986; Heath et al., 1989b). A simple method for detecting
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G × E interactions is to estimate components of phenotypic variance conditional
on environmental exposure (Eaves, 1982). In the second part of this chapter (Sec-
tion 9.3), we illustrate how this method may be employed by suitably modifying
models for sex-limitation. We then apply the models to depression scores of female
twins and estimate components of variance conditional on a putative buffering
environment, marital status (Section 9.3.2).

9.2 Sex-limitation Models

9.2.1 General Model for Sex-limitation

The general sex-limitation model allows us to (1) estimate the magnitude of ge-
netic and environmental effects on male and female phenotypes and (2) determine
whether or not it is the same set of genes or shared environmental experiences that
influence a trait in males and females. Although the first task may be achieved
with data from like-sex twin pairs only, the second task requires that we have
data from opposite-sex pairs (Eaves et al., 1978). Thus, the Mx script we describe
will include model specifications for all 5 zygosity groups (MZ–male, MZ–female,
DZ–male, DZ–female, DZ–opposite-sex).

To introduce the general sex-limitation model, we consider a path diagram for
opposite-sex pairs, shown in Figure 9.1. Included among the ultimate variables in
the diagram are female and male additive genetic (Af and Am), dominant genetic
(Df and Dm), and unique environmental (Ef and Em) effects, which influence
the latent phenotype of the female (Pf ) or male (Pm) twin. The additive and
dominant genetic effects are correlated within twin pairs (α = 0.50 for additive
effects, and β = 0.25 for dominant effects) as they are for DZ like-sex pairs in
the simple univariate ACE model. This correlational structure implies that the
genetic effects represent common sets of genes which influence the trait in both
males and females; however, since am and af or dm and df are not constrained to
be equal, the common effects need not have the same magnitude across the sexes.
Figure 9.1 also includes ultimate variables for the male (or female) member of the
opposite-sex twin pair (A′

m and D′
m) which do not correlate with genetic effects

on the female phenotype. For this reason, we refer to A′
m and D′

m as sex-specific
variables. Significant estimates of their effects indicate that the set of genes which
influences a trait in males is not identical to that which influences a trait in females.
To determine the extent of male-female genetic similarity, one can calculate the
male-female genetic correlation (rg). As usual (see Chapter 2) the correlation is
computed as the covariance of the two variables divided by the product of their
respective standard deviations. Thus, for additive genetic effects we have

rg =
amaf

√

a2
f (a2

m + a′2
m)
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Figure 9.1: The general genotype × sex interaction model for twin data. Path
diagram is shown for DZ opposite-sex twins Pf and Pm. The correlation between
Af and Am is 1.0 for MZ and 0.5 for DZ twins. The correlation between Df and
Dm is 1.0 for MZ and 0.25 for DZ twins.

Alternatively, a similar estimate may be obtained for dominant genetic effects.
However, the information available from twin pairs reared together precludes the
estimation of both sex-specific parameters, a′

m and d′m and, consequently, both
additive and dominance genetic correlations. Instead, models including A′

m or D′
m

may be fit to the data, and their fits compared using appropriate goodness-of-fit
indices, such as Akaike’s Information Criteria (AIC; Akaike, 1987; see Section ??).
This criterion may be used to compare the fit of an ACE model to the fit of an
ADE model. AIC is one member of a class of indices that reflect both the goodness
of fit of a model and its parsimony, or ability to account for the observed data with
few parameters.

To generalize the model specified in Figure 9.1 to other zygosity groups, the
parameters associated with the female phenotype are equated to similar effects on
the phenotypes of female same-sex MZ and DZ twin pairs. In the same manner,
all parameters associated with the male phenotype (reflecting effects which are
common to both sexes as well as those specific to males) are equated to effects on
both members of male same-sex MZ and DZ pairs. As a result, the model predicts
that variances will be equal for all female twins, and all male twins, regardless
of zygosity group or twin status (i.e., twin 1 vs. twin 2). The model does not
necessarily predict equality of variances across the sexes.
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9.2.2 General Sex-limitation Model Mx Script

The full Mx specification for the general sex-limitation model is provided in Ap-
pendix D.1. In theory, the same approach that was used to specify the simple uni-
variate ACE model (Chapter 6) in Mx could be used for the general sex-limitation
model. That is, genetic and environmental parameters can be specified in calcu-
lation groups and the matrices can be included in the data groups to specify the
expected covariance matrices. The female and male parameters are declared in
separate groups which simplifies the data groups. The only differences between
the male and female data groups are the details about the data and the number of
the group from which matrices are being imported. Note that for the general sex
limitation model, one extra matrix (N) is declared in the male group to account for
the male-specific additive genetic effects.

While the specification of the same-sex groups is a straightforward extension of
the univariate model, the opposite-sex group requires some special attention. First,
the matrices for both male and female variance components are read in to formulate
the expected variance for females (twin 1) and males (twin 2). Second, the expected
covariance between male and female twins can be specified by multiplying the male
and female path coefficient matrices. Although not a problem in the univariate
analysis, note that the male-female expected covariance matrix is not necessarily
symmetric.

Without boundary constraints on the parameters, this specification may lead
to negative parameter estimates for one sex, especially when the DZ opposite-sex
correlation is low, as compared to DZ like-sex correlations. Such negative param-
eter estimates result in a negative genetic (or common environmental) covariation
between the sexes. Although a negative covariation is plausible, it seems quite un-
likely that the same genes or common environmental influences would have opposite
effects across the sexes. With the availability of linear and non-linear constraints in
Mx, we can parameterize the general sex-limitation model so that the male-female
covariance components are constrained to be non-negative by using a boundary
statement:

Bound .000 10 X 1 1 1 Z 1 1 1 W 1 1 1

Bound .000 10 X 2 1 1 Z 2 1 1 W 2 1 1 N 2 1 1

where .000 is the lower boundary, 10 is the upper boundary followed by matrix
elements.

In this example, we estimate sex-specific additive genetic effects (and fix the sex-
specific dominance effects to zero). The data are log-transformed indices of body
mass index (BMI) obtained from twins belonging to the Virginia and American
Association of Retired Persons twin registries. A detailed description of these data
will be provided in section 9.2.4, in the discussion of the model-fitting results.



9.2. SEX-LIMITATION MODELS 165

9.2.3 Restricted Models for Sex-limitation

In this section, we describe two restricted models for sex-limitation. The first
we refer to as the common effects sex-limitation model, and the second, the scalar
sex-limitation model. Both are sub-models of the general sex-limitation model and
therefore can be compared to the more general model using likelihood-ratio χ2

difference tests.

Common Effects Sex-limitation Model

The common effects sex-limitation model is simply one in which the sex-specific
pathways in Figures 9.1 (a′

m or d′m) are fixed to zero or the additive (or dominant)
genetic correlation between males and females is fixed to .50 (or .25). As a result,
only the genetic effects which are common to both males and females account for
phenotypic variance and covariance. Although the genes may be the same, the
magnitude of their effect is still allowed to differ across the sexes. This restricted
model may be compared to the general sex-limitation model using a χ2 difference
test with a single degree of freedom.

Information to discern between the general sex-limitation model and the com-
mon effects model comes from the covariance of DZ opposite-sex twin pairs. Specif-
ically, if this covariance is significantly less than that predicted from genetic effects
which are common to both sexes (i.e., less than [(am×af )+(dm×df )]), then there
is evidence for sex-specific effects. Otherwise, the restricted model without these
effects should not fit significantly worse than the general model. Mere inspection
of the correlations from DZ like-sex and opposite-sex pairs may alert one to the
fact that sex-specific effects are playing a role in trait variation, if it is found that
the opposite sex-correlation is markedly less than the like-sex DZ correlations.

Scalar Effects Sex-limitation Model

The scalar sex-limitation model is a sub-model of both the general model and the
common effects model. In the scalar model, not only are the sex-specific effects
removed, but the variance components for females are all constrained to be equal
to a scalar multiple (k2) of the male variance components, such that a2

f = k2a2
m,

d2
f = k2d2

m, and e2
f = k2e2

m. As a result, the standardized variance components
(e.g., heritability estimates) are equal across sexes, even though the unstandardized
components differ.

Figure 9.2 shows a path diagram for DZ opposite-sex under the scalar sex-
limitation model, and Appendix D.2 provides the Mx specification. Unlike the
model in Figure 9.1, the scalar model does not include separate parameters for
genetic and environmental effects on males and females — instead, these effects are
equated across the sexes. Because of this equality, negative estimates of male-female
genetic covariance cannot result. To introduce a scaling factor for the male (or
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female) variance components, we can pre and postmultiply the expected variances
by a scalar.

fA fD fE mA mD mE

fP mP

fL mL

1.0 1.0 1.0 1.0 1.0 1.0

1.0 / 0.5 1.0 / 0.25
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Figure 9.2: The scalar genotype × sex interaction model for twin data. Path
diagram is shown for DZ opposite-sex twins Pf and Pm. The correlation between
Af and Am is 1.0 for MZ and 0.5 for DZ twins. The correlation between Df and
Dm is 1.0 for MZ and 0.25 for DZ twins.

The full scalar sex-limitation model may be compared to the full common effects
model using a χ2 difference test with 2 degrees of freedom. Similarly, the scalar
sex-limitation model may be compared to the model with no sex differences (that is,
one which fixes k to 1.0) using a χ2 difference test with a single degree of freedom.

The restricted sex-limitation models described in this section are not an ex-
haustive list of the sub-models of the general sex-limitation model. Within either
of these restricted models (as within the general model), one can test hypothe-
ses regarding the significance of genetic or environmental effects. Also, within the
common effects sex-limitation model, one may test whether specific components of
variance are equal across the sexes (e.g., am may be equated to af , or em to ef ).
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Again, sub-models may be compared to more saturated ones through χ2 difference
tests, or to models with the same number of parameters with Akaike’s Information
Criteria.

9.2.4 Application to Body Mass Index

In this section, we apply sex-limitation models to data on body mass index col-
lected from twins in the Virginia Twin Registry and twins ascertained through
the American Association of Retired Persons (AARP). Details of the membership
of these two twin cohorts are provided in Eaves et al. (1991), in their analysis of
BMI in extended twin-family pedigrees. In brief, the Virginia twins are members
of a population based registry comprised of 7,458 individuals (Corey et al., 1986),
while the AARP twins are members of a volunteer registry of 12,118 individuals
responding to advertisements in publications of the AARP. The Virginia twins’
mean age is 39.7 years (SD = 14.3), compared to 54.5 years (SD = 16.8) for the
AARP twins. Between 1985 and 1987, Health and Lifestyle questionnaires were
mailed to twins from both of these cohorts. Among the items on the questionnaire
were those pertaining to physical similarity and confusion in recognition by others
(used to diagnose zygosity) and those asking about current height and weight (used
to compute body mass index). Questionnaires with no missing values for any of
these items were returned by 5,465 Virginia and AARP twin pairs.

From height and weight data, body mass index (BMI) was calculated for the
twins, using the formula:

BMI = wt(kg)/ht(m)2

The natural logarithm of BMI was then taken to normalize the data. Before calcu-
lating covariance matrices of log BMI, the data from the two cohorts were combined,
and the effects of age, age squared, sample (AARP vs. Virginia), sex, and their in-
teractions were removed. The resulting covariance matrices are provided in the Mx
scripts in Appendices D.1 and D.2, while the correlations and sample sizes appear
in Table 9.1 below.

Table 9.1: Sample sizes and correlations for BMI data in Virginia and AARP
twins.

Zygosity Group N r
MZF 1802 0.744
DZF 1142 0.352
MZM 750 0.700
DZM 553 0.309
DZO 1341 0.251
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We note that both like-sex MZ correlations are greater than twice the respective
DZ correlations; thus, models with dominant genetic effects, rather than common
environmental effects, were fit to the data.

In Table 9.2, we provide selected results from fitting the following models:
general sex-limitation (I); common effects sex-limitation (II-IV); and scalar sex-
limitation (V). We first note that the general sex-limitation model provides a good
fit to the data, with p = 0.32. The estimate of a′

m under this model is fairly small,
and when set to zero in model II, found to be non-significant (χ2

1 = 2.54, p > 0.05).
Thus, there is no evidence for sex-specific additive genetic effects, and the common
effects sex-limitation model (model II) is favored over the general model. As an
exercise, the reader may wish to verify that the same conclusion is reached if the
general sex-limitation model with sex-specific dominant genetic effects is compared
to the common effects model with d′

m removed.
Note that under model II the dominant genetic parameter for females is quite

small; thus, when this parameter is fixed to zero in model III, there is not a signifi-
cant worsening of fit, and model III becomes the most favored model. In model IV,
we consider whether the dominant genetic effect for males can also be fixed to zero.
The goodness-of-fit statistics indicate that this model fits the data poorly (p < 0.01)
and provides a significantly worse fit than model III (χ2

1 = 26.73, p < 0.01). Model
IV is therefore rejected and model III remains the favored one.

Finally, we consider the scalar sex-limitation model. Since there is evidence for
dominant genetic effects in males and not in females, it seems unlikely that this
model, which constrains the variance components of females to be scalar multiples
of the male variance components, will provide a good fit to the data, unless the
additive genetic variance in females is also much smaller than the male additive
genetic variance. The model-fitting results support this contention: the model
provides a marginal fit to the data (p = 0.05), and is significantly worse than
model II (χ2

2 = 7.82, p < 0.05 ). We thus conclude from Table 9.2 that model III
is the best fitting model. This conclusion would also be reached if AIC was used
to assess goodness-of-fit.

Using the parameter estimates under model III, the expected variance of log
BMI (residuals) in males and females can be calculated. A little arithmetic reveals
that the phenotypic variance of males is markedly lower than that of females (0.17
vs. 0.28). Inspection of the parameter estimates indicates that the sex difference
in phenotypic variance is due to increased genetic and environmental variance in
females. However, the increase in genetic variance in females is proportionately
greater than the increase in environmental variance, and this difference results in a
somewhat larger broad sense (i.e., a2 + d2) heritability estimate for females (75%)
than for males (69%).

The detection of sex differences in environmental and genetic effects on BMI
leads to questions regarding the nature of these differences. Speculation might
suggest that the somewhat lower male heritability estimate may be due to the
fact that males are less accurate in their self-report of height and weight than
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Table 9.2: Parameter estimates from fitting genotype × sex interaction models to
BMI.

MODEL
Parameter I II III IV V
af 0.449 0.454 0.454 0.454 0.346
df 0.172 0.000 – – 0.288
ef 0.264 0.265 0.265 0.267 0.267
am 0.210 0.240 0.240 0.342 –
dm 0.184 0.245 0.245 – –
em 0.213 0.213 0.213 0.220 –
a′

m 0.198 – – – –
k – – – – 0.778
χ2 9.26 11.80 11.80 38.53 19.62
d.f. 8 9 10 11 11
p 0.32 0.23 0.30 0.00 0.05
AIC -6.74 -6.20 -8.20 16.53 -2.38

are females. With additional information, such as test-retest data, this hypothesis
could be rigorously tested. The sex dependency of genetic dominance is similarly
curious. It may be that the common environment in females exerts a greater
influence on BMI than in males, and, consequently, masks a genetic dominance
effect. Alternatively, the genetic architecture may indeed be different across the
sexes, resulting from sex differences in selective pressures during human evolution.
Again, additional data, such as that from reared together adopted siblings, could
be used to explore these alternative hypotheses.

One sex-limitation model that we have not considered, but which is biologically
reasonable, is that the across-sex correlation between additive genetic effects is the
same as the across-sex correlation between the dominance genetic effects1. Fitting
a model of this type involves a non-linear constraint which can easily be specified
in Mx.

9.3 Genotype × Environment Interaction

As stated in the introduction of this chapter, genotype × environment (G × E)
interactions can be detected by estimating components of phenotypic variance con-

1The reasoning goes like this: (e.g.) males have a elevated level of a chemical that prevents any

gene expression from certain loci, at random with respect to the phenotype under study. Thus,
both additive and dominant genetic effects would be reduced in males vs females, and hence the
same genetic correlation between the sexes would apply to both.
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ditional on environmental exposures. To do so, MZ and DZ covariance matrices
are computed for twins concordant for exposure, concordant for non-exposure , and
discordant for exposure, and structural equation models are fitted to the result-
ing six zygosity groups. The Mx specifications for alternative G × E interaction
models are quite similar to those used in a sex-limitation analysis; however, there
are important differences between the two. In a G × E interaction analysis, the
presence of a sixth group provides the information for an additional parameter
to be estimated. Further, the nature of alternative hypotheses used to explain
heterogeneity across groups differs from those invoked in a sex-limitation analysis.
In section 9.3.1 we detail these differences, and in section 9.3.2 we illustrate the
method with an application to data on marital status and depression.

9.3.1 Models for G × E Interactions

The models described in this section are appropriate for analyzing G × E interac-
tion when genes and environment are acting independently. However, if there is
genotype – environment correlation, then more sophisticated statistical procedures
are necessary for the analysis. One way of detecting a G – E correlation is to com-
pute the cross-correlations between one twin’s environment and the trait of interest
in the cotwin (Heath et al., 1989b). If the cross-correlation is not significant, there
is no evidence for a G – E correlation, and the G × E analysis may proceed using
the methods described below.

General G × E Interaction Model

First we consider the general G × E interaction model, similar to the general sex-
limitation model discussed in section 9.2.3. This model not only allows the magni-
tude of genetic and environmental effects to vary across environmental conditions,
but also, by using information from twin pairs discordant for environmental expo-
sure, enables us to determine whether it is the same set of genes or environmental
features that are expressed in the two environments. Just as we used twins who
were discordant for sex (i.e., DZO pairs) to illustrate the sex-limitation model,
we use twins discordant for environmental exposure to portray the general G × E
interaction model. Before modeling genetic and environmental effects on these indi-
viduals, one must order the twins so that the first of the pair has not been exposed
to the putative modifying environment, while the second has (or vice versa, as long
as the order is consistent across families and across groups). The path model for
the discordant DZ pairs is then identical to that used for the dizygotic opposite-sex
pairs in the sex-limitation model; for the discordant MZ pairs, it differs only from
the DZ model in the correlation structure of the ultimate genetic variables (see
Figure 9.3).

Among the ultimate variables in Figure 9.3 are genetic effects that are cor-
related between the unexposed and exposed twins and those that influence only
the latter (i.e., environment-specific effects). For the concordant unexposed and
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Figure 9.3: The general genotype × environment interaction model for twin data.
Path diagram is for MZ and DZ twins discordant for environmental exposure, Pu

and Pe. The correlation between Au and Ae is 1.0 for MZ and 0.5 for DZ twins.
The correlation between Du and De is 1.0 for MZ and 0.25 for DZ twins. The
subscripts u and e identify variables and parameters and unexposed and exposed
twins, respectively.

concordant exposed MZ and DZ pairs, path models are comparable to those used
for female-female and male-male MZ and DZ pairs in the sex-limitation analysis,
with environment-specific effects (instead of sex-specific effects) operating on the
exposed twins (instead of the male twins). As a result, the model predicts equal
variances within an exposure class, across zygosity groups.

In specifying the general G × E interaction model in Mx, one must again use
boundary constraints, in order to avoid negative covariance estimates for the pairs
discordant for exposure (Appendix D.3).

Unlike the general sex-limitation analysis, there is enough information in a
G × E analysis to estimate two environment-specific effects. Thus, the magni-
tude of environment-specific additive and dominant genetic or additive genetic and
common environmental effects can be determined. It still is not possible to simul-
taneously estimate the magnitude of common environmental and dominant genetic
effects.
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Common Effects G × E Interaction Model

A common effects G × E model can also be fitted to covariance matrices computed
conditionally on environmental exposure by simply fixing the environment-specific
effects of the general model to zero, and comparing the two using a χ2 difference
test. The information from pairs discordant for environmental exposure allows for
this comparison.

A critical sub-model of the common effects G × E model is one which tests the
hypothesis that exposure group heterogeneity is solely due to heteroscedasticity, or
group differences in random environmental variance, rather than group differences
in genetic variance. To fit this model, the genetic parameters are simply equated
across groups, while allowing the random environmental effects to take on different
values. If this model does not fit worse than the full common effects model, then
there is evidence for heteroscedasticity.

A second sub-model of the common effects G × E interaction model is one which
constrains the environmental parameters to be equal across exposure groups, while
allowing the genetic variance components to differ. If this model is not significantly
worse than the full common effects model, then there is evidence to suggest that
the environmental interaction only involves a differential expression of genetic, but
not environmental, influences.

Scalar Effects G × E Interaction Model

As with the scalar sex-limitation model, the scalar G × E interaction model equates
genetic and environmental effects on exposed twins to be a scalar multiple of sim-
ilar effects on twins who have not been exposed to a modifying environment. As
a consequence, the heritability of a trait remains constant across exposure groups,
and there is no evidence for a genotype × environment interaction. This situa-
tion may arise if there is a mean-variance relationship, and an increase in trait
mean under a particular environmental condition is accompanied by an increase
in phenotypic variation. When this is the case, the ratio of the genetic variance
component and environmental variance component is expected to remain the same
in different environments.

The Mx specification for the scalar G × E interaction model is identical to that
used for the scalar sex-limitation model, except for the addition of MZ discordant
pairs. The Mx script in Appendix D.4 illustrates how these pairs may be included.

9.3.2 Application to Marital Status and Depression

In this section, we determine whether the heritability of self-report depression scores
varies according to the marital status of female twins. Our hypothesis is that mar-
riage, or a marriage-type relationship, serves as a buffer to decrease an individual’s
inherited liability to depression, consequently decreasing the heritability of the
trait.
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The data were collected from twins enrolled in the Australian National Health
and Medical Research Council Twin register. In this sample, mailed questionnaires
were sent to the 5,967 pairs of twins on the register between November 1980 and
March 1982 (see also Chapter 10). Among the items on the questionnaire were
those from the state depression scale of the Delusions-Symptoms States Inventory
(DSSI; Bedford et al., 1976) and a single item regarding marital status. The anal-
yses performed here focus on the like-sex MZ and DZ female pairs who returned
completed questionnaires. The ages of the respondents ranged from 18 to 88 years;
however, due to possible differences in variance components across age cohorts, we
have limited our analysis to those twins who were age 30 or less at the time of their
response. There were 570 female MZ pairs in this young cohort, with mean age
23.77 years (SD=3.65); and 349 DZ pairs, with mean age 23.66 years (SD=3.93).

Using responses to the marital status item, pairs were subdivided into those
who were concordant for being married (or living in a marriage-type relationship);
those who were concordant for being unmarried; and those who were discordant
for marital status. In the discordant pairs, the data were reordered so that the first
twin was always unmarried. Depression scores were derived by summing the 7 DSSI
item scores, and then taking a log-transformation of the data [x′ = log10(x+1)] to
reduce heteroscedasticity. Covariance matrices of depression scores were computed
for the six zygosity groups after linear and quadratic effects of age were removed.
The matrices are provided in the Mx scripts in Appendices D.3 and D.4, while the
correlations and sample sizes are shown in Table 9.3. We note (i) that in all cases,
MZ correlations are greater than the corresponding DZ correlations; and (ii) that
for concordant married and discordant pairs, the MZ:DZ ratio is greater than 2:1,
suggesting the presence of genetic dominance.

Table 9.3: Sample sizes and correlations for depression data in Australian female
twins.

Zygosity Group N r
MZ - Concordant single 254 0.409
DZ - Concordant single 155 0.221
MZ - Concordant married 177 0.382
DZ - Concordant married 107 0.098
MZ - Discordant 139 0.324
DZ - Discordant 87 0.059

Before proceeding with the G × E interaction analyses, we tested whether there
was a G – E correlation involving marital status and depression. To do so, cross-
correlations between twins’ marital status and cotwins’ depression score were com-
puted. In all but one case (DZ twin 1’s depression with cotwin’s marital status;
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r = −0.156, p < 0.01), the correlations were not significant. This near absence of
significant correlations implies that a genetic predisposition to depression does not
lead to an increased probability of remaining single, and indicates that a G – E
correlation need not be modeled.

Table 9.4 shows the results of fitting several models: general G×E (I); full
common-effects G × E (II); three common-effects sub-models (III-V); scalar G x E
(VI); and no G × E interaction (VII). Parameter estimates subscripted s and m re-
fer respectively to single (unexposed) and married twins. Models including genetic
dominance parameters, rather than common environmental effects, were fitted to
the data. The reader may wish to show that the overall conclusions concerning
G × E interaction do not differ if shared environment parameters are substituted
for genetic dominance.

Table 9.4: Parameter estimates from fitting genotype × marriage interaction
models to depression scores.

MODEL
Parameter I II III IV V VI VII
as 0.187 0.187 0.207 0.209 0.186 0.206 0.188
ds 0.106 0.105 – – – – –
es 0.240 0.240 0.246 0.245 0.257 0.247 0.246
am 0.048 0.048 0.163 0.162 0.186 0.206 0.188
dm 0.171 0.173 – – – – –
em 0.232 0.232 0.243 0.245 0.232 0.247 0.246
a′

m 0.008 – – – – – –
k – – – – – 0.916 –
χ2 15.44 15.48 18.88 18.91 22.32 20.08 27.19
d.f. 11 12 14 15 15 15 16
p 0.16 0.22 0.17 0.22 0.10 0.17 0.04
AIC -6.56 -9.52 -9.12 -11.09 -7.68 -9.92 -4.81

Model I is a general G × E model with environment-specific additive genetic
effects. It provides a reasonable fit to the data (p = 0.16), with all parameters of
moderate size, except a′

m. Under model II, the parameter a′
m is set to zero, and

the fit is not significantly worse than model I (χ2
1 = 0.04, p = 0.84). Thus, there

is no evidence for environment-specific additive genetic effects. As an exercise, the
reader may verify that the same conclusion can be made for environment-specific
dominant genetic effects.

Under model III, we test whether the dominance effects on single and married
individuals are significant. A χ2 difference of 3.40 (p = 0.183, 2 df.) between
models III and II indicates that they are not. Consequently, model III, which
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excludes common dominance effects while retaining common additive genetic and
specific environmental effects, is favored.

Models IV - VII are all sub-models of III: the first specifies no differences in
environmental variance components across exposure groups; the second specifies
no differences in genetic variance components across groups; the third constrains
the genetic and environmental variance components of single twins to be scalar
multiples of those of married twins; and the fourth specifies no genetic or environ-
mental differences between the groups. When each of these is compared to model
III using a χ2 difference test, only model VII (specifying complete homogeneity
across groups) is significantly worse than the fuller model (χ2

2 = 8.28, p = 0.004).
In order to select the best sub-models from IV, V and VI, Akaike’s Information
Criteria were used. These criteria indicate that model IV — which allows for group
differences in genetic, but not environmental, effects — gives the most parsimo-
nious explanation for the data. Under model IV, the heritability of depression is
42% for single, and 30% for married twins. This finding supports our hypothesis
that marriage or marriage-type relationships act as a buffer against the expression
of inherited liability to depression.
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Chapter 10

Multivariate Analysis

10.1 Introduction

Until this point we have been concerned primarily with methods for analyzing single
variables obtained from twin pairs; that is, with estimation of the relevant sources
of genetic and environmental variation in each variable separately. Most studies,
however, are not designed to consider single variables, but are trying to understand
what factors make sets of variables correlate, or co-vary, to a greater or lesser extent.
Just as we can partition variation into its genetic and environmental components,
so too we can try to determine how far the covariation between multiple measures
is due to genetic and environmental factors. This partitioning of covariation is
one of the first tasks of multivariate genetic analysis, and it is one for which the
classical twin study, with its simple and regular structure, is especially well-suited.

In Chapter 1 we described three of the main issues in the genetic analysis of
multiple variables. These issues include

1. contribution of genes and environment to the correlation between variables

2. direction of causation between observed variables

3. genetic and environmental contributions to developmental change.

Each of these questions presumes either a different data collection strategy or a
different model or both; for example, analysis of measurements of correlated traits
taken at the same time (question 1) requires somewhat different methods than
assessments of the same trait taken longitudinally (question 3). However, all of
the multivariate issues share the requirement of multiple measurements from the
same subjects. In this chapter we direct our attention to the first issue: genetic and
environmental contributions to observed correlations among variables. We describe
twin methods for the other two questions in Chapters ?? – ??.

177
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The treatment of multivariate models presented here is intended to be intro-
ductory. There are many specific topics within the broad domain of multivariate
genetic analysis, some of which we address in subsequent chapters. Here we exclude
treatment of observed and latent variable means and analysis of singleton twins.

10.2 Phenotypic Factor Analysis

Factor analysis is one of the most widely used multivariate methods. The gen-
eral idea is to explain variation within and covariation between a large number of
observed variables with a smaller number of latent factors. Here we give a brief
outline of the method — those seeking more thorough treatments are referred to
e.g., Gorsuch (1983), Harman (1976), Lawley and Maxwell (1971). Typically the
free parameters of primary interest in factor models are the factor loadings and
factor correlations. Factor loadings indicate the degree of relationship between a
latent factor and an observed variable, while factor correlations represent the re-
lationships between the hypothesized latent factors. An observed variable that is
a good indicator of a latent factor is said to “load highly” on that factor. For
example, in intelligence research, where factor theory has its origins (Spearman,
1904), it may be noted that a vocabulary test loads highly on a hypothesized (la-
tent) verbal ability factor, but loads to a much lesser extent on a latent spatial
ability factor; i.e., the vocabulary test relates strongly to verbal ability, but less so
to spatial ability. Normally a factor loading is identical to a path coefficient of the
type described in Chapter 5.

In this section we describe factor analytic models and present some illustrative
applications to observed measurements without reference to genetic and environ-
mental causality. We turn to genetic factor models in Section 10.3.

10.2.1 Exploratory and Confirmatory Factor Models

There are two general classes of factor models: exploratory and confirmatory. In
exploratory factor analysis one does not postulate an a priori factor structure;
that is, the number of latent factors, correlations among them, and the factor
loading pattern (the pattern of relative weights of the observed variables on the
latent factors) is calculated from the data in some manner which maximizes the
amount of variance/covariance explained by the latent factors. More formally, in
exploratory factor analysis:

1. There are no hypotheses about factor loadings (all variables load on all fac-
tors, and factor loadings cannot be constrained to be equal to other loadings)

2. There are no hypotheses about interfactor correlations (either all correlations
are zero — orthogonal factors, or all may correlate — oblique factors)

3. Only one group is analyzed
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4. Unique factors (those that relate only to one variable) are uncorrelated,

5. All observed variables need to have specific variances.

These models often are fitted using a statistical package such as SPSS or SAS,
in which one may explore the relationships among observed variables in a latent
variable framework.

In contrast, confirmatory factor analysis requires one to formulate a hypothesis
about the number of latent factors, the relationships between the observed and
latent factors (the factor pattern), and the correlations among the factors. Thus,
a possible model of the data is formulated in advance as a factor structure, and
the factor loadings and correlations are estimated from the data1. As usual, this
model-fitting process allows one to test the ability of the hypothesized factor struc-
ture to account for the observed covariances by examining the overall fit of the
model. Typically the model involves certain constraints, such as equalities among
certain factor loadings or equalities of some of the factor correlations. If the model
fails then we may relax certain constraints or add more factors, test for significant
improvement in fit using the chi-squared difference test, and examine the overall
goodness of fit to see if the new model adequately accounts for the observed covari-
ation. Likewise, some or all of the correlations between latent factors may be set
to zero or estimated. Then we can test if these constraints are consistent with the
data. Confirmatory factor models are the type we are concerned with using Mx.

10.2.2 Building a Phenotypic Factor Model Mx Script

The factor model may be written as

Yij = biXj + Eij

with

i = 1, · · · , p (variables)

j = 1, · · · , n (subjects)

and where the measured variables Y are a function of a subject’s value on the
underlying factor X (henceforth the j subscript indicating subjects in Y will be
omitted). These subject values are called factor scores. Although the use of factor
scores is always implicit in the application of factor analysis, they cannot be deter-
mined precisely but must be estimated, since the number of common and unique
factors always exceeds the number of observed variables. In addition, there is a
specific part (E) to each variable. The b’s are the p–variate factor loadings of mea-
sured variables on the latent factors. To estimate these loadings we do not need

1In exploratory factor analysis the term “factor structure” is used to describe the correlations
between variables and factors, but in confirmatory analysis, as described here, the term often
describes the characteristics of a hypothesized factor model.
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to know the individual factor scores, as the expectation for the p × p covariance
matrix (ΣY,Y ) consists only of a p×m matrix of factor loadings B (m equals the
number of latent factors), a m × m correlation matrix of factor scores P, and a
p× p diagonal matrix of specific variances E :

ΣY,Y = BPB′ + E. (10.1)

In problems with uncorrelated latent factors, P is an identity matrix, so equa-
tion 10.1 reduces to

ΣY,Y = BB′ + E. (10.2)

Thus, the parameters in the model consist of factor loadings and specific variances
(sometimes also referred to as error variances).

10.2.3 Fitting a Phenotypic Factor Model

Martin et al. (1985) obtained data on arithmetic computation from male and female
twins who were measured once before and three times after drinking a standard
dose of alcohol. To illustrate the use of a confirmatory factor analysis model in Mx,
we analyze data from MZ females (first born twin only). The observed variances
and correlations are shown in Table 10.1. The confirmatory model is one in which
a single latent factor is hypothesized to account for all the covariances among the
four variables. The Mx script in Appendix E.1 shows the model specifications and
the 4× 4 input matrix.

Table 10.1: Observed correlations (with variances on the diagonal) for arithmetic
computation variables from female MZ twins before (time 0) and after (times 1 –
3) standard doses of alcohol.

Time 0 Time 1 Time 2 Time 3
Time 0 259.66
Time 1 .81 259.94
Time 2 .83 .87 245.24
Time 3 .87 .87 .90 249.30

The parameters in the group type statement indicate that we have NObservations=42
subjects) and NInput_vars=4 input variables. The loadings of the four variables
on the single common factor are estimated in matrix B and their specific variances
are estimated on the diagonal of matrix E. In this phenotypic factor model, we
have sufficient information to estimate factor loadings and specific variances for
the four variables, but we cannot simultaneously estimate the variance of the com-
mon factor because the model would then be underidentified. We therefore fix the
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variance of the latent factor to an arbitrary non-zero constant, which we choose to
be unity in order to keep the factor loadings and specific variances in the original
scale of measurement (Value 1 P 1 1).

The Mx output (after editing) from this common factor model is shown below.
The PARAMETER SPECIFICATIONS section illustrates the assignment of parameter
numbers to matrices declared Free in the matrices declaration section. Consecutive
parameter numbers are given to free elements in matrices in the order in which they
appear. It is always advisable to check the parameter specifications for the correct
assignment of free and constrained parameters. The output depicts the single
common factor structure of the model: there are free factor loadings for each of
the four variables on the common factor, and specific variance parameters for each
of the observed variables. Thus, the model has a total of 8 parameters to explain
the 4(4 + 1)/2 = 10 free statistics.

The results - from the MX PARAMETER ESTIMATES section of the Mx output -
are summarized in Table 10.2.3. The chi-squared goodness-of-fit value of 1.46 for
2 degrees of freedom suggests that this single factor model adequately explains
the observed covariances (p = .483). This also may be seen by comparing the
elements of the fitted covariance matrix and the observed covariance matrix, which
are seen to be very similar. The fitted covariance matrix is printed by Mx when
the RSiduals option is added. The fitted covariance matrix is calculated by Mx
using expression 10.2 with the final estimated parameter values.

Mx Output from Phenotypic Factor Model

----------------------------------------------------------

PARAMETER SPECIFICATIONS

MATRIX B

1

TIME1 1

TIME2 2

TIME3 3

TIME4 4

MATRIX E

TIME1 TIME2 TIME3 TIME4

1 5 6 7 8

10.3 Simple Genetic Factor Models

The factor analytic approach outlined above can be readily applied to multivari-
ate genetic problems. This was first suggested by Martin and Eaves (1977) for
the analysis of twin data (although in their original publication they use matrices



182 CHAPTER 10. MULTIVARIATE ANALYSIS

Table 10.2: Parameter estimates and expected covariance matrix from the phe-
notypic factor model

B E Time 1 Time 2 Time 3 Time 4
Time 1 14.431 51.422 Time 1 259.670
Time 2 14.745 42.509 Time 2 212.784 259.927
Time 3 14.699 29.174 Time 3 212.115 216.736 245.229
Time 4 15.119 20.709 Time 4 218.181 222.933 222.233 249.297
χ2 = 0.46, 2 df, p=.483

of mean squares and cross-products between and within twin pairs). As in the
phenotypic example above, a single common factor is proposed to account for cor-
relations among the variables, but now one such factor is hypothesized for each of
the components of variation, genetic, shared environmental, and non-shared envi-
ronmental. Data from genetically related individuals are used to estimate loadings
of variables on common genetic and environmental factors, so that variances and
covariances may be explained in terms of these factors.

10.3.1 Multivariate Genetic Factor Model

Using genetic notation, the genetic factor model can be represented as

Pij = aiAj + ciCj + eiEj + Uij

with

i = 1, · · · , p (variables)

j = 1, · · · , n (subjects)

The measured phenotype (P ) (again, omitting the j subscript) consists of multiple
variables that are a function of a subject’s underlying additive genetic deviate (A),
common (between-families) environment (C), and non-shared (within-families) en-
vironment (E). In addition, each variable Pj has a specific component Uj that
itself may consist of a genetic and a non-genetic part. In this initial application, we
assume that Uj is entirely random environmental in origin, an assumption we relax
later. Parameters a, c, and e are the p–variate factor loadings of measured variables
on the latent factors. A path diagram of this model is shown in Figure 10.3.1.

In Mx, there are a number of alternative ways to specify the model. One
approach is to specify the factor structure for the genetic, shared and specific envi-
ronmental factors in one matrix, e.g. B with twice the number of variables (for both
twins) as rows and the number of factors for each twin as columns. If we assume one
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T1P2

CA CC CE CA CC CE

T1P1 T1P3 T1P4 T2P2T2P1 T2P3 T2P4

1R 2R 3R 4R 1R 2R 3R 4R

1.0 1.0 1.0 1.0 1.0 1.0

1.0 / 0.5 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 10.1: Multivariate Genetic Factor model for four variables. All labels for
path-coefficients have been omitted.

genetic, one shared environmental and one specific environmental common factor
per twin (A1, A2, C1, C2, E1, E2) for our four-variate arithmetic computation ex-
ample (shown as T0 – T3 to represent administration times 0–3 before and after
standard doses of alcohol for twin 1 (Tw1) and twin 2 (Tw2) respectively), the B

matrix would look like

A1 C1 E1 A2 C2 E2

Tw1-T0 1 5 9 0 0 0
Tw1-T1 2 6 10 0 0 0
Tw1-T2 3 7 11 0 0 0
Tw1-T3 4 8 12 0 0 0
Tw2-T0 0 0 0 1 5 9
Tw2-T1 0 0 0 2 6 10
Tw2-T2 0 0 0 3 7 11
Tw2-T3 0 0 0 4 8 12

In this case with m = 6 factors and four observed variables for each twin (p = 8),
B would be a p×m (8× 6) matrix of the factor loadings, P the m×m correlation
matrix of factor scores, and E a p × p diagonal matrix of unique variances. The
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expected covariance may then be calculated as in equation 10.1:

ΣY,Y = BPB′ + E. (10.3)

In a multivariate analysis of twin data according to this factor model, Σ is
a 2p × 2p predicted covariance matrix of observations on twin 1 and twin 2 and
B is a 2p × 2m matrix of loadings of these observations on latent genotypes and
non-shared and common environments of twin 1 and twin 2. The factor loadings
between A1 and A2, E1 and E2, and C1 and C2 are constrained to be equal for twin
1 and twin 2, similar to the path coefficients of the univariate models discussed in
previous chapters. The equality constraints on the parameters are obtained in Mx
by using the same non-zero parameter number in a Specification statement for
the free parameters. The unique variances also are equal for both members of a
twin pair. These may be estimated on the diagonal of the 2p× 2p E matrix (e.g.,
Heath et al., 1989c). To fit this model, B and E are estimated from the data and P

(2m×2m) must be fixed a priori (for example, the correlation between A1 for twin
1 and A2 for twin 2 is 1.0 for MZ and 0.5 for DZ twins; the correlation between
the C variables of twin 1 and twin 2 is 1.0).

One alternative specification of this model is to include the unique variances
in matrix B and fix E to zero. The factor patterns for A and E of twin 1 and
twin 2 are identical to that in Section 10.2.3. The main difference lies in the
treatment of the unique variances. In the earlier example these were estimated as
variances on the diagonal of E, but now they are modeled as the square roots of the
variances. These quantities are now square roots because the unique variances are
calculated as the product BPB′ in the expected covariance expression whereas in
the previous example the quantities were estimated as the unproducted quantity
E. One might expect that this subtle change would have no effect on the model
(as indeed it does not in this example), but on occasion these alternative residual
specifications may produce different outcomes. The situation of residual variances
< 0.0 makes little sense in genetic analyses because it implies an impossible negative
variance component. Consequently, although it may be possible to make alternative
representations like this in Mx, we recommend this model, as it constrains unique
variances to be ≥ 0.0. Nevertheless, both methods give identical solutions when
fitted to the data used in these examples.

10.3.2 Alternate Representation of Genetic Factor Model

One of the features of Mx is its flexibility for specifying the same or very similar
models in different ways. Frequently the choice of model specification is simply
a matter of individual preference, convenience, or familiarity with Mx notation,
particularly when a model can be written in several different ways with no change in
the substantive or numerical outcome. However, at other times very subtle changes
in the Mx formulation of a model translate into a completely different substantive



10.3. SIMPLE GENETIC FACTOR MODELS 185

question. While it may be true that flexibility imparts confusion, it is important
to recognize and distinguish alternative representations of genetic models in Mx.

While the approach discussed above may be fairly intuitive, the B matrix may
become relatively big, therefore increasing the chance of errors in editing. An alter-
native approach is to specify the common factors and residual variances for genetic,
shared and specific environmental factors in separate matrices. One advantage of
this approach is that the model can be easily adapted for a different number of
common factors or observed variables. For example, if we use a 4× 1 matrix X for
the genetic common factor, a 4×1 matrix Y for the shared environmental common
factor, a 4× 1 matrix Z for the specific environmental common factor and a 4× 4
diagonal matrix F for the unique variances, the matrices section in Mx would be

X Full 4 1 Free ! genetic common factor

Y Full 4 1 Free ! shared environmental common factor

Z Full 4 1 Free ! specific environmental common factor

F Diag 4 4 Free ! specific environmental unique variances

We can then pre-calculate the genetic, shared and specific environmental variance
components in the algebra section:

A= X*X’;

C= Y*Y’;

E= Z*Z’ +F*F’;

and these matrices can be used to specify the expected covariance matrices for MZ
and DZ twins in a similar fashion as the univariate models. Note that by using
a Kronecker product for the genetic variance component in DZ twins (H@A) every
element of the A matrix is multiplied by one half. One additional feature in Mx
that allows for flexible model specification is the #define statement. One possible
use is to define the number of variables up front, e.g.

#define nvar 4

and use the ’defined’ variables in the matrices section:

X Full nvar 1 Free ! genetic common factor

Y Full nvar 1 Free ! shared environmental common factor

Z Full nvar 1 Free ! specific environmental common factor

F Diag nvar nvar Free ! specific environmental unique variances

If we wanted to do an analysis with just three variables, the only change to be
made, besides the NInput_vars and Select statements, is the #define statement.

10.3.3 Fitting the Multivariate Genetic Model

To illustrate the genetic common factor model we fit it to the arithmetic compu-
tation data, but now using both members of the female twin pairs and specifying
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two groups for the MZ and DZ twins. The observed variances and correlations
examined in this analysis are presented in Table 10.3. Appendix E.2 shows the full
Mx script for this model.

Table 10.3: Observed female MZ (above diagonal) and DZ (below diagonal) cor-
relations and variances for arithmetic computation variables.

Twin 1 Twin 2
T0 T1 T2 T3 T0 T1 T2 T3

T1 T0 1.0 .81 .83 .87 .78 .65 .71 .68
T1 .89 1.0 .87 .87 .74 .74 .74 .71
T2 .85 .90 1.0 .90 .73 .66 .72 .70
T3 .83 .86 .86 1.0 .74 .71 .74 .75

T2 T0 .23 .31 .36 .34 1.0 .73 .78 .79
T1 .22 .32 .34 .38 .81 1.0 .86 .87
T2 .16 .23 .27 .35 .79 .86 1.0 .87
T3 .23 .31 .34 .37 .81 .86 .87 1.0
MZ 297.9 229.4 247.4 274.9 281.9 359.7 326.9 281.1
DZ 259.7 259.9 245.2 249.3 283.8 249.5 262.1 270.9

The results from this common factor model are shown in Table 10.3.3. The
parameter estimates indicate a substantial genetic basis for the observed arithmetic
covariances, as the genetic loadings are much higher than either the shared and non-
shared environmental effects. The unique variances in F also appear substantial but
these do not contribute to covariances among the measures, only to the variance
of each observed variable. The χ2

56 value of 46.77 suggests that this single factor
model provides a reasonable explanation of the data. (Note that the 56 degrees
of freedom are obtained from 2 × 8(8 + 1)/2 free statistics minus 16 estimated
parameters).

Table 10.4: Parameter estimates from the full genetic common factor model

AC CC EC ES

Time 1 15.088 1.189 4.142 46.208
Time 2 13.416 5.119 6.250 39.171
Time 3 13.293 4.546 7.146 31.522
Time 4 13.553 5.230 5.765 34.684
χ2 = 46.77, 56 df, p=.806

Earlier in this chapter we alluded to the fact that confirmatory factor models
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allow one to statistically test the significance of model parameters. We can perform
such a test on the present multivariate genetic model. The Mx output above
shows that the shared environment factor loadings are much smaller than either
the genetic or non-shared environment loadings. We can test whether these loadings
are significantly different from zero by modifying slightly the Mx script to fix these
parameters and then re-estimating the other model parameters. There are several
possible ways in which one might modify the script to accomplish this task, but
one of the easiest methods is simply to change the Y to have no free elements.

Performing this modification in the first group effectively drops all C loadings
from all groups because the Begin Matrices= Group 1; statement in the second
and third group equates its loadings to those in the first. Thus, the modified
script represents a model in which common factors are hypothesized for genetic and
non-shared environmental effects to account for covariances among the observed
variables, and unique effects are allowed to contribute to measurement variances.
All shared environmental effects are omitted from the model.

Since the modified multivariate model is a sub- or nested model of the full
common factor specification, comparison of the goodness-of-fit chi-squared values
provides a test of the significance of the deleted C factor loadings. The full model
has 56 degrees of freedom and the reduced one: 2 × 8(8 + 1)/2 − 12 = 60 d.f.
Thus, the difference chi-squared statistic for the test of C loadings has 60− 56 = 4
degrees of freedom. As may be seen in the table below, the χ2

60 of the reduced
model is 51.08, and, therefore, the difference χ2

4 is 51.08 − 46.77 = 4.31, which
is non-significant at the .05 level. This non-significant chi-squared indicates that
the shared environmental loadings can be dropped from the multivariate genetic
model without significant loss of fit; that is, the arithmetic data are not influenced
by environmental effects shared by twins. Parameter estimates from this reduced
model are given below in Table 10.3.3.

Table 10.5: Parameter estimates from the reduced genetic common factor model

AC CC EC ES

Time 1 14.756 − 3.559 59.502
Time 2 14.274 − 6.331 39.433
Time 3 14.081 − 7.047 30.843
Time 4 14.405 − 5.845 36.057
χ2 = 51.08, 60 df, p=.787

The estimates for the genetic and non-shared environment parameters differ
somewhat between the reduced model and those estimated in the full common
factor model. Such differences often appear when fitting nested models, and are
not necessarily indicative of misspecification (of course, one would not expect the
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estimates to change in the case where parameters to be omitted are estimated
as 0.0 in the full model). The fitting functions used in Mx (see Chapter ??) are
designed to produce parameter estimates that yield the closest match between the
observed and estimated covariance matrices. Omission of selected parameters, for
example, the C loadings in the present model, generates a different model Σ and
thus may be expected to yield slightly different parameter estimates in order to
best approximate the observed matrix.

10.3.4 Fitting a Second Genetic Factor

The genetic common factor model we introduced in Sections 10.3.3 and 10.3.2 may
be extended to address more specific questions about the data. In the arithmetic
computation measures, for example, it is reasonable to hypothesize two genetic
factors: one general factor contributing to all measurements of arithmetic compu-
tation, and a second “alcohol” factor which influences the measures taken after
the challenge dose of alcohol. The most parsimonious extension of our common
factor model may involve the addition of only 1 free parameter which represents
each of the factor loadings on the alcohol factor (that is, the alcohol loadings may
be equated for all alcohol measurements).

The Mx script corresponds very closely to that used in section 10.3.2, using the
X for the genetic common factors We add the latent alcohol factors for twins 1 and
2 as a second column with the following specification statement:

Specify X

1 0

2 100

3 100

4 100

We use a high number for the loading on the second factor to avoid overlap with
pre-assigned parameter numbers by using the Free keyword. The addition of the
single parameter for all alcohol loadings reflects a model having 13 parameters and
2×8(8+1)/2−13 = 59 degrees of freedom. We can, therefore, test the significance
of the alcohol factor by comparing the goodness-of-fit chi-squared value for this
model with that obtained from the model of Section 10.3.2 for a 60 − 59 = 1 d.f.
test. Table 10.3.4 shows the results of the two-factor multivariate genetic model.

The estimated genetic factor loading for the alcohol variables (4.27) is reason-
ably large, but much smaller than the loadings on the general genetic factor. This
difference is more apparent when we consider proportions of genetic variance ac-
counted for by these two factors, being 4.272/(13.702 + 4.27) or 9% for the alcohol
factor, and 100 − 9 = 91% for the general genetic factor. The model yields a
χ2

59 = 47.52 (p = .86), indicating a good fit to the data. The chi-squared test for
the significance of the alcohol factor loadings is 51.08− 47.52 = 3.56, which is not
quite significant at the .05 level. Thus, while the hypothesis of there being genetic
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Table 10.6: Parameter estimates from the two genetic factors model

AC1 AC2 EC ES

Time 1 15.067 0.000 4.408 6.674
Time 2 13.701 4.270 6.091 6.277
Time 3 13.518 4.270 6.800 5.644
Time 4 13.832 4.270 5.695 5.928
χ2 = 47.52, 59 df, p=.858

effects on the alcohol measures additional to those influencing arithmetic skills fits
the observed data better, the increase in fit obtained by adding the alcohol factor
does not reach statistical significance.

10.4 Multiple Genetic Factor Models

10.4.1 Genetic and Environmental Correlations

We now turn from the one- and two-factor multivariate genetic models described
above and consider more general multivariate formulations which may encompass
many genetic and environmental factors. These more general approaches subsume
the simpler techniques described above.

Consider a simple extension of the one- and two-factor AE models for multiple
variables (Sections 10.3.2–10.3.4). The total phenotypic covariance matrix in a
population, Cp, can be decomposed into an additive genetic component, A, and a
random environmental component, E:

Cp = A + E , (10.4)

We are leaving out the shared environment in this example just for simplicity. More
complex expectations for 10.4 may be written without affecting the basic idea. “A”
is called the additive genetic covariance matrix and “E” the random environmental
covariance matrix. If A is diagonal, then the traits comprising A are genetically
independent; that is, there is no “additive genetic covariance” between them. One
interpretation of this is that different genes affect each of the traits. Similarly, if
the environmental covariance matrix, E, is diagonal, we would conclude that each
trait is affected by quite different environmental factors.

On the other hand, suppose A were to have significant off-diagonal elements.
What would that mean? Although there are many reasons why this might happen,
one possibility is that at least some genes are having effects on more than one vari-
able. This is known as pleiotropy in the classical genetic literature (see Chapter 3).
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Similarly, significant off-diagonal elements in E (or C, if it were included in the
model) would indicate that some environmental factors influence more than one
trait at a time.

The extent to which the same genes or environmental factors contribute to the
observed phenotypic correlation between two variables is often measured by the
genetic or environmental correlation between the variables. If we have estimates of
the genetic and environmental covariance matrices, A and E, the genetic correlation
(rg) between variables i and j is

rgij
=

aij
√

(aii × ajj)
(10.5)

and the environmental correlation, similarly, is

reij
=

eij
√

(eii × ejj)
. (10.6)

The analogy with the familiar formula for the correlation coefficient is clear.
The genetic covariance between two phenotypes is quite distinct from the genetic
correlation. It is possible for two traits to have a very high genetic correlation yet
have little genetic covariance. Low genetic covariance could arise if either trait had
low genetic variance. Vogler (1982) and Carey (1988) discuss these issues in greater
depth.

10.4.2 Cholesky Decomposition

Clearly, we cannot resolve the genetic and environmental components of covariance
without genetically informative data such as those from twins. Under our simple
AE model we can write, for MZ and DZ pairs, the expected covariances between
the multiple measures of first and second members very simply:

CMZ = A

CDZ = αA

with the total phenotypic covariance matrix being defined as in expression 10.4.
The coefficient α in DZ twins is the familiar additive genetic correlation between
siblings in randomly mating populations (i.e., 0.5).

The method of maximum likelihood, implemented in Mx, can be used to es-
timate A and E. However, there is an important restriction on the form of these
matrices which follows from the fact that they are covariance matrices: they must
be positive definite. It turns out that if we try to estimate A and E without im-
posing this constraint they will very often not be positive definite and thus give
nonsense values (greater than or less than unity) for the genetic and environmental
correlations. It is very simple to impose this constraint in Mx by recognizing that
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any positive definite matrix, F, can be decomposed into the product of a triangular
matrix and its transpose:

F = TT′ , (10.7)

where T is a triangular matrix (i.e., one having fixed zeros in all elements above the
diagonal and free parameters on the diagonal and below). This is sometimes known
as a triangular decomposition or a Cholesky factorization of F. Figure 10.2 shows
this type of model as a path diagram for four variables. In our case, we represent the

T1P2

1A 4A 1A 4A

T1P1 T1P3 T1P4 T2P2T2P1 T2P3 T2P4

1E 2E 3E 4E 1E 2E 3E 4E

2A 3A 2A 3A

1.0 1.0 1.0 1.0

1.0 / 0.5

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 / 0.5 1.0 / 0.5 1.0 / 0.5

Figure 10.2: Phenotypic Cholesky decomposition model for four variables. All
labels for path-coefficients have been omitted.

genetic and environmental covariance matrices in Mx by their respective Cholesky
factorizations:

A = XX′ (10.8)

and
E = ZZ′ , (10.9)

where X and Z are triangular matrices of additive genetic and within-family envi-
ronment factor loadings.

A triangular matrix such as T, X, or Z is square, having the same number of
rows and columns as there are variables. The first column has non-zero entries in
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every element; the second has a zero in the first element and free, non-zero elements
everywhere else, and so on. Thus, the Cholesky factors of F, when F is a 3 × 3
matrix of the product TT′, will have the form:

T =





b11 0 0
b21 b22 0
b31 b32 b33



 .

It is important to recognize that common factor models such as the one described
in Section 10.3 are simply reduced Cholesky models with the first column of pa-
rameters estimated and all others fixed at zero.

10.4.3 Analyzing Genetic and Environmental Correlations

We illustrate the estimation of the genetic and environmental covariance matri-
ces for a simple case of skinfold measures made on 11 year-old male twins from
the Medical College of Virginia Twin Study (Schieken et al., 1989)2. Our skinfold
assessments include four different measures which were obtained using standard
anthropometric techniques. The measures were obtained for biceps (BIC), sub-
scapular (SSC), suprailiac (SUP), and triceps (TRI) skinfolds. The raw data were
averaged for the left and right sides and subjected to a logarithmic transformation
prior to analysis in order to remove the correlation between error variance and
skinfold measure. The 8 × 8 covariance matrices for the male MZ and DZ twins
are given in Table 10.7.

An example Mx program for estimating the Cholesky factors of the addi-
tive genetic and within-family environmental covariance matrices is given in Ap-
pendix E.4. The matrices X and Z are now declared as free lower triangular
matrices.

When this program is run with the data from male twins, we obtain a goodness-
of-fit chi-squared of 68.92 for 52 d.f. (p = .058) suggesting that the AE model gives a
reasonable fit to these data. Setting the off-diagonal elements of the genetic factors
to zero yields a chi-squared that may be compared using the difference test to see
whether the measures can be regarded as genetically independent. This chi-squared
turns out to be 110.96 for 6 d.f. which is highly significant. Therefore, the genetic
correlations between these skinfold measures cannot be ignored. Similarly, setting
the environmental covariances to zero yields a significant increase in chi-squared
of 356.98, also for 6 d.f. Clearly, there are also highly significant environmental
covariances among the four variables.

Table 10.8 gives the estimates of the Cholesky factors of the genetic and en-
vironmental covariance matrices produced by Mx. Carrying out the pre- and
post-multiplication of the Cholesky factors (see equations 10.8 and 10.9) gives the

2We are grateful to Dr. Richard Schieken for making these data, gathered as part of a project
supported by NHLBI award HL-31010, available prior to publication.
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Table 10.7: Covariance matrices for skinfold measures in adolescent Virginian
male twins.

Dizygotic Male Pairs (N=33)
BIC1 SSC1 SUP1 TRI1 BIC2 SSC2 SUP2 TRI2

BIC1 .154
SSC1 .199 .301
SUP1 .227 .330 .380
TRI1 .129 .174 .201 .127
BIC2 .044 .034 .035 .038 .178
SSC2 .065 .082 .074 .054 .210 .308
SUP2 .081 .090 .097 .067 .233 .324 .390
TRI2 .043 .039 .038 .037 .144 .184 .211 .142

Monozygotic Male Pairs (N=84)
BIC1 SSC1 SUP1 TRI1 BIC2 SSC2 SUP2 TRI2

BIC1 .129
SSC1 .127 .176
SUP1 .170 .216 .303
TRI1 .104 .110 .147 .104
BIC2 .098 .107 .149 .082 .123
SSC2 .010 .141 .185 .088 .130 .189
SUP2 .126 .165 .242 .110 .162 .219 .284
TRI2 .084 .091 .134 .084 .101 .113 .144 .107
Variable Labels: BIC=Biceps; SSC=Subscapular; SUP=Suprailiac;
TRI=Triceps. “1” and “2” refer to measures on first and second twins

maximum-likelihood estimates of the genetic and environmental covariance matri-
ces, which we present in the upper part of Table 10.9. The lower part of Table 10.9
gives the matrices of genetic and environmental correlations derived from these
covariances (see 10.5 and 10.6).

We see that the genetic correlations between the four skinfold measures are
indeed very large, suggesting that the amount of fat at different sites of the body
is almost entirely under the control of the same genetic factors. However, in this
example, the environmental correlations also are quite large, suggesting that envi-
ronmental factors which affect the amount of fat at one site also have a generalized
effect over all sites.
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Table 10.8: Parameter estimates of the cholesky factors in the genetic and envi-
ronmental covariance matrices.

Genetic Factor Environmental Factor
Variable A1 A2 A3 A4 E1 E2 E3 E4
BIC 0.340 0.000 0.000 0.000 0.170 0.000 0.000 0.000
SSC 0.396 0.182 0.000 0.000 0.160 0.138 0.000 0.000
SUP 0.487 0.159 0.148 0.000 0.180 0.117 0.093 0.000
TRI 0.288 0.016 0.036 0.110 0.117 0.039 -0.004 0.085

Table 10.9: Maximum-likelihood estimates of genetic and environmental covari-
ance (above the diagnoals) and correlation (below the diagonals) matrices for skin-
fold measures.

Genetic Environmental
Variable BIC SSC SUP TRI BIC SSC SUP TRI
BIC 0.116 0.135 0.166 0.098 0.029 0.027 0.030 0.020
SSC 0.909 0.190 0.222 0.117 0.759 0.044 0.045 0.024
SUP 0.914 0.955 0.284 0.148 0.769 0.908 0.054 0.025
TRI 0.927 0.863 0.894 0.097 0.778 0.757 0.716 0.023
Note: The variances are given on the diagonals of the two matrices

10.5 Common vs. Independent Pathway Models

As another example of multivariate analysis we consider four atopic symptoms
reported by female twins in a mailed questionnaire study (Duffy et al., 1990;
1992). Twins reported whether they had ever (versus never) suffered from asthma,
hayfever, dust allergy and eczema. Tetrachoric correlation matrices were calculated
with PRELIS and are shown in the Mx script in Appendix E.5 and in Table 10.10.
Tetrachoric or polychoric matrices and their corresponding asymptotic covariance
matrices are read in with the PMatrix and ACov statements. The script shows
that asymptotic covariance matrices are stored in files named ahdemzf.acv and
ahdedzf.acv respectively for MZ and DZ twins. Reading polychoric matrices flags
Mx that the weighted least squares (WLS) fit function is required, rather than max-
imum likelihood. Maximum-likelihood estimation is not appropriate when there are
glaring departures from normality; the dichotomous items used in this example are
inevitably non-normal.
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Table 10.10: Tetrachoric correlations for female MZ (above diagonal) and DZ
(below diagonal) twins for asthma (A), hayfever (H), dust allergy (D), and eczema
(E).

Twin 1 Twin 2
A H D E A H D E

Twin 1 Asthma .56 .57 .27 .59 .41 .43 .09
Hayfever .52 .76 .26 .37 .59 .42 .20
Dust Allergy .59 .75 .31 .40 .45 .52 .19
Eczema .29 .31 .28 .23 .15 .19 .59

Twin 2 Asthma .26 .17 .04 .14 .55 .64 .15
Hayfever .13 .32 .26 .09 .40 .77 .12
Dust Allergy .08 .17 .21 .02 .68 .72 .22
Eczema .22 .11 .09 .31 .25 .22 .28

10.5.1 Independent Pathway Model for Atopy

Inspection of the correlation matrices in Table 10.10 reveals that the presence of
any one of the symptoms is associated with an increased risk of the others within
an individual (hence the concept of “atopy”). All four symptoms show higher MZ
correlations (0.592, 0.593, 0.518, 0.589) than DZ correlations in liability (0.262,
0.318, 0.214, 0.313) and there is a hint of genetic dominance (or epistasis) for
asthma and dust allergy (DZ correlations less than half their MZ counterparts).
Preliminary multivariate analysis suggests that dominance is acting at the level
of a common factor influencing all symptoms, rather than as specific dominance
contributions to individual symptoms. Our first model for covariation of these
symptoms is shown in the path diagram of Figure 10.3

Because each of the three common factors (A, D, E) has its own paths to each
of the four variables, this has been called the independent pathway model (Kendler
et al., 1987) or the biometric factors model (McArdle and Goldsmith, 1990). This
is translated into Mx in the Appendix E.5 script. The specification of this example
is very similar to the multivariate genetic factor model described earlier in this
chapter. The three common factors are specified in nvar×1 matrices X, W and Z,
where nvar is defined as 4, representing the four atopy measures. The genetic and
environmental specifics are estimated in nvar×nvar matrices G and F. The genetic,
dominance and specific environmental covariance matrices are then calculated in
the algebra section. The rest of the script is virtually identical to that for the
univariate model.

One important new feature of the model shown in Figure 10.3 is the treatment of
variance specific to each variable. Such residual variance does not generally receive
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Figure 10.3: Independent pathway model for four variables. All labels for path-
coefficients have been omitted.

much attention in regular non-genetic factor analysis, for at least two reasons.
First, the primary goal of factor analysis (and of many multivariate methods) is to
understand the covariance between variables in terms of reduced number of factors.
Thus the residual, variable specific, components are not the focus. A second reason
is that with phenotypic factor analysis, there is simply no information to further
decompose the variable specific variance. However, in the case of data on groups of
relatives, we have two parallel goals of understanding not only the within-person
covariance for different variables, but also the across-relatives covariance structure
both within and across variables. The genetic and environmental factor structure
at the top of Figure 10.2 addresses the genetic and environmental components of
variance common to the different variables. However, there remains information
to discriminate between genetic and environmental components of the residuals,
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which in essence answers the question of whether family members correlate for the
variable specific portions of variance.

A second important difference in this example — using correlation matrices in
which diagonal variance elements are standardized to one — is that the degrees
of freedom available for model testing are different from the case of fitting to
covariance matrices in which all k(k + 1)/2 elements are available, where k is
the number of input variables. We encountered this difference in the univariate
case in Section 6.3.1, but it is slightly more complex in multivariate analysis. For
correlation matrices, since the k diagonal elements are fixed to one, we apparently
have g×k fewer degrees of freedom than if we were fitting to covariances, where g is
the number of data groups. However, since for a given variable the sum of squared
estimates always equals unity (within rounding error), it is apparent that not all
the parameters are free, and we may conceptualize the unique environment specific
standard deviations (i.e., the ei’s) as being obtained as the square roots of one minus
the sum of squares of all the other estimates. Since there are v (number of variables)
such constrained estimates, we actually have v more degrees of freedom than the
above discussion indicates, the correct adjustment to the degrees of freedom when
fitting multivariate genetic models to correlation matrices is −(g× k− v). Since in
most applications k = 2v, the adjustment is usually −3v. In our example v = 4 and
the adjustment is indicated by the option DFreedom=-12. (Note that the DFreedom
adjustment applies for the goodness-of-fit chi-squared for the whole problem, not
just the adjustment for that group).

Edited highlights of the Mx output are shown below and the goodness-of-fit
chi-squared indicates an acceptable fit to the data. The adjustment of −12 to
the degrees of freedom which would be available were we working with covariance
matrices (72) leaves 60 statistics. We have to estimate 3 × 4 factor loadings and
2× 4 specific loadings (20 parameters in all), so there are 60− 20 = 40 d.f. It is a
wise precaution always to go through this calculation of degrees of freedom — not
because Mx is likely to get them wrong, but as a further check that the model has
been specified correctly.

Table 10.11: Parameter estimates from the independent pathway model for atopy

EC AC DC HS ES

Asthma .320 .431 .466 .441 .548
Hayfever .494 .772 .095 .000 .388
Dust Allergy .660 .516 .431 .297 -.159
Eczema .092 .221 .260 .712 .606
χ2 = 38.44, 40 df, p=.540

We can test variations of the above model by dropping the common factors one
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at a time, or by setting additive genetic specifics to zero. This is easily done by
dropping the appropriate elements. Note that fixing E specifics to zero usually
results in model failure since it generates singular expected covariance matrices
(Σ)3. Neither does it make biological sense since it is tantamount to saying that a
variable can be measured without error; it is hard to think of a single example of
this in nature! We could also elaborate the model by specifying a third source of
specific variance components, or by substituting shared environment for dominance,
either as a general factor or as specific variance components.

10.5.2 Common Pathway Model for Atopy

In this section we focus on a much more stringent model which hypothesizes that the
covariation between symptoms is determined by a single ‘phenotypic’ latent variable
called “atopy.” Atopy itself is determined by additive, dominance and individual
environmental sources of variance. As in the independent pathway model, there are
still specific genetic and environmental effects on each symptom. The path diagram
for this model is shown in Figure 10.4. Because there is now a latent variable
ATOPY which has direct phenotypic paths to each of the symptoms, this has been
called the common pathway model (Kendler et al., 1987) or the psychometric factors
model (McArdle and Goldsmith, 1990).

The Mx script corresponding to this path diagram, given in Appendix E.6,
contains several new features. Again, there are a number of alternative ways to
specify this model in Mx. We use the same approach as in previous models and
specify the genetic and environmental covariance matrices in a calculation group
up front. In this example, matrices X, W and Z represent the single additive and
dominance genetic and specific environmental loadings on the latent phenotype.
The factor loadings on the observed variables are estimated in 4× 1 matrix S. The
residual variances are decomposed in genetic and environmental diagonal matrices
G and F. The data groups are identical to those of the independent pathway model.

One final feature of the model is that since ATOPY is a latent variable whose
scale (and hence variance) is not indexed to any measured variable, we must fix
its residual variance term (EATOPY) to unity to make the model identified. This
inevitably means that the estimates for the loadings contributing to ATOPY are
arbitrary and hence so are the paths leading from ATOPY to the symptoms. It is
thus particularly important to standardize the solution so that the total variance
explained for each symptom is unity. The fixing of the loading on EATOPY clearly
has implications for the calculation of degrees of freedom, as we shall see below.

The condensed output for this model is presented below, showing the completely
standardized estimates which give unit variance for each variable.

Note that here NInput_vars=8 so there are 56 (2×NI(NI− 1)/2) unique corre-
lations. From the above table it appears that 15 parameters have been estimated,

3This problem is extreme when maximum likelihood is the fit function, because the inverse of
Σ is required.
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Figure 10.4: Common pathway model for four variables. All labels for path-
coefficients have been omitted.

but in fact EATOPY was fixed and the four E specifics are obtained by difference,
so there are only 10 free parameters in the model, hence 46 degrees of freedom.

The latent variable ATOPY has a broad heritability of over 0.6 (1 − .6102 =
.6862+.3972) of which approximately a quarter is due to dominance, and this factor
has an important phenotypic influence on all symptoms, particularly dust allergy
(0.941) and hayfever (0.814). There are still sizeable specific genetic influences not
accounted for by the ATOPY factor on all symptoms except dust allergy (.0592).
However, despite the appeal of this model, it does not fit as well as the independent
pathway model and the imposition of constraints that covariation between symp-
toms arises purely from their phenotypic relation with the latent variable ATOPY
has worsened fit by χ2 = 12.93 for 6 degrees of freedom, which is significant at the
5% level.
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Table 10.12: Parameter estimates from the common pathway model for atopy

Atopy EC AC DC AS ES

Asthma .671 − − − .531 .517
Hayfever .814 − − − .456 .358
Dust Allergy .941 − − − -.059 .334
Eczema .301 − − − .735 .608
Atopy − .686 .397 .610 − −
χ2 = 51.37, 46 df, p=.238

We conclude that while there are unique environmental, additive, and non-
additive genetic factors which influence all four symptoms of atopy, these have
differential effects on the symptoms; the additive and non-additive factors, for ex-
ample, having respectively greater and lesser proportional influence on hayfever
than the other symptoms. While it is tempting to interpret this as evidence for at
least two genes, or sets of genes, being responsible for the aggregation of symptoms
we call atopy, this is simplistic as in fact such patterns could be consistent with
the action of a single gene — or indeed with polygenic effects. For a full discussion
of this important point see Mather and Jinks (1982) and Carey (1988).



Chapter 11

Observer Ratings

11.1 Introduction

Rather than measuring an individual’s phenotype directly, we often have to rely on
ratings of the individual made by an observer. An important example is the assess-
ment of children via ratings from parents and teachers. In this chapter we consider
in some detail the assessment of children by their parents. Since the ratings ob-
tained in this case are a function of both parent and child, disentangling the child’s
phenotype from that of the rater becomes an important methodological problem.
For the analysis of genetic and environmental contributions to children’s behavior,
solutions to this are available when multiple raters, e.g., two parents, rate multiple
children, e.g., twins. This chapter describes and illustrates simple Mx models for
the analysis of parental ratings of children’s behavior (Section 11.2). We show how
the assumption that mothers and fathers are rating the same behavior in children
can be contrasted with the weaker alternative that parents are rating correlated
behaviors. Given the stronger assumption, which appears adequate for ratings of
some children’s behavior problems, the contribution of rater bias and unreliability
may be separated from the shared and non-shared environmental components of
variation of the true phenotype of the child. The models are illustrated with an
application to CBC data (Section 11.2.5).

11.2 Models for Multiple Rating Data

A primary source of information about a child’s behavior is the description of that
behavior by his or her parents. In the study of child and adolescent psychopathology
for example, parental reports are fundamental to the widely used assessment system
developed by Achenbach and Edelbrock (1981). However, different informants do
not generally agree in detail about a given child’s behavior (Achenbach et al., 1987;
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Loeber et al., 1989) and, of course, there are very good reasons why this should
be so (Cox and Rutter, 1985). Different informants, such as the child, parents,
teachers or peers, have different situational exposure, different degrees of insight,
and different perceptions, evaluations and normative standards that may create
rater differences of various kinds in reporting problem behaviors. How we analyze
parental ratings of children’s behavior, and the models we employ in the course of
our analyses, will depend on the assumptions we make. In this chapter we discuss
the application of three classes of models — biometric, psychometric, and bias
models.

First, suppose we took an agnostic view of the relationship between the ratings
by different informants by thinking of them as assessing different phenotypes of
the child. The phenotypes may be correlated but for unspecified reasons. This
view may be appropriate if mothers and fathers reported on behaviors observed
in distinct situations, or if they did not share a common understanding of the
behavioral descriptions. In such a case it would be appropriate to treat the analysis
of mothers’ and fathers’ ratings as a standard bivariate genetic and environmental
analysis where the two variables are the mothers’ ratings and fathers’ ratings. We
shall refer to the class of standard bivariate factor model as biometric models (see
Chapter 10 for examples).

Second, suppose we made the more restrictive assumption that there is (i)
a common phenotype of the children which is assessed both by mothers and by
fathers, and (ii) a component of each parent’s ratings which results from an assess-
ment of an independent aspect of the child. Mothers’ ratings and fathers’ ratings
would correlate because they are indeed making assessments based on shared ob-
servations and have a shared understanding of the behavioral descriptions used in
the assessments. In this case, we approach the analysis of parental ratings through
a special form of model for bivariate data which we will refer to as psychometric
models (see Chapter 10 for examples).

Third, we consider a model of rater bias. Bias in this context is considered
to be the tendency of an individual rater to overestimate or underestimate scores
consistently. This tendency is a deviation from the mean of all possible raters
in the rater group; no reference is made here to any external criterion such as a
clinician’s judgement. Neale and Stevenson (1989) considered the general problem
of rater bias and the particular issues of parental biases in ratings of children. They
presented a model in which the rating of a child’s phenotype is considered to be a
function both of the child’s phenotype and of the bias introduced by the rater. In
this way it is possible, when two parents rate each of their twin children, to conduct
a behavior genetic analysis of the variation in the latent phenotype while allowing
for variation due to rating biases. If the rater bias model adopted by Neale and
Stevenson (1989) provides an adequate account of the ratings of children by their
parents, it becomes possible to partition the variance in these parental ratings
into their components due to reliable trait variance, due to parental bias , and
due to unreliability or error in the particular rating of a particular child. The
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reliable trait variance can then be decomposed into its components due to genetic
influences, shared environments, and individual environments. Since rater bias
models represent restricted special cases for the parental ratings of more general
biometric and psychometric models of the kind discussed by Heath et al., (1989) and
McArdle and Goldsmith (1990) and in Chapter 10 of this volume, it is possible to
compare the adequacy of bias models with the alternative bivariate psychometric
and biometric models. Further, comparison of the biometric and psychometric
models indicates how reasonable it is to assume that two raters are assessing the
same phenotype in a child. As we move from the biometric to the psychometric to
the bias models, our assumptions become more restrictive but, if appropriate, our
analyses become more directly informative psychologically. Here we outline how
an analysis of parental ratings using the bias model can be implemented simply
using Mx. We discuss the properties of the alternative models and illustrate their
application with data from a twin study of child and adolescent behavior problems.

11.2.1 Rater Bias Model

Figure 11.1 shows a path model for the ratings of twins by their parents, in which
the phenotypes of a pair of twins (PT1 and PT2) are functions of additive genetic
influence (A), shared environments (C) and non-shared environments (E). The
ratings by the mother (MoT ) and father (FaT ) are functions of the twin’s phe-
notype, the maternal (BM ) or paternal (BF ) rater bias, and residual errors (RM ,
etc).

If this model is correct, the following discriminations may be made:

1. the structural analysis of the latent phenotypes of the children can be con-
sidered independently of the rater biases and unreliability of the ratings;

2. the extent of rater biases and unreliability of ratings can be estimated;

3. the relative accuracy of maternal and paternal ratings can be assessed.

A simple implementation of the model in Mx is achieved by defining the model by
the following matrix equations:
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Figure 11.1: Model for ratings of a pair of twins (1 and 2) by their parents.
Maternal and paternal observed ratings (MoT and FaT ) are linear functions of
the true phenotypes of the twins (PT ), maternal and paternal rater bias (BM and
BF ), and residual error (RM and RF ).
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or
l = Gx

Thus
y = Bb + LGx + Rr

Then, the covariance matrix of the ratings is given by

E{yy′} = E{Bb + LGx + Rr}{Bb + LGx + Rr}′ (11.4)

= BB′ + RR′ + LGE{xx′}G′L′ (11.5)

The term GE{xx′}G′ generates the usual expectations for the ACE model. The
expectations are filtered to the observed ratings through the factor structure L and
are augmented by the contributions from rater bias (B) and residual influences (R).
An Mx script for this model is listed in Appendix F.1. In considering the rater
bias model, and the other models discussed below, we should note that parameters
need not be constrained to be equal when rating boys and girls and, as Neale and
Stevenson (1988) pointed out, we need not necessarily assume that parental biases
are equal for MZ and DZ twins’ ratings. This latter relaxation of the parameter
constraints allows us to consider the possibility that twin correlations differ across
zygosities for reasons related to differential parental biases based on beliefs about
their twins’ zygosity.

11.2.2 Psychometric Model

Figure 11.2 shows a bivariate psychometric or ‘common pathway’ model. Imple-
mentation of this model in Mx can be achieved by the approaches illustrated in
Chapter 10. The psychometric model estimates, for each source of influence (A, C,
and E) the variance for mothers’ ratings, the variance for fathers’ ratings and the
covariance between these ratings. These estimates are subject to the constraints
that the covariances are positive and neither individual rating variance can be less
than the covariance between the ratings. The psychological implication of this
psychometric model is that the mothers’ and fathers’ ratings are composed of con-
sistent assessments of reliable trait variance, together with assessments of specific
phenotypes uncorrelated between the parents.

There are some technical points to note with this model. First, bivariate data
for MZ and DZ twins (of a given sex) yield 20 observed variances and covariances.
However, only 9 of these have unique expectations under the classes of model we are
considering, the remaining 11 being replicate estimates of particular expectations
(e.g., the variance of maternal ratings of MZ twin 1, of MZ twin 2, of DZ twin 1
and of DZ twin 2 are four replicate estimates of the variance of maternal ratings in
the population). Given this, we might expect our 9 parameter psychometric model
to fit as well as any other 9 parameter model for bivariate twin data. However,
there are some implicit constraints in our psychometric model. For example, the
phenotypic covariance of mothers’ and fathers’ ratings cannot be greater than the
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Figure 11.2: Psychometric or common pathway model for ratings of a pair of
twins (1 and 2) by their parents. Maternal and paternal observed ratings (MoT
and FaT ) are linear functions of the latent phenotypes of the twins (PT ), and
rater specific variance (e.g., AM , CM and EM ).

variance of either type of rating. Such constraints may cause the model to fail
in some circumstances even though the 9 parameter biometric model discussed
below (Figure 11.3) may fit adequately1. The second technical point is that if we
do not constrain the loadings of the common factor to be equal on the mothers’
ratings and on the fathers’ ratings, and assume that there is no specific genetic
variance for either mothers’ ratings or for fathers’ ratings, then this variant of
the psychometric model is formally equivalent to our version in the Neale and
Stevenson bias model described above. In this case the “shared environmental”

1There are in fact some other special cases such as scalar sex-limitation – where identical
genetic or environmental factors may have different factor loadings for males and females —
when the psychometric model may fit as well or better than the biometric model.
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specific variances for the mothers’ and fathers’ ratings are formally equivalent to the
maternal and paternal biases in the earlier model, while the “non-shared” specific
variances are equal to the unreliability variance of the earlier parameterization.
Thus, although the 9 parameter psychometric model and the bias model do not form
a nested pair (Mulaik et al., 1989), they represent alternative sets of constraints
on a more general 10 parameter model (which is not identified with two-rater twin
data) and these constrained models may be compared in terms of parsimony and
goodness of fit. Furthermore, we may consider a restricted bias model in which
the scaling factor in Figure 11.1 is set to unity and which, therefore, has 7 free
parameters and is nested within both the psychometric model and the unrestricted
bias model. This restricted bias model may therefore be tested directly against
either the psychometric or the unrestricted bias models by a likelihood ratio chi-
square.

11.2.3 Biometric Model

The final model to be considered is the biometric model shown in Figure 11.3, and
again may be readily implemented using the procedure described in Chapter 10.
In this model there are two factors for each source of variance (A, C, and E).
One factor is subscripted M, e.g., AM , and loads on the maternal rating (MoT )
and on the paternal rating (FaT ). The other factor subscripted F, e.g., AF , loads
only on the paternal rating. Thus, for each source of influence we estimate three
factor loadings which enable us to reconstruct estimates of the contribution of this
influence to the variance of maternal ratings, the variance of paternal ratings and
the covariance between them. Which factor loads on both types of rating and
which on only one is arbitrary. This type of model is referred to as a Cholesky
model or decomposition or a triangular model and provides a standard general
approach to multivariate biometrical analysis (see Chapter 10). This biometric
model is a saturated unconstrained model for the nine unique expected variances
and covariances (in the absence of sibling interactions or other influences giving
rise to heterogeneity of variances across zygosities, cf. Heath et al., 1989) and pro-
vides the most general approach to estimating the genetic, shared environmental
and non-shared environmental components of variance and covariance. However,
the absence of theoretically motivated constraints lessens the psychological infor-
mativeness of the model for the analysis of parental ratings. In this context, we
may use the biometric model first to test the adequacy of the assumption that of
the 20 observed variances and covariances for bivariate twin data of a given sex, 11
represent replicate estimates of the 9 unique structural expectations. Once again,
sex differences in factor loadings (scalar sex limitation) may in principle lead to
model failure for opposite sex data even though the biometric model is adequate
for a given sex. In this case the non-scalar sex limitation model described in Heath
et al. (1989) and Chapter 9 would be required. The bivariate biometric model
provides a baseline for comparison of the adequacy of the psychometric and bias
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Figure 11.3: Biometric or independent pathway model for ratings of a pair of
twins (1 and 2) by their parents. Maternal and paternal observed ratings (MoT
and FaT ) are linear functions of general (subscript M) and restricted (subscript
F ) genetic and environmental factors.

models. This comparison alerts us to the important possibility that mothers and
fathers are assessing different (but possibly correlated) phenotypes as, for example,
they might be if mothers and fathers were reporting on behaviors observed in dif-
ferent situations or without a common understanding of the behavioral descriptions
used in the assessment protocol.

11.2.4 Comparison of Models

We have considered four alternative models for parental ratings of children’s behav-
ior. Each model is for bivariate twin data where the two variables are the special
case of mothers’ ratings and fathers’ ratings of the children’s behavior. The least
restrictive model, the biometric model, provides a baseline for comparison with
the psychologically more informative psychometric and bias models. The most re-
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stricted bias model may be formally tested by likelihood ratio chi-square against
either the psychometric or the unrestricted bias models. However, these latter two
are not themselves nested. The relationships between these models, without taking
into account sex limitations, are summarized in Figure 11.4. In this figure the solid
arrows represent the process of constraining a more general model to yield a more

Biometric model
(9 parameters)

Constrained
rotation

Psychometric model; 
identified
(9 parameters)

Restricted bias model
(7 parameters)

Bias model
(8 parameters)

General psychometric
model; not identified
(10 parameters)

Constrained
rotation

α=1.0  a   = a  = 0 m     f 

 a   = a  = 0 m     f α=1.0

Figure 11.4: Diagram of nesting of biometric, psychometric, and rater bias mod-
els.

restrictive model; the model at the arrow head is nested within the model at the
tail of the arrow and may be tested against it by a likelihood ratio chi square. The
dashed arrows represent rotational constraints on the biometric model. The nine
parameter psychometric model requires, for example, that the covariance between
maternal and paternal ratings be no greater than the variance of either type of
rating; in factor analytic terms this would require a constrained rotation of the
biometric model solution. The ten parameter psychometric model, allowing α not
equal to unity, still imposes the constraints that the contributions of the common
influences to the variance of maternal ratings, the variance of paternal ratings, and
the covariance between them be in the ratio 1 : α2 : α for each source of influence.
Thus, even though this model has 10 parameters (and hence is not identified for
bivariate twin data) any of its solutions, arrived at by fixing one of the parameters
to an arbitrary value, will again represent in factor analytic terms a constrained
rotation of the biometric model.
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11.2.5 Application to Data from Child Behavior Checklist

To illustrate the application of these models we consider an updated set of data
first presented by Hewitt, et al., (1990) and now based on 983 families where
both parents rated each of their twin children using Achenbach’s Child Behavior
Checklist (CBC; Achenbach and Edelbrock, 1983). For the full analysis, published
in Hewitt et al. (1992), data from a population-based sample of 500 MZ twin pairs
and 483 DZ twin pairs were considered and ratings were included irrespective of
the biological or social relationship of the parent to the child. The children were
Caucasian and ranged in age from 8 to 16 years. Ratings on 23 core items assessing
children’s internalizing behavior in both younger and older children and in either
boys or girls were totalled to obtain an internalizing scale score for each child. The
items contributing to this scale are listed in Appendix F.2.

For illustrative purposes in this chapter we just consider the “prepubertal”
subsample of younger children aged 8-11 years. More detailed analyses, including
older children, may be found in Hewitt et al. (1992). The scale scores were log-
transformed to approximate normality and adjusted for linear regression on age
and sex within age cohorts. The observed variances, covariances, and correlations
of the resulting scores are given in Table 11.1 by zygosity and sex group.

Table 11.1: Observed variance-covariance matrices (lower triangle) and twin cor-
relations (above the diagonal) for parental ratings (mother (Mo); father (Fa)) of
internalizing behavior problems in five zygosity-sex groups (MZ female, N=96; MZ
male, N=102; DZ female, N=102; DZ male, N=97; DZ male-female, N=103). All
twins were between 8 and 11 years at assessment.

Zygosity/sex Male Female
Twin 1 Twin 2 Twin 1 Twin 2

Mo Fa Mo Fa Mo Fa Mo Fa
MZ MoT1 .675 .40 .74 .43 MoT1 .694 .47 .84 .46

FaT1 .265 .652 .35 .77 FaT1 .312 .638 .37 .72
MoT2 .513 .237 .714 .51 MoT2 .569 .238 .666 .45
FaT2 .292 .513 .354 .676 FaT2 .308 .461 .293 .647

DZ MoT1 .621 .47 .70 .34 MoT1 .565 .41 .55 .29
FaT1 .315 .719 .35 .73 FaT1 .241 .604 .25 .57

MoT2 .434 .236 .623 .37 MoT2 .291 .137 .488 .52
FaT2 .233 .531 .251 .743 FaT2 .171 .347 .285 .604

DZMF MoT1 .538 .26 .49 .18
FaT1 .162 .730 .17 .56

MoT2 .243 .102 .465 .37
FaT2 .103 .372 .191 .574
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A summary of the adequacy of the models fitted to these data on younger
children’s internalizing problems is shown in Table 11.2. The illustrative program
in Appendix F.1 runs the analysis for the bias model with 34 degrees of freedom.

As can be seen from Table 11.2, all three types of model give excellent fits
to the data for younger children, with the psychometric model being preferred

Table 11.2: Model comparisons for internalizing problems analysis.

Fit statistics
Model∗ df χ2 AIC
Restricted bias 36 30.07 -41.9
Bias 34 25.78 -42.2
Psychometric 32 20.71 -43.3
Biometric 32 20.95 -43.1

by Akaike’s Information Criterion. Thus, our first conclusion would be that to
a very good approximation, mothers and fathers can be assumed to be rating
the same phenotype in their children when using the Child Behavior Checklist,
at least as far as these internalizing behaviors are concerned. This may not be
so for other behaviors or assessment instruments and in each particular case the
assumption ought to be tested by a comparison of models of the kind we have
described. Although there are numerous submodels or alternative models that
may be considered, (for example: no sex limitation; non-scalar sex-limitation; and
setting non-significant parameters to zero), only a subset will be presented here for
illustration.

Table 11.3 shows the parameter estimates for the full bias and psychometric
models allowing for scalar sex limitation and, in the case of the biometric model, we
have allowed for non-scalar sex-limitation2 of the shared environmental influences
specific to fathers’ ratings (χ2

31 = 20.76 for the model presented with the correlation
between boys’ and girls’ effects of this kind estimated at 0.86 rather than unity).
To show the relationship between the more parsimonious bias model and the full
parameterization of the biometric model, in Table 11.4 we present the expected
contributions of A, C, and E to the variance of mothers’ ratings, fathers’ ratings,
and the covariances between mothers’ and fathers’ ratings. What Table 11.4 shows
is that, providing the rater bias model is adequate, we can partition the environ-
mental variance of mothers’ and fathers’ ratings into variance attributable to those
effects consistently rated by both parents and those effects which either represent
rater bias or residual unreliable environmental variance. In this particular case,
while a univariate consideration of maternal ratings would suggest a heritability of
47% [= .263/(.263 + .194 + .108)], a shared environmental influence of 34%, and

2This is to avoid estimated loadings of opposite sign in boys and girls – see Chapter 9.
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Table 11.3: Parameter estimates from fitting bias, psychometric, and biometric
models for parental ratings of internalizing behaviors.

Bias model Psychometric model Biometric model
Path Boys Girls Path Boys Girls Path Boys Girls
a .519 .163 a .370 .145 am .513 .134
c .277 .363 am .338 -.027 afm .261 .132
e .189 .156 af -.069 .281 af .265 .286
a .671 1.416
bm .320 .545 c .308 .449 cm .440 .659
bf .509 .473 cm .332 .479 cfm .225 .308
r2
m .074 .154 cf .437 .507 cf .490 .603

r2
f .175 .115

e .176 .200 em .328 .423
em .278 .372 efm .096 .097
ef .386 .333 ef .414 .377

a non-shared environmental influence of 19%, it is clear that more than half of
the shared environmental influence can be attributed to rater bias, and the major
portion of the non-shared environmental influence to unreliability or inconsistency
between ratings. The heritability of internalizing behaviors in young boys rated
consistently by both parents may be as high as 70% [= .269/(.269 + .077 + .036)].

11.2.6 Discussion of CBC Application

The data we have analyzed are restricted to parental checklist reports of their
twin children’s behavior problems, without the benefit of self reports, teachers’ re-
ports or clinical interviews. As such, they are limited by the ability of parents to
provide reliable and valid integrative assessments of their children, using cursorily
defined concepts like ‘Sulks a lot,’ ‘Worrying,’ or ‘Fears going to school.’ It is clear
from meta-analyses of intercorrelations of ratings of children by different types in-
formants that while the level of agreement between mothers and fathers is often
moderate (e.g., yielding correlations around .5 to .6), the level of agreement be-
tween parents and other informants (e.g., parent with child or parent with teacher)
is modest and generally yields a correlation around 0.2 to 0.3 (Achenbach et al.,
1987). Thus, parental consistency in evaluating their children does not guarantee
cross situational validity, although it does provide evidence that ratings of behavior
observable by parents are not simply reflecting individual rater biases. In assessing
the importance of the home environment on children’s behavior this becomes a
critical issue since studies of children’s behavior based on ratings by a single indi-
vidual in each family, e.g., the mother, confound the rater bias with the influence of
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Table 11.4: Contributions to the phenotypic variances and covariance of mothers’
and fathers’ ratings of young boys’ internalizing behavior.

Biometric model Bias model
Ratings Cov (r) Ratings Cov (r)

Source Mother Father M-F Mother Father M-F
A .268 .138 .134 (.70) .269 .121 .181 (1.0)
C .194 .291 .099 (.42) .077 .035 .051 (1.0)
Bias — — — .102 .259 .000 (.00)
C + Bias .194 .291 .099 (.42) .179 .294 .051 (.22)
E .108 .181 .031 (.22) .036 .016 .024 (1.0)
Residual — — — .074 .175 .000 (.00)
E + Residual .108 .181 .031 (.22) .110 .191 .024 (.17)
Phenotypic
Total .564 .609 .264 (.45) .558 .606 .256 (.44)
Italicized numbers indicate parameters are fixed ex hypothesi in the rater bias
model.

the home environment. This may have the dual effect of inflating global estimates
of the home environment’s influence while at the same time either attenuating the
relationship between objective indices of the environment and children’s behavior
(which is being assessed by a biased observer) or spuriously augmenting apparent
relationships which are in fact relationships between environmental indices and
maternal or paternal rating biases.

An issue distinguishable from that of bias is that of behavior sampling or situ-
ational specificity. Thus maternal and paternal ratings of children may differ not
because of the tendency of individual parents to rate children in general as more
or less problematic (bias), but because they are exposed to different samples of
behavior. If this is so, then treating informants’ ratings as if they were assessing a
common phenotype, albeit in a biased or unreliable way, will be misleading. It is
of considerable psychological importance to know whether different observers are
being presented with different behaviors. The approach outlined in this chapter
first enables us to examine the adequacy of the assumption that different infor-
mants are assessing the same behaviors and then, if that assumption is deemed
adequate, to separate the contributions of rater bias and unreliability from the
genetic and environmental contribution to the common behavioral phenotype. For
our particular example, all the models fit our data adequately and the bias model,
even in its restricted version, does not fit significantly worse than the psychometric
or biometric models.

Although not presented here, there is some evidence that for externalizing be-
havior mothers and fathers cannot be assumed to be simply assessing the same
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phenotype with bias. In this context it is worth noting, however, that the adequacy
of the assumption that parents are assessing the same phenotype in their children
does not imply a high parental correlation (which may be lowered by bias and
unreliability) and, conversely, even though parents may be shown to be assessing
different phenotypes in their children to a significant degree the parental correlation
in assessments may predominate over variance specific to a given parent. Our com-
parison of the bias with the psychometric and biometric models provides important
evidence of the equivalence of the internalizing behaviors assessed by mothers and
fathers using this instrument. This equivalence does not preclude bias or unrelia-
bility and the evidence presented in Table 11.4 provides a striking illustration of
the impact of these sources of variation on maternal or paternal assessments. A
shared environmental component which might be estimated to account for 34% of
variance if mothers’ ratings alone were considered, may correspond to only 20%
of the variance when maternal biases have been removed. Similarly, a non-shared
environmental variance component of 19% of variance may correspond to 9% of
variance in individual differences between children that can be consistently rated
by both parents. Finally, once allowance has been made for bias and inconsistency
or unreliability, the estimated heritability rises from 47% to 70% in this case.

We have not been concerned here to seek the most parsimonious submodel
within each of the model types. We should be aware that although we have, for
the younger children, presented the full models with sex limitation, differences
between boys and girls are not necessarily significant (for example, although the
biometric model without sex limitation fit our data significantly worse than the
corresponding model allowing for sex limitation (χ2

9 = 21.31, p < .05), the overall
fit without sex limitation is still adequate, χ2

41 = 42.26). Furthermore, individual
parameter estimates reported for our full models may not depart significantly from
zero. Other limitations of the method are that it does not allow for interaction
effects between parents and children3 and, in our application, assumed the inde-
pendence of maternal and paternal biases. The analysis of parental bias under
this model requires that both parents rate each of two children. Distinguishing be-
tween correlated parental biases and shared environmental influences would require
a third, independent, rater (e.g., a teacher); thus we cannot rule out a contribution
of correlated biases to our estimates of the remaining shared family environmental
influence.

The final caveat against overinterpretation of particular parameter estimates is
that we have reported analyses for families in which both parents have returned
a questionnaire and we have made no distinction between different biological or
social parental statuses. Clearly, we anticipate that the inclusion and exclusion
criteria are not neutral with respect to children’s behavior problems and their
perception by parents. However, we have illustrated that behavior genetic analyses

3However, if these effects were substantial and if MZ twins correlated more highly than DZ
twins in their interactional style, the variance of parents’ ratings should differ (Neale et al., 1992).
Given sufficient sample size, these effects would lead to failure of these models.
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are possible even when we have to rely on ratings by observers, providing that we
have at least two degrees of relatedness among those being rated (e.g., MZ and DZ
twins). Without an approach of this sort we have no way of establishing whether
parents are assessing the same behaviors in their children and whether analyses will
spuriously inflate estimates of the shared environment as much as parental biases
inflate the correlations for pairs of twins independent of zygosity. Extension of the
model to include other raters, for example, teachers, is straightforward.
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Chapter 12

Repeated Measures

12.1 Introduction

This chapter deals with the genetic analysis of repeated measures. Examples of
data that are collected in repeated measures designs include: dietary intake mea-
sured over several days or weeks; blood pressure taken under different conditions
of rest and stress; psychophysiological data such as EEG that may be sampled
with frequencies of 100 Hz or more (i.e., 100 times per second); performance mea-
sured during learning experiments; IQ measures taken at several different ages; or
behavioral indices of development collected over several years of childhood. Two
fundamental questions are important for analysis of these data:

1. Are there changes in the magnitude of the genetic and environmental effects
over time? For example, are there changes in heritability?

2. Do the same genetic and environmental influences operate throughout time?
For example, are the genes that influence behavior early in life different from
the genes that influence the same trait later in life?

If there are no cohort effects, the first question can be addressed in a cross-sectional
study that measures subjects of different times, but the second question can only
be answered in a longitudinal setting. Data collected in this way are essentially
multivariate, if we consider the ‘multi’ to refer to the multiple occasions of mea-
surement. However, the direct application of the multivariate methods described
in Chapters 10 and ?? would not take full advantage of our a priori knowledge of
the data structure. By definition, causation is unidirectional through time; earlier
causes can have only later effects. This constraint gives added power to the study
of genetic and environmental variability — we may assess whether “new” genes
or new environmental factors start to operate at specific points in time. Given
sufficient occasions of measurement, we may be able to discriminate between: (i)

217
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Table 12.1: Within-person correlations for weight measured at six-month intervals
on 66 females (Fischbein, 1977).

Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6
Weight 1 1.000
Weight 2 0.985 1.000
Weight 3 0.968 0.981 1.000
Weight 4 0.957 0.970 0.985 1.000
Weight 5 0.932 0.940 0.964 0.975 1.000
Weight 6 0.890 0.897 0.927 0.949 0.973 1.000

completely transient factors including, but not restricted to, measurement error;
(ii) the long-term consequences of experience at one point in time; and (iii) the
continuous presence and influence of a causal factor.

We shall start our treatment of longitudinal genetic analysis with a simplex
model for phenotypic correlations (see Section ??). Phenotypic simplex models
are relatively easy to implement in Mx and elucidate some important features of
longitudinal measurements. Given this basic understanding of the potential of
time series data, the reader should have no difficulty understanding the extension
to genetically informative data (see Section ??).

12.2 Phenotypic Simplex Model

Data that are measured repeatedly in time on the same subjects are often charac-
terized by a specific correlation structure among the measures at the different time
points. More specifically, it can be seen quite often that correlations are highest
among adjoining occasions and that they fall away systematically as the distance
between time points increases. Such a pattern is called a simplex structure af-
ter Guttman (1954; see also Wohlwill, 1973). The simplex structure of repeated
observations is illustrated in Table 12.2

with correlations for repeated assessments of weight (in kilograms) in 66 fe-
males from a sample of opposite sex DZ twins in a longitudinal study by Fischbein
(1977). In this example, the data were taken at 6 month intervals starting when
subjects were on average 11.5 years of age. Although all correlations are high, it is
clear that they decrease systematically as the time between measurements increases
(i.e., as one moves further down the columns away from the principal diagonal).
This correlation pattern can be explained well by a simplex model, such as that
illustrated graphically in the path diagram in Figure 12.1 (see also Jöreskog, 1970).
In this figure, the observed measurements (i.e., weight) are shown as Y variables
which serve as indicators of the latent X variables, weighted by the factor loadings
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li. Measurement errors are shown as R variables, and factor residuals as Z’s. The
regression coefficients of X on Xi−1, the b weights, are solely responsible for the
covariation of measurements over time.

1Y 2Y 3Y 4Y 5Y 6Y

1X 2X 3X 4X 5X 6X

1Z 2Z 3Z 4Z 5Z 6Z

1R 2R 3R 4R 5R 6R

1.0 1.0 1.0 1.0 1.0 1.0

1z 2z 3z 4z 5z 6z

1l 2l 3l 4l 5l 6l

1r 2r 3r 4r 5r 6r

2b 3b 4b 5b 6b

1.0 1.0 1.0 1.0 1.0 1.0

Figure 12.1: Simplex model for a phenotypic time series.

We will first illustrate the use of the simplex model in Mx for a phenotypic
analysis with the weight data in Table 12.2.

12.2.1 Formulation of the Phenotypic Simplex Model in Mx

Two types of model can be distinguished: the measurement model and the struc-
tural equation model. The measurement model describes how latent variables are
related to observed variables and can be thought of as a confirmatory factor anal-
ysis model. For an observed variable Y with latent variable X and measurement
error E, we can write the measurement model at time each point as follows:

Yi = liXi + Ri (12.1)

var(Yi) = li
2var(Xi) + var(Ri) (12.2)

To define the units of measurement in the latent X variables, the factor loadings
(li) can be fixed at unity so that the measurement scale of the latent variables is
the same as in the observed variables. This implies that the variance of the latent
factors is to be estimated. Alternatively, the latent factors can be standardized to
have unit variance and the factor loadings can be estimated. As we have noted
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elsewhere, it is not possible to estimate both the variance of and the regression on
a latent variable (see Chapter ??).

The structural equation model causally relates latent variables to other latent
variables. We have already encountered examples of structural models in the con-
text of sibling interactions and direction of causation (see Chapters 8 and ??).
Another example is the simplex model, in which latent variables at time i are in-
fluenced by the latent variables at time i − 1. Such relationships amongst latent
variables are often termed autoregressive and may be described by the following
equation:

Xi = biXi−1 + Zi (12.3)

var(Xi) = bi
2var(Xi−1) + var(Zi) (12.4)

where Xi is the latent variable at time i (i > 0), bi is the regression of the latent
factor on the previous latent factor, and Z represents a random input term (innova-
tion) that is uncorrelated with Xi−1. There is an important conceptual distinction
between innovations of latent factors and measurement errors of observed variables.
The innovations are that part of the latent factor at time i that is not caused by
the latent factor at time i − 1, but are part of every subsequent time point i + 1.
On the other hand, the R terms are random errors of measurement that do not
influence subsequent observed variables.

The parameters of this model are:

1. li: the factor loadings of the observed on the latent factors;

2. z0 = var(X0): the standard deviation of the latent factor at time t = 0;

3. zi = var(Xi): the standard deviations of the innovations at times t > 0;

4. bi: the regression of the latent factor at time i on time i− 1;

5. ri: the variances of the measurement errors.

The weight data that were introduced above can be analyzed according to a
simplex model using two alternative Mx scripts in Appendix G.1.

Mx Script 1 for Phenotypic Simplex Model

In the first script the factor loadings in L are fixed at 1 - by using an identity
matrix - so that the latent variables have the same measurement scale as the ob-
served data (kilograms in this case). At each time point we estimate the standard
deviations of the innovations on the diagonal of the Z matrix. Of course, at the
first measurement occasion the first latent factor cannot be explained by factors
associated with an earlier point in time and, therefore, this first factor is itself
regarded as an innovation (i.e., X1 = Z1). In B we estimate the autoregression
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Table 12.2: Parameter estimates and total variances using script 1 for weight.
Time var(bt) var(Xt−1) var(Zt) var(Xt) var(Rt) total variance
t = 1 7.1652 = 51.337 0.3652 51.470
t = 2 1.0492 ×51.337 +1.2252 = 57.992 0.3652 58.125
t = 3 1.0292 ×57.992 +1.4402 = 63.478 0.3652 63.611
t = 4 1.0562 ×63.478 +1.3632 = 72.644 0.3652 72.777
t = 5 0.9692 ×72.644 +1.8102 = 71.486 0.3652 71.619
t = 6 0.9422 ×71.486 +1.8092 = 66.707 0.3652 66.840
Chi=12.995, df=9, p=0.163

coefficients that tell us how much of the variance in the latent factors at each oc-
casion is accounted for by the previous factor. Parameters on the diagonal of the
R matrix estimate the residual, non-transmissible standard deviations that include
measurement error. To identify the error variances at the first and the last mea-
surement occasions additional constraints are needed, because error variances at
these occasions cannot be distinguished from innovation variance. In the examples
below we have constrained all error variances to be equal.

Mx Script 2 for Phenotypic Simplex Model

In this second script the innovations are standardized to have unit variance and at
each time point the factor loadings are estimated in the L matrix. The first latent
factor in this specification may be thought of as an innovation because it cannot be
explained by factors associated with an earlier point in time. Again we use the B

matrix to specify the occasion to occasion transmission but here the transmission
is of the standardized X variables.

In Table 12.2.1 it can be seen that the b’s are relatively high and the variances
of the innovations (Zt) small. Variances associated with measurement error (Rt)
also are small and likely not significant. The total variances at each measurement
occasion can be obtained according to equations 12.2 and 12.4:
At the second time point the total variance of the latent factor is 57.992. This
is (within rounding error) equal to the second diagonal element of the covari-
ance matrix of X . Only a small proportion of this variance is due to innovation:
1.500/57.968 = 0.026, the vast majority comes from amplification of existing vari-
ance at the first time point. At t = 6 we see that the variance of the latent factor is
decreasing and that the contribution of new influences becomes somewhat larger.

The output for the second Mx setup gives the estimates of the factor loadings
of the observed variables on latent variables in the L matrix. As may be seen, these
loadings correspond to those of the Z matrix in the first script. The estimates in
B, however are quite different. In this case they can be conceived of as “scaled”
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Table 12.3: Parameter estimates and total variances using script 2 for weight.
Time var(bt) var(Xt−1) var(Zt) var(Xt) var(Rt) total variance
t = 1 7.1652 = 51.341 0.3652 51.470
t = 2 6.1392 ×1.2252 = 58.022 0.3652 58.150
t = 3 0.8752 ×38.691 ×1.4402 = 63.530 0.3652 63.663
t = 4 1.1162 ×30.655 ×1.3632 = 72.693 0.3652 72.826
t = 5 0.7302 ×39.150 ×1.8092 = 71.507 0.3652 71.640
t = 6 0.9422 ×21.839 ×1.8092 = 66.727 0.3652 66.860
Chi=12.995, df=9, p=0.163

Table 12.4: Correlations among latent factors
X1 X2 X3 X4 X5 X6

X1 1.000
X2 0.987 1.000
X3 0.971 0.984 1.000
X4 0.958 0.971 0.987 1.000
X5 0.936 0.948 0.964 0.977 1.000
X6 0.913 0.925 0.940 0.953 0.975 1.000

regression coefficients and their absolute values have to be interpreted with care.
As the χ2 and degrees of freedom for both Mx specifications are the same, it is clear
that these differences in parameter estimates do not affect the goodness-of-fit of
the model. As is easily verified (how?) that the standardized solutions for both Mx
setups are identical. The standardized solution also gives the correlation matrix
among latent factors.

The correlations on the first subdiagonal are the standardized b’s. This corre-
lation matrix of the latent factors clearly reflects the simplex structure we observe
in the data.

12.3 Genetic Simplex Model

In a behavior genetics context we usually want to analyze more than one latent
construct, for example, genetic and environmental components of variance. To
estimate such effects we can divide each of the X factors into a genetic and a non-
genetic part. In the context of simplex models we want to fit a genetic and an
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environmental time series1, and we can specify both of these time series using Mx.

12.3.1 Mx Formulation of the Genetic Simplex Model

Letting Ai and Ei represent the additive genetic and within-family environmental
factors at each occasion (the X variables), the measurement model at each occasion
becomes:

Yi = aiAi + eiEi + riRi + siSi.

And for the structural part of the model we can write:

Ai = biAi−1 + Xi (12.5)

Ei = diEi−1 + Zi (12.6)

For t = 3 the covariance matrix of these latent processes then equals:













var(A1) + var(E1)

b2var(A1) + d2var(E1) var(A2) + var(E2)

b2b3var(A1) + d2d3var(E1) b3var(A2) + d3var(E2) var(A3) + var(E3)













where

var(Ai) = bi
2var(Ai−1) + var(Xi)

var(Ei) = di
2var(Ei−1) + var(Zi) .

This genetic simplex model is shown diagrammatically in Figure 12.2 for the more
complete case of 6 variables, as in the Fischbein weight data.

Similar to the phenotypic simplex model, the genetic simplex model can be
specified in a variety of ways in Mx. We opt for the first approach and estimate
the innovations and the transmission paths while fixing the factors loadings to one.
This implies pre- and post-multiplying the expected covariances by an identity ma-
trix, we have simplified the script by ommitting the L matrix. Consistent with the
notation in the equations, matrices X and B are used respectively for the genetic
innovations and transmissions and matrices Z and D for the environmental innova-
tions and transmissions. It is possible to estimate both genetic and environmental
residuals (measurement error) in diagonal matrices (R and S). Figure 12.2 is drawn
for the complete model.

1Here we fit the simplex only to additive genetic and within-family environmental effects.
See Section 12.5 for a discussion of extended simplex formulations involving other variance
components.
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1Y 2Y 3Y 4Y 5Y 6Y

1A 2A 3A 4A 5A 6A

1X 2X 3X 4X 5X 6X

1E 2E 3E 4E 5E 6E

1R 2R 3R 4R 5R 6R

1S 2S 3S 4S 5S 6S

1Z 2Z 3Z 4Z 5Z 6Z

1.0 1.0 1.0 1.0 1.0 1.0

1x 2x 3x 4x 5x 6x

1a 2a 3a 4a 5a 6a

1e 2e 3e 4e 5e 6e

2b 3b 4b 5b 6b

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

6z1z 2z 3z 4z 5z

6f5f4f2f 3f

1s 2s 3s
4s 5s 6s

6r5r4r3r2r1r

Figure 12.2: Simplex model of genetic and within-family environmental time
series. The figure is drawn for one twin.

12.3.2 Application to Longitudinal Data on Weight

From the same study by Fischbein (1977) we have weight data for 32 MZ and 51
DZ female twin pairs. Appendix G.2 gives the Mx setup for the genetic analysis of
these data. The matrices for the genetic and environmental structure are set up in
the first calculation group.

#Define nvar 6

#Define nvarm1 5

G1: Genetic and Environmental structure

Calculation

Begin Matrices;

X Diag nvar nvar Free ! genetic innovation paths

B Diag nvarm1 nvarm1 Free ! genetic transmission paths

Z Diag nvar nvar Free ! specific env innovation paths

D Diag nvarm1 nvarm1 Free ! specific env transmission paths

I Iden nvar nvar

J Zero 1 nvarm1
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L Zero nvar 1

End Matrices;

Begin Algebra;

G= (J_B)|L ;

T= (I-G)~ ;

A= T*(X*X’)*T’ ;

F= (J_D)|L ;

U= (I-F)~ ;

E= U*(Z*Z’)*U’ ;

End Algebra;

End

The first few lines define the number of groups and ’define’ two variables, nvar
for the number of variables and nvarm1 for the number of variables minus 1. We de-
fine the matrices X for the additive genetic factors at each occasion of measurement
(X1, ..., X6) and Z for the environmental innovations (Z1, ..., Z6) as diagonal and
free. Note that we do not specify any measurement errors since these were found to
be non-significant in the previous analysis. The transmission matrices require free
subdiagonal elements which correspond to the regression of each Ai on Ai−1 and
Ei on Ei−1. In Mx, we could specify this using a 6× 6 lower triangular matrices
in which the subdiagonal elements are declared free with a Specification state-
ment. We choose a more general formulation here by declaring two 5× 5 diagonal
matrices (B for the genetic and D for the environmental transmission paths). We
then stick a 1× 5 row vector of zero’s J on top of this diagonal matrix using the
horizontal concatenator, and a 6× 1 column vector of zero’s L to the right of this
block using the vertical concatenator. The resulting G and F matrices are then of
the following form:

0 0 0 0 0 0

? 0 0 0 0 0

0 ? 0 0 0 0

0 0 ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

where ? indicates a free parameter. The same (I-G)~ formulation is used as in
the phenotypic simplex model to correctly specify the autoregressive paths. Fi-
nally the matrices with the innovations are pre- and post-multiplied by the matrix
formulation for the transmission paths to obtain the genetic A and the specific
environmental E covariance matrices. Group 2 and 3 are then used to fit the
model to the MZ and DZ data respectively. The formulation for the expected
covariance matrices is similar to that of the univariate and multivariate models
described in previous chapters. Note that this model has 22 free parameters and,
thus, 2[12(12 + 1)]/2− 22 = 156− 22 = 134 degrees of freedom.
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Table 12.5: Genetic, environmental, and total phenotypic variances estimated
from the genetic simplex model applied to Fishbein’s (1977) data on weight

Variance
Time Genetic Environmental Total

var(bt)× var(At−1) + var(Xt) var(dt)× var(Et−1) + var(Zt) var(Yt)
t = 1 4.792 = 22.94 1.822 = 3.31 26.25
t = 2

(

1.052 × 22.94 + 1.122
)

= 26.55
(

0.922 × 3.31 + 0.562
)

= 3.12 29.67
t = 3

(

1.042 × 26.55 + 1.502
)

= 30.97
(

1.052 × 3.12 + 0.982
)

= 4.40 35.37
t = 4

(

1.022 × 30.97 + 1.232
)

= 33.73
(

0.852 × 4.40 + 0.952
)

= 4.08 37.81
t = 5

(

1.022 × 33.73 + 1.392
)

= 37.02
(

0.842 × 4.08 + 0.812
)

= 3.53 40.55
t = 6

(

0.972 × 37.02 + 1.392
)

= 36.76
(

1.012 × 3.53 + 0.992
)

= 4.58 41.34

With the parameter estimates from the output we can calculate the genetic and
environmental variances at each time point and then compute the heritabilities.

The total genetic variance at time point i, i > 0, is computed as:

var(Ai) = b2
i var(Ai−1) + var(Xi)

The environmental variances are computed in the same way. The genetic, environ-
mental, and total (phenotypic) variances estimated from this model are shown in
Table 12.5.

As in the phenotypic analysis, we see that there is an increase in total variance
over time (26.25 to 41.34), and here we see that this is caused by an increase
in the genetic part of the variance, whereas the environmental variances do not
change very much. We can now address the questions that were raised in the
introduction to this chapter, i.e., i) are there changes in heritabilities over time?
and ii) do the same genetic and environmental influences operate throughout time?
For the first question we can calculate the heritabilities by dividing the genetic
variance at each time point by the total variance, which yields the heritability
estimates 0.87, 0.89, 0.88, 0.89, 0.91 and 0.89. Clearly there is little change in
the magnitude of genetic influence on weight over time. For the second question,
we can partition the heritable variation at each time into (i) genetic influences
novel to the occasion, and (ii) genetic effects persisting from the previous occasion.
That is, a portion of each heritability is due to new genetic influences impacting
weight assessments at each point in time, and a portion is due to the genetic effects
which were already operating at the previous measurement point. The former can
be calculated from the parameter estimates as var(Xi)/var(Ai) and the latter as
b2
i var(Ai−1)/var(Ai). For example, on the second occasion 1.25/29.67 = 4% of

the total variance consists of new genetic variance and 25.29/29.67 = 85% of the
total variance consists of amplification of existing variance at the first time point.
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Table 12.6: Estimated correlations among latent genetic [below diagonal] and
environmental [above diagonal] factors in a genetic simplex model fitted to weight
data.

A1/E1 A2/E2 A3/E3 A4/E4 A5/E5 A6/E6

A1/E1 1.000 .947 .837 .738 .665 .589
A2/E2 .976 1.000 .884 .779 .702 .622
A3/E3 .941 .964 1.000 .881 .794 .704
A4/E4 .919 .942 .977 1.000 .902 .799
A5/E5 .896 .917 .952 .974 1.000 .886
A6/E6 .872 .893 .927 .949 .974 1.000

At the other time points also (i = 3 . . . 6), only a small part of the total variance
is due to genetic innovation terms (6%, 4%, 5%, and 5%). Thus, we see that the
genetic effects do not change dramatically during this period of development; i.e.,
the same genetic influences are operating over time.

As in the phenotypic example, we can get the correlations among the latent
factors. In this case, the latent variables are genetic and non-shared environmental
factors; thus, the standardized solution gives the genetic and environmental corre-
lations for the weight data. We present these correlations in Table 12.3.2. It may
be seen that both of these matrices conform to a simplex structure and from these
matrices it also is clear that both genetic and environmental stabilities are high.
Evidence for genetic simplex patterns in morphological traits also has been found
in studies of animal development (Arnold, 1990).

12.3.3 Common Factor Model for Longitudinal Twin Data

Since the above analyses indicate that the genetic and environmental correlations
are high, we may ask if a factor model also would give a good fit to the data [see,
e.g., Boomsma and Molenaar (1987), Cardon and Fulker (1991) and Cardon et al.,
(1992) for empirical assessments of this question]. To address this question we fit a
model that includes a common genetic and a common within-family environmental
factor and measurement-specific environmental factors to the weight covariances
(genetic specific factors were not different from zero). The Mx specification for
this model is described in detail in Section 10.3.2 of Chapter 10 and an example
script is given in Appendix ?? for the case of 4 measures. The extension to 6
variables in the present case is fairly trivial and is left to the reader. Although the
factor model represents a more parsimonious account of the data (18 vs. 22 free
parameters), the goodness-of-fit chi-squared for this model is much higher than for
the one obtained from the simplex model (common factor χ2

138 = 359.29, p = .000
vs. simplex χ2

134 = 160.99, p = .056). Thus, the simplex model appears to provide
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a better explanation of the weight observations.

12.4 Problems with Repeated Measures Data

Analysis of repeatedly measured variables may create some specific numeric prob-
lems. Covariance matrices associated with highly intercorrelated repeated mea-
sures can become nearly singular. As a consequence, the chi-squared goodness-of-
fit statistic may be positively biased (in contrast to parameter estimates, which
are generally unbiased). Secondly, even if there are no singularity problems, the
large number of variables in a covariance analysis of repeated measures may lead
to indeterminacies during computation. This situation resembles the occurrence
of collinearity in regression analysis, which usually can be counteracted by the
invocation of ridge regression. A similar approach can be used in Mx by

1. the addition of a small positive constant to the diagonal of the observed
covariance matrix, and

2. correcting the model for this perturbation by adding a matrix for residuals[?]
and fixing the diagonal at the same positive constant (see Boomsma et al.,
1989a,b)

12.5 Discussion

The genetic analysis of development and age-related changes in human behavior
involves more issues, such as modeling age of onset for example, than the questions
that have been addressed here. An overview of some of these other issues is given
by Eaves et al., (1990a). The genetic analysis of repeated measures as outlined in
this chapter is a very flexible approach to the analysis of change and continuity.
The simplex model allows for both differential heritabilities and environmental
variances at different time points, as well as different genetic and environmental
correlations between time points. This model can be extended in several ways.
An additional latent simplex structure may be specified to test the influence of
common-environmental components (see, e.g., Eaves et al., 1986; Hewitt et al.,
1988; Phillips and Fulker, 1989; Cardon et al., 1992) The model also can be used
for the analysis of multivariate time series. In this case, each single time series
may conform to a simplex structure, while the relationship between different types
of variables can be analyzed with a confirmatory factor analysis model (see e.g.,
Cardon, 1992). The simplex model used here in the analysis of the weight data
specifies a so called first-order autoregressive model, where a measure is influenced
only by the previous one. It is also possible to specify higher-order autoregressive
models, where variables at t = i are influenced for example by variables at time
i− 1 as well as at time i− 2. All of these analyses can be carried out with Mx.
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Mx Scripts for Univariate

Models

A.1 Path Coefficients Model

The following Mx script represents a univariate genetic model fitted to covariance
matrices for two twin groups: 1) MZ pairs reared together, and 2) DZ pairs reared
together.

! Path Coefficients Model

! BMI data in Australian twins

#NGroups 3

G1: Model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free

Y Lower 1 1 Fixed

Z Lower 1 1 Free

W Lower 1 1 Free

End Matrices;

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’ ;

D= W*W’ ;

End Algebra:

End
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G2: young female MZ twin pairs

Data NInput_vars=2 NObservations=534

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=ozbmimzf.cov

Begin Matrices= Group 1;

Covariances A+C+D+E | A+C+D _

A+C+D | A+C+D+E ;

Options RSidual

End

G3: young female DZ twin pairs

Data NInput_vars=2 NObservations=328

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=ozbmidzf.cov

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25

Start .6 All

Covariances A+C+D+E | H@A+C+Q@D _

H@A+C+Q@D | A+C+D+E ;

Options RSidual NDecimals=4

End

A.2 Variance Components Model

This Mx script fits a variance components model to twin covariances on BMI. It is
a two group problem, for MZ and DZ pairs reared together.

! Variance Components Model

! BMI data in Australian female twins

#NGroups 2

G1: young female MZ twin pairs

Data NGroups=2 NInput_vars=2 NObservations=534

CMatrix Symmetric File=ozbmimzf.cov

Labels bmi_t1 bmi-t2

Begin Matrices;

A Lower 1 1 Free

C Lower 1 1 Fixed

E Lower 1 1 Free
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D Lower 1 1 Free

End Matrices;

Covariances A+C+D+E | A+C+D _

A+C+D | A+C+D+E ;

Options RSidual

End

G2: young female DZ twin pairs

Data NInput_vars=2 NObservations=328

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=ozbmidzf.cov

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25

Start .6 All

Covariances A+C+D+E | H@A+C+Q@D _

H@A+C+Q@D | A+C+D+E ;

Options RSidual NDecimals=4

End

A.3 Model for Means and Covariances

The following Mx script estimates path coefficients for like-sex twins under the
univariate genetic model, incorporating estimation of means.

! Model for Means and Covariances

! BMI data in Australian female twins

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Y Lower 1 1 Fixed ! common environmental structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Fixed ! dominance structure

End Matrices;

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;
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E= Z*Z’ ;

D= W*W’ ;

End Algebra;

End

G2: older female MZ twin pairs

Data NInput-vars=2 NObservations=637

Means File=ozbmiomz.mea

CMatrix Symmetric File=ozbmiomz.cov

Labels bmi_t1 bmi-t2

Begin Matrices= Group 1;

M Full 2 1 Free

Means M ; ! model for means

Covariances ! model for covariances

A+C+D+E | A+C+D _

A+C+D | A+C+D+E ;

Options RSidual

End

G3: older female dz twin pairs

Data NInput-vars=2 NObservations=380

Means File=ozbmiodz.mea

CMatrix Symmetric File=ozbmiodz.cov

Labels bmi_t1 bmi-t2

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

M Full 2 1 Free

End Matrices;

Matrix H .5

Matrix Q .25

Start .6 All

Start .3 M 2 1 1 M 2 2 1 M 3 1 1 M 3 2 1

Means M ;

Covariances A+C+D+E | H@A+C+Q@D _

H@A+C+Q@D | A+C+D+E ;

Options Multiple RSidual

End

!no heterogeneity of means for birthorder

Specify 2 M 3 3 ! equate pt1=pt2 for mz twins

Specify 3 M 5 5 ! equate pt1=pt2 for dz twins

End
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!no heterogeneity of means for zygosity

Specify 3 M 3 3 ! equate means in group 2 to group 1

End

A.4 Univariate Genetic Model for Twin pairs and

Singles

This Mx script fits the simple univariate genetic model (incorporating means) to
BMI data from like-sex female twins in which (a) both twins in the pair responded
to the survey; (b) the cotwin did not cooperate.

! Univariate Genetic Model for Twin pairs and Singles

! BMI data in Australian twins

#NGroups 5

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Y Lower 1 1 Fixed ! common environmental structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Fixed ! dominance structure

End Matrices;

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’ ;

D= W*W’ ;

End Algebra;

End

G2: older female MZ twin pairs

Data NInput-vars=2 NObservations=637

Means File=ozbmiomz.mea

CMatrix Symmetric File=ozbmiomz.cov

Labels bmi_t1 bmi-t2

Begin Matrices= Group 1;

M Full 2 1

End Matrices;

Specify M 3 3

Means M ; ! model for means
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Covariances ! model for covariances

A+C+D+E | A+C+D _

A+C+D | A+C+D+E ;

Option RSidual

End

G3: older female dz twin pairs

Data NInput-vars=2 NObservations=380

Means File=ozbmiodz.mea

CMatrix Symmetric File=ozbmiodz.cov

Labels bmi_t1 bmi-t2

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

M Full 2 1

End Matrices;

Specify M 3 3

Matrix H .5

Matrix Q .25

Means M ;

Covariances A+C+D+E | H@A+C+Q@D _

H@A+C+Q@D | A+C+D+E ;

Option RSidual

End

G4: older female mz twins whose cotwins did not respond

Data NInput-vars=1 NObservations=44

Mean File=ozbmismz.mea

CMatrix File=ozbmismz.cov

Labels bmi

Begin Matrices= Group 1;

M Full 1 1

End Matrices;

Specify M 3

Means M ;

Covariances A+C+D+E ;

Option RSidual

End

G5: older female dz twins whose cotwins did not respond

Data NInput-vars=1 NObservations=62

Mean File=ozbmisdz.mea

CMatrix File=ozbmisdz.cov
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Labels bmi

Begin Matrices= Group 1;

M Full 1 1

End Matrices

Specify M 3

Start .6 All

Start .3 M 2 1 1 M 2 2 1 M 3 1 1 M 3 2 1 M 4 1 1 M 5 1 1

Means M ;

Covariances A+C+D+E ;

Options NDecimals=4

Option RSidual

End

A.5 Age-correction Model

This Mx script is the basic model without age effects described in Section 6.4.
Modifications to the script to incorporate age effects are described in Section 6.4
on page 137. The model is fit to conservatism data from wAustralian female twins.

! Age Correction Model

! Conservatism data from Australian female twins

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Y Lower 1 1 Free ! common environmental structure

Z Lower 1 1 Free ! specific environmental structure

S Lower 1 1 Free ! effect of age on phenotype

V Lower 1 1 Free ! variance of age

End Matrices;

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’ ;

G= S*S’ ;

End Algebra;

End

G2: female MZ twin pairs

Data NInput_vars=3 NObservations=941
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Labels age cons_t1 cons-t2

CMatrix Symmetric File=ozconmzf.cov

Begin Matrices= Group 1;

Covariances V*V | S*V | S*V _

S*V | A+C+E+G | A+C+G _

S*V | A+C+G | A+C+E+G ;

Option RSidual

End

G3: female dz twin pairs

Data NInput_vars=3 NObservations=548

Labels age cons_t1 cons-t2

CMatrix Symmetric File=ozcondzf.cov

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start 5 All

Start 15 V 1 1 1

Covariances V*V | S*V | S*V _

S*V | A+C+E+G | H@A+C+G _

S*V | H@A+C+G | A+C+E+G ;

Options NDecimals=4

Option RSidual

End
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Mx Script for Power

Calculation

B.1 ACE Model for Power Calculations

The Mx script below fits the univariate ACE model to simulated twin covariances.
The application is described in Section 7.3.

! ACE Model for Power Calculations

! Simulated data

! Simulate the data

! 30% additive genetic (.5477=.3)

! 20% common environment (.4472=.2)

! 50% random environment (.7071=.5)

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Fixed ! genetic structure

Y Lower 1 1 Fixed ! common environmental structure

Z Lower 1 1 Fixed ! specific environmental structure

End Matrices;

Matrix X .5477

Matrix Y .4472

Matrix Z .7071

Begin Algebra;

A= X*X’ ;
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C= Y*Y’ ;

E= Z*Z’ ;

End Algebra;

End

G2: MZ twin pairs

Calculation

Begin Matrices= Group 1;

Covariances A+C+E | A+C _

A+C | A+C+E ;

Options MX%E=mzsim.cov

End

G3: DZ twin pairs

Calculation

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Covariances A+C+E | H@A+C _

H@A+C | A+C+E ;

Options MX%E=dzsim.cov

End

! Fit the wrong model to the simulated data

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Y Lower 1 1 Fixed ! common environmental structure

Z Lower 1 1 Free ! specific environmental structure

End Matrices;

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’ ;

End Algebra;

End

G2: MZ twin pairs
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Data NInput_vars=2 NObservations=1000

CMatrix Full File=mzsim.cov

Begin Matrices= Group 1;

Covariances A+C+E | A+C _

A+C | A+C+E ;

Option RSiduals

End

G3: DZ twin pairs

Data NInput_vars=2 NObservations=1000

CMatrix Full File=dzsim.cov

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start .5 All

Covariances A+C+E | H@A+C _

H@A+C | A+C+E ;

Options RSiduals Power= .05,1 ! .05 sig level & 1 df

End
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Chapter C

Mx Script for Sibling

Interaction Model

C.1 Sibling Interaction Model

The following Mx script represents a univariate genetic model incorporating sibling
interaction fitted to covariance matrices for MZ and DZ pairs reared together.

! Sibling Interaction Model

! CBC data in US twins

#NGroups 3

G1: genetic structure

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

B Symm 2 2 ! sibling interaction parameters

I Iden 2 2

End Matrices;

Specify B 0 3 0

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

P= (I-B)~ ;

End Algebra;

End

G2: Male MZ twins in larger families
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Data NInput_vars=2 NObservations=171

Labels exter1 exter2

CMatrix Symmetric File=uscbcmz.cov

Begin Matrices= Group 1;

Covariances P* (A+E | A _

A | A+E) * P’ ;

Options RSidual

End

G3: Male DZ twins in larger families

Data NInput_vars=2 NObservations=194

Labels exter1 exter2

CMatrix Symmetric File=uscbcdz.cov

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start .3 All

Start .0 B 1 2 1

Covariances P* (A+E | H@A _

H@A | A+E) * P’ ;

Options NDecimals=4

Options RSidual

End



Chapter D

Mx Scripts for Sex and G×E

Interaction

D.1 General Model for Scalar Sex-Limitation

This Mx script estimates sex-dependent additive genetic effects and fixes the sex-
dependent dominance effects to zero. Four same-sex groups are used: MZ female,
DZ female, MZ male, and DZ male.

! General Model for Sex-Limitation

! BMI data in US twins

#NGroups 7

G1: female model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Free ! dominance structure

End Matrices;

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

D= W*W’ ;

End Algebra;

End

G2: male model parameters

Calculation
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Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Free ! dominance structure

N Lower 1 1 Free ! male set of genes

End Matrices;

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

D= W*W’ ;

M= N*N’ ;

End Algebra;

End

G3: Female MZ twin pairs

Data NInput_vars=2 NObservations=1802

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmimzf.cov

Begin Matrices= Group 1;

Covariances A+D+E | A+D _

A+D | A+D+E ;

Option RSiduals

End

G4: Female DZ twin pairs

Data NInput_vars=2 NObservations=1142

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmidzf.cov

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25

Start .5 All

Covariances A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ;

Option RSiduals

End

G5: Male MZ twin pairs

Data NInput_vars=2 NObservations=750

Labels bmi_t1 bmi-t2
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CMatrix Symmetric File=usbmimzm.cov

Begin Matrices= Group 2;

Covariances A+D+E+M | A+D+M _

A+D+M | A+D+E+M ;

Option RSiduals

End

G6: Male DZ twin pairs

Data NInput_vars=2 NObservations=553

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmidzm.cov

Begin Matrices= Group 2;

H Full 1 1 =H4

Q Full 1 1 =Q4

Covariances A+D+E+M | H@A+Q@D+H@M _

H@A+Q@D+H@M | A+D+E+M ;

Option RSiduals

End

G7: Female-Male DZ twin pairs

Data NInput_vars=2 NObservations=1341

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmidzo.cov

Begin Matrices;

A Symm 1 1 =A1

D Symm 1 1 =D1

E Symm 1 1 =E1

J Symm 1 1 =A2

K Symm 1 1 =D2

L Symm 1 1 =E2

M Symm 1 1 =M2

X Lower 1 1 =X1

W Lower 1 1 =W1

Z Lower 1 1 =Z1

O Lower 1 1 =X2

P Lower 1 1 =W2

R Lower 1 1 =Z2

N Lower 1 1 =N2

H Full 1 1 =H4

Q Full 1 1 =Q4

End Matrices;

Start .5 All

Covariances
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A+D+E | H@(X*O’)+Q@(W*P’) _

H@(O*X’)+Q@(P*W’) | J+K+L+M /

Option RSiduals

End

D.2 Scalar Sex-Limitation Model

This Mx script fits a model in which genetic and environmental factors are propor-
tional across the sexes, so that am = kaf ; dm = kdf ; and em = kef .

! Scalar Sex-Limitation Model

! BMI data in US twins

#NGroups 6

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Free ! dominance structure

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

D= W*W’ ;

End Algebra;

End

G2: Female MZ twin pairs

Data NInput_vars=2 NObservations=1802

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmimzf.cov

Begin Matrices= Group 1;

Covariances A+D+E | A+D _

A+D | A+D+E ;

Option RSiduals

End

G3: Female DZ twin pairs
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Data NInput_vars=2 NObservations=1142

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmidzf.cov

Begin Matrices= Group 1;

Covariances A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ;

Option RSiduals

End

G4: Male MZ twin pairs

Data NInput_vars=2 NObservations=750

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmimzm.cov

Begin Matrices= Group 1;

K Diag 2 2 ! common multiplier

End Matrices;

Specify K 4 4

Covariances K *(A+D+E | A+D _

A+D | A+D+E) *K’ ;

Option RSiduals

End

G5: Male DZ twin pairs

Data NInput_vars=2 NObservations=553

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmidzm.cov

Begin Matrices= Group 1;

K Diag 2 2 = K4

Covariances K *(A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E) *K’ ;

Option RSiduals

End

G6: Female-Male DZ twin pairs

Data NInput_vars=2 NObservations=1341

Labels bmi_t1 bmi-t2

CMatrix Symmetric File=usbmidzo.cov

Begin Matrices= Group 1;

K Diag 2 2

End Matrices;

Specify K 0 4

Matrix K 1 0

Bound 0 1 K 4 1 1 K 4 2 2 K 5 1 1 K 5 2 2 K 6 2 2
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Start .7 All

Covariances K *(A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E) *K’ ;

Option RSiduals

Options NDecimals=4

End

D.3 General Model for G × E Interaction

This Mx script fits a G × E interaction model in which the environmental agent is
dichotomous. Thus we discriminate between concordant exposed, discordant, and
concordant non-exposed pairs of (i) MZ and (ii) DZ twins, giving six groups in
total.

! General Model for GxE Interaction

! Depression in Australian twins

#NGroups 8

G1: singles model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Free ! dominance structure

End Matrices;

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

D= W*W’ ;

End Algebra;

End

G2: married model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Free ! dominance structure

N Lower 1 1 Free ! set of genes for married couples

End Matrices;

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;
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D= W*W’ ;

M= N&N’ ;

End Algebra;

End

G3: Concordant single MZ twin pairs

Data NInput_vars=2 NObservations=254

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepsmz.cov

Begin Matrices= Group 1;

Covariances A+D+E | A+D _

A+D | A+D+E ;

Option RSiduals

End

G4: Concordant single DZ twin pairs

Data NInput_vars=2 NObservations=155

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepsdz.cov

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25

Covariances A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ;

Option RSiduals

End

G5: Concordant married MZ twin pairs

Data NInput_vars=2 NObservations=177

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepmmz.cov

Begin Matrices= Group 2;

Covariances A+D+E+M | A+D+M _

A+D+M | A+D+E+M ;

Option RSiduals

End

G6: Concordant married DZ twin pairs

Data NInput_vars=2 NObservations=107

Labels dep_t1 bmi-t2
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CMatrix Symmetric File=ozdepmdz.cov

Begin Matrices= Group 2;

H Full 1 1 = H4

Q Full 1 1 = Q4

Covariances A+D+E+M | H@A+Q@D+H@M _

H@A+Q@D+H@M | A+D+E+M ;

Option RSiduals

End

G7: Discordant MZ twin pairs

Data NInput_vars=2 NObservations=139

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepdmz.cov

Begin Matrices= Group 1;

J Symm 1 1 =A2

K Symm 1 1 =D2

L Symm 1 1 =E2

M Symm 1 1 =M2

O Lower 1 1 =X2

P Lower 1 1 =W2

R Lower 1 1 =Z2

N Lower 1 1 =N2

End Matrices;

Covariances A+D+E | (X*O’)+(W*P’) _

(O*X’)+(P*W’) | J+K+L+M ;

Option RSiduals

End

G8: Discordant DZ twin pairs

Data NInput_vars=2 NObservations=87

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepddz.cov

Begin Matrices= Group 7;

H Full 1 1 = H4

Q Full 1 1 = Q4

End Matrices;

Start .7 All

Covariances A+D+E | H@(X*O’)+Q@(W*P’) _

H@(O*X’)+Q@(P*W’) | J+K+L+M ;

Option RSiduals NDecimals=4

End
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D.4 Scalar G × E interaction model

The following Mx script fits a model in which there is a proportionate change of the
multifactorial genetic and environmental effect between exposed and non-exposed
individuals.

! Scalar GxE Interaction Model

! Depression data in Australian female twins

#NGroups 7

G1: singles model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic structure

Z Lower 1 1 Free ! specific environmental structure

W Lower 1 1 Fixed ! dominance structure

End Matrices;

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

D= W*W’ ;

End Algebra;

End

G2: Concordant single MZ twin pairs

Data NInput_vars=2 NObservations=254

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepsmz.cov

Begin Matrices= Group 1;

Covariances A+D+E | A+D _

A+D | A+D+E ;

Option RSiduals

End

G3: Concordant single DZ twin pairs

Data NInput_vars=2 NObservations=155

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepsdz.cov

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25
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Covariances A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ;

Option RSiduals

End

G4: Concordant married MZ twin pairs

Data NInput_vars=2 NObservations=177

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepmmz.cov

Begin Matrices= Group 1;

K Diag 2 2 ! scalar

End Matrices;

Specify K 4 4

Covariances K *(A+D+E | A+D _

A+D | A+D+E) *K’ ;

Option RSiduals

End

G5: Concordant married DZ twin pairs

Data NInput_vars=2 NObservations=107

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepmdz.cov

Begin Matrices= Group 1;

H Full 1 1 = H3

Q Full 1 1 = Q3

K Diag 2 2 = K4

Covariances K *(A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ) *K’ ;

Option RSiduals

End

G6: Discordant MZ twin pairs

Data NInput_vars=2 NObservations=139

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepdmz.cov

Begin Matrices= Group 1;

K Diag 2 2

End Matrices;

Specify K 0 4

Matrix K 1 .7

Covariances K *(A+D+E | A+D _

A+D | A+D+E ) *K’ ;

Option RSiduals
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End

G7: Discordant DZ twin pairs

Data NInput_vars=2 NObservations=87

Labels dep_t1 bmi-t2

CMatrix Symmetric File=ozdepddz.cov

Begin Matrices= Group 1;

H Full 1 1 = H3

Q Full 1 1 = Q3

K Diag 2 2 = K6

End Matrices;

Start .5 All

Covariances K *(A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ) *K’ ;

Option RSiduals

Options NDecimals=4

End
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Chapter E

Mx Scripts for Multivariate

Models

E.1 Phenotypic Factor Analysis of Four Variables

This Mx script performs a phenotypic factor analysis to arithmetic computation
data from Australian female twins. The data comprise assessments taken once
before (T0) and three times after (T1 — T3) a standard dose of alcohol.

#NGroups 1

Phenotypic Factor Analysis of Four Variables

Data NInput_vars=4 NObservations=42

CMatrix

259.664

209.325 259.939

209.532 220.755 245.235

221.610 221.491 221.317 249.298

Labels Time1 Time2 Time3 Time4

Begin Matrices;

B Full 1 4 Free

P Symm 1 1

E Diag 4 4 Free

End Matrices;

Value 1 P 1 1

Start 9 All

Covariances B*P*B’+E;

Option RSiduals

End

255



256 CHAPTER E. MX SCRIPTS FOR MULTIVARIATE MODELS

E.2 Genetic Factor Model

The following Mx script fits the genetic common factor model as described in Chap-
ter 10 for additive (A), common environmental (C), and non-shared environment
(E) effects to arithmetic computation data from Australian female twins.

! Genetic Factor Model

! Arithmetic Computation after Alcohol Administration in Australian female twins

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Full 4 1 Free ! genetic common factor

Y Full 4 1 Free ! shared environmental common factor

Z Full 4 1 Free ! specific environmental common factor

F Diag 4 4 Free ! specific environmental specifics

End Matrices;

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’+ F*F’ ;

End Algebra;

End

G2: female MZ twin pairs

Data NInput_vars=8 NObservations=43

Labels Tw1-T0 Tw1-T1 Tw1-T2 Tw1-T3 Tw2-T0 Tw2-T1 Tw2-T2 Tw2-T3

CMatrix File=ozarimz.cov

Begin Matrices= Group 1;

Covariances A+C+E | A+C _

A+C | A+C+E ;

Option RSiduals

End

G3: female DZ twin pairs

Data NInput_vars=8 NObservations=44

Labels Tw1-T0 Tw1-T1 Tw1-T2 Tw1-T3 Tw2-T0 Tw2-T1 Tw2-T2 Tw2-T3

Cmatrix File=ozaridz.cov

Begin Matrices = Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start .5 All
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Covariances A+C+E | H@A+C _

H@A+C | A+C+E ;

Option RSiduals

Options Multiple NDecimals=4

End

! no shared environmental common factor

Drop 5 to 8

End

E.3 Bivariate Genetic Factor Model

The Mx script below adds a genetic “alcohol” factor to the common factors for
A and E in Appendix ??. Genetic effects on the three arithmetic computation
measurements taken after alcohol administration load on the alcohol factor.

! Bivariate Genetic Factor Model

! Arithmetic Computation after Alcohol Administration in Australian female twins

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Full 4 2 Free ! genetic common factor

Y Full 4 1 Fixed ! shared environmental common factor

Z Full 4 1 Free ! specific environmental common factor

F Diag 4 4 Free ! specific environmental specifics

End Matrices;

Specify X

1 0

2 100 ! 100: second genetic common factor

3 100

4 100

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’+ F*F’ ;

End Algebra;

End

G2: female MZ twin pairs

Data NInput_vars=8 NObservations=43

Labels Tw1-T0 Tw1-T1 Tw1-T2 Tw1-T3 Tw2-T0 Tw2-T1 Tw2-T2 Tw2-T3
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CMatrix File=ozarimz.cov

Begin Matrices= Group 1;

Covariances A+C+E | A+C _

A+C | A+C+E ;

Option RSiduals

End

G3: female DZ twin pairs

Data NInput_vars=8 NObservations=44

Labels Tw1-T0 Tw1-T1 Tw1-T2 Tw1-T3 Tw2-T0 Tw2-T1 Tw2-T2 Tw2-T3

Cmatrix File=ozaridz.cov

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start .5 All

Covariances A+C+E | H@A+C _

H@A+C | A+C+E ;

Option RSidual NDecimals=4

End

E.4 Genetic Cholesky Model

The Mx script below fits a cholesky decomposition model to four skinfold measures.
Triangular cholesky matrices are fit only for additive genetic, A, and within-family
environment, E, effects.

! Genetic Cholesky Model

! Skinfold Measures in US (Virginia) male twins

#NGroups 3

G1: genetic structure

Calculation

Begin Matrices;

X Lower 4 4 Free ! genetic cholesky (lower triangular)

Z Lower 4 4 Free ! specific environmental cholesky

End Matrices;

Begin Algebra;

A= X*X’ ;

E= Z*Z’ ;

End Algebra;

End
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G2: MZ twin pairs

Data NInput_vars=8 NObservations=84

Labels Bicep1 Subsca1 Supra1 Tricep1 Bicep2 Subsca2 Supra2 Tricep2

Cmatrix File=usskfmz.cov

Begin Matrices= Group 1;

Covariances A+E | A _

A | A+E ;

Option RSiduals

End

G3: DZ twin pairs

Data NInput_vars=8 NObservations=33

Labels Bicep1 Subsca1 Supra1 Tricep1 Bicep2 Subsca2 Supra2 Tricep2

Cmatrix File=usskfdz.cov

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start .5 All

Covariances A+E | H@A _

H@A | A+E ;

Option RSiduals NDecimals=4

End

E.5 Independent Pathway Model

This Mx script fits the multivariate “independent pathway model” to Australian
twin data on asthma, hayfever, dust allergy, and eczema. The data are ordinal,
thus, polychoric correlations are modeled, using asymptotic weight matrices pro-
vided by PRELIS.

! Independent Pathway Model

! Asthma, Hayfever, Dust allergy, Eczema in Australian female twins

#NGroups 3

G1: model parameters

Calculation

Begin Matrices;

X Full 4 1 Free ! genetic common factor

W Full 4 1 Free ! dominance common factor

Z Full 4 1 Free ! specific environmental common factor

G Diag 4 4 Free ! genetic specifics

F Diag 4 4 Free ! specific environmental specifics
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End Matrices;

Begin Algebra;

A= X*X’+ G*G’ ;

D= W*W’ ;

E= Z*Z’+ F*F’ ;

End Algebra;

End

G2: female MZ twin pairs

Data NInput_vars=8 NObservations=1232

Labels asthma1 hayfvr1 dustal1 eczema1 asthma2 hayfvr2 dustal2 eczema2

PMatrix File=ozastmz.cov

ACov File=ahdemzf.acv

Begin Matrices= Group 1;

Covariances A+D+E | A+D _

A+D | A+D+E ;

Option RSiduals

End

G3: female DZ twin pairs

Data NInput_vars=8 NObservations=751

Labels asthma1 hayfvr1 dustal1 eczema1 asthma2 hayfvr2 dustal2 eczema2

Pmatrix File=ozastdz.cov

ACov File=ahdedzf.acv

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;

Matrix H .5

Matrix Q .25

Start .4 All

Covariances A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ;

Option RSiduals NDecimals=4

Option DFreedom=-12

End

E.6 Common Pathway Model

The following Mx script fits the “common pathway model” to ordinal data on
asthma, hayfever, dust allergy, and eczema from the Australian twin sample.
Asymptotic weight matrices and polychoric correlations were obtained from PRELIS.
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! Common Pathway Model

! Asthma, Hayfever, Dust allergy, Eczema in Australian female twins

#NGroups 4

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic factor on latent phenotype

Z Lower 1 1 Free ! specific env factor on latent phenotype

W Lower 1 1 Fixed ! dominance factor on latent phenotype

B Diag 4 4 Free ! genetic specifics

F Diag 4 4 Free ! specific environmental specifics

S Full 4 1 Free ! factor structure

I Iden 2 2

End Matrices;

Begin Algebra;

A= S&(X*X’) + B*B’ ;

E= S&(Z*Z’) + F*F’ ;

D= S&(W*W’) ;

L= X*X’ + Y*Y’ + Z*Z’;

End Algebra;

End

G2: female MZ twin pairs

Data NInput_vars=8 NObservations=1232

Labels asthma1 hayfvr1 dustal1 eczema1 asthma2 hayfvr2 dustal2 eczema2

PMatrix File=ozastmz.cov

ACov File=ahdemzf.acv

Begin Matrices= Group 1;

Covariances A+D+E | A+D _

A+D | A+D+E ;

Option RSiduals

End

G3: female DZ twin pairs

Data NInput_vars=8 NObservations=751

Labels asthma1 hayfvr1 dustal1 eczema1 asthma2 hayfvr2 dustal2 eczema2

Pmatrix File=ozastdz.cov

ACov File=ahdedzf.acv

Begin Matrices= Group 1;

H Full 1 1

Q Full 1 1

End Matrices;
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Matrix H .5

Matrix Q .25

Start .3 All

Covariances A+D+E | H@A+Q@D _

H@A+Q@D | A+D+E ;

Option RSiduals NDecimals=4

Option DFreedom=-12

End

G4: Constrain variance of latent factor to 1

Constraint

Begin Matrices;

L computed =L1

I unit 1 1

End Matrices;

Constraint L = I ;

End
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Mx Script for Rater Bias

Model

F.1 Rater Bias Model

The Mx script below fits a rater bias model to parental ratings of young childrens
Child Behavior Checklist internalizing behavior problems. The script represents
a five group problem, for MZ-male, MZ-female, DZ-male, DZ-female, and DZ-
opposite sex twins.

! Rater Bias Model

! CBC data in US twins

#NGroups 7

G1: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic factor on latent phenotype

Y Lower 1 1 Free ! common env factor on latent phenotype

Z Lower 1 1 Free ! specific env factor on latent phenotype

B Full 4 2 ! rater bias factors

F Diag 4 4 ! specific environmental specifics

S Diag 2 2 ! factor structure

I Iden 2 2

End Matrices;

Specify B 4 0 4 0 0 5 0 5

Specify F 6 6 7 7

Specify S 15 15

Begin Algebra;
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A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’ ;

R= B*B’;

J= F*F’ ;

End Algebra;

End

G2: model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free ! genetic factor on latent phenotype

Y Lower 1 1 Free ! common env factor on latent phenotype

Z Lower 1 1 Free ! specific env factor on latent phenotype

B Full 4 2 ! rater bias factors

F Diag 4 4 ! specific environmental specifics

S Diag 2 2 ! factor structure

I Iden 2 2

End Matrices;

Specify B 11 0 11 0 0 12 0 12

Specify F 13 13 14 14

Specify S 19 19

Begin Algebra;

A= X*X’ ;

C= Y*Y’ ;

E= Z*Z’ ;

R= B*B’;

J= F*F’ ;

End Algebra;

End

G3: MZ boys twin pairs

Data NInput_vars=4 NObservations=96

Labels morg_t1 morg_t2 farg_t1 farg_t2

CMatrix File=uscbcmzm.cov

Begin Matrices= Group 1;

Covariances R+ J+ ((I_S)*(A+C+E | A+C _

A+C | A+C+E )*(I_S)’) ;

Option RSiduals

End

G4: DZ boys twin pairs

Data NInput_vars=4 NObservations=102
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Labels morg_t1 morg_t2 farg_t1 farg_t2

CMatrix File=uscbcdzm.cov

Begin Matrices= Group 1;

H Full 1 1

Covariances R+ J+ ((I_S)*(A+C+E | H@A+C _

H@A+C | A+C+E )*(I_S)’) ;

Matrix H .5

Option RSiduals

End

G5: MZ girls twin pairs

Data NInput_vars=4 NObservations=102

Labels morg_t1 morg_t2 farg_t1 farg_t2

CMatrix File=uscbcmzf.cov

Begin Matrices= Group 2;

Covariances R+ J+ ((I_S)*(A+C+E | A+C _

A+C | A+C+E )*(I_S)’) ;

Option RSiduals

End

G6: DZ girls twin pairs

Data NInput_vars=4 NObservations=97

Labels morg_t1 morg_t2 farg_t1 farg_t2

CMatrix File=uscbcdzf.cov

Begin Matrices= Group 2;

H Full 1 1 = H4

Covariances R+ J+ ((I_S)*(A+C+E | H@A+C _

H@A+C | A+C+E )*(I_S)’) ;

Option RSiduals

End

G7: DZ girl-boy twin pairs

Data NInput_vars=4 NObservations=103

Labels morg_t1 morg_t2 farg_t1 farg_t2

CMatrix File=uscbcdzo.cov

Begin Matrices= Group 1

M Symm 1 1 = A2

N Symm 1 1 = C2

O Symm 1 1 = E2

S Diag 2 2

R Full 4 2

J Diag 4 4

H Full 1 1 = H4



266 CHAPTER F. MX SCRIPT FOR RATER BIAS MODEL

Covariances

R*R’+ J*J’+ ((I_S)* (M+N+O | H@(\sqrt(A*M))+\sqrt(C*N) _

H@(\sqrt(A*M))+\sqrt(C*N) | A+C+E)* (I_S)’) /

Specify S 19 15

Specify R 11 0 4 0 0 12 0 5

Specify J 13 6 14 7

Start .2 All

Start .5 X 1 1 1 Y 1 1 1 Z 1 1 1 X 2 1 1 Y 2 1 1 Z 2 1 1

Option RSiduals NDecimals=4

End

F.2 CBC Items for Internalizing Scale Score

Below are the core items of the Child Behavior Checklist (CBC: Achenbach, 1988)
assessing children’s internalizing behaviors.

1. Can’t get his/her mind off certain thoughts, obsessions (describe):

2. Fears going to school

3. Fears he/she might do something bad

4. Feels he/she has to be perfect

5. Hears sounds or voices that aren’t there (describe):

6. Too fearful or anxious

7. Feels dizzy

8. Feels too guilty

9. Overtired

10. Aches or pains

11. Headaches

12. Nausea, feels sick

13. Stomach-aches or cramps

14. Vomiting, throwing up

15. Refuses to talk

16. Secretive, keeps things to self

17. Self-conscious or easily embarassed
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18. Stares blankly

19. Strange behavior (describe):

20. Strange ideas (describe):

21. Sulks a lot

22. Unhappy, sad or depressed

23. Worrying
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Chapter G

Mx Script and Data for

Simplex Model

G.1 Phenotypic Simplex Model

The Mx script below shows two alternative parameterizations of the phenotypic
simplex model applied to the within-person covariances among weight measure-
ments at successive six-month intervals from 66 females obtained from Fischbein’s
(1977) sample of opposite-sex DZ twin pairs.

! Phenotypic Simplex Model (estimate innovations)

! Weight data in Swedisch twins

#NGroups 1

#Define nvar 6

G1: Longitudinal Data

Data NInputvars=6 NObservations=66

Labels wt_1 wt_2 wt_3 wt_4 wt_5 wt_6

CMatrix Symmetric File=swwt.cov

Begin Matrices;

S Lower nvar nvar

I Iden nvar nvar

D Diag nvar nvar Free

E Diag nvar nvar

L Iden nvar nvar

End Matrices;

Specify S

0

7 0
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0 8 0

0 0 9 0

0 0 0 10 0

0 0 0 0 11 0

Specify E

12 12 12 12 12 12

Matrix D 7 1 1 1 1 1

Start 1 E 1 1 to E nvar nvar

Begin Algebra;

T= \stnd((I-S)~ *(D*D’) *((I-S)~)’);

End Algebra;

Covariances E*E’ +L *((I-S)~ *(D*D’) *((I-S)~)’) *L’;

Option RSiduals NDecimals=3

End

! Phenotypic Simplex Model (estimate factor loadings)

! Weight data in Swedisch twins

#NGroups 1

#Define nvar 6

G1: Longitudinal Data

Data NInputvars=6 NObservations=66

Labels wt_1 wt_2 wt_3 wt_4 wt_5 wt_6

CMatrix Symmetric File=swwt.cov

Begin Matrices;

S Lower nvar nvar

I Iden nvar nvar

D Iden nvar nvar

E Diag nvar nvar

L Diag nvar nvar Free

End Matrices;

Specify S

0

7 0

0 8 0

0 0 9 0

0 0 0 10 0

0 0 0 0 11 0

Specify E

12 12 12 12 12 12

Matrix L 7 1 1 1 1 1

Start 1 E 1 1 to E nvar nvar

Begin Algebra;

T= \stnd((I-S)~ *(D*D’) *((I-S)~)’);
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U= (L*(I-S)~ *((I-S)~)’*L’);

B= (I-S)~ *((I-S)~)’;

End Algebra;

Covariances E*E’ +L *((I-S)~ *(D*D’) *((I-S)~)’) *L’;

Option RSiduals NDecimals=3

End

G.2 Genetic Simplex Model

The following Mx script fits a simplex model to additive genetic (G) and non-shared
environmental (E) effects over 5 successive six-month intervals.

! Genetic Simplex Model

! Weight data in Swedisch twins

#NGroups 3

#Define nvar 6

#Define nvarm1 5

G1: genetic and environmental structure

Calculation

Begin Matrices;

X Diag nvar nvar Free ! genetic innovation paths

B Diag nvarm1 nvarm1 Free ! genetic transmission paths

Z Diag nvar nvar Free ! specific env innovation paths

D Diag nvarm1 nvarm1 Free ! specific env transmission paths

I Iden nvar nvar

J Zero 1 nvarm1

L Zero nvar 1

End Matrices;

Begin Algebra;

G= (J_B)|L ;

T= (I-G)~ ;

A= T*(X*X’)*T’ ;

F= (J_D)|L ;

U= (I-F)~ ;

E= U*(Z*Z’)*U’ ;

End Algebra;

End

G2: young female MZ twin pairs

Data NInput_vars=12 NObservations=32

CMatrix Symmetric File=swwtmz.cov

Begin Matrices= Group 1;
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Covariances A+E | A _

A | A+E ;

Option RSiduals

End

G3: young female DZ twin pairs

Data NInput_vars=12 NObservations=51

CMatrix Symmetric File=swwtdz.cov

Begin Matrices= Group 1;

H Full 1 1

End Matrices;

Matrix H .5

Start 4 All

Start .4 B 1 1 1 - B 1 5 5 D 1 1 1 - D 1 5 5

Covariances A+E | H@A _

H@A | A+E ;

Option RSiduals NDecimals=4

End
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