

Overview

1) Brief power primer

Practical 1 : Using GPC for elementary power calculations
2) Calculating power for QTL linkage analysis

Practical 2 : Using GPC for linkage power calculations
3) Structure of Mx power script

What will be discussed

What is power? (refresher)
Why and when to do power?
What affects power in linkage analysis?
How do we calculate power for QTL linkage analysis
Practical 1 : Using GPC for linkage power calculations
The adequacy of additive single locus analysis
Practical 2 : Using Mx for linkage power calculations

Needed for power calculations

Test statistic
Distribution of test statistic under H_{0} to set significance threshold

Distribution of test statistic under H_{a}
to calculate probability of exceeding significance threshold

Standard Case

Effect Size, Sample Size (NCP)

Type-I \& Type-II error probabilities

	Null hypothesis True	Null hypothesis False
Accept H_{0}	$1-\alpha$	β (type-II error) (false negative)
Reject H_{0}	 (type-I error) (false positive)	$1-\beta$ (power)

STATISTICS

| Rejection of H_{0} | Nonrejection of H_{0} |
| :--- | :---: | :---: |

Standard Case

Effect Size, Sample Size (NCP)

Impact of \uparrow effect size, N

Impact of $\uparrow \alpha$

X^{2} distributions

http://www2.jpcku.kansai-u.ac.jp/~aki/pdf/chi21.htm

Noncentral X^{2}

Null X^{2} has $\mu=d f$ and $\sigma^{2}=2 d f$
Noncentral X^{2} has $\mu=\mathrm{df}+\lambda$ and $\sigma^{2}=2 d f+4 \lambda$
Where df are degrees of freedom and λ is the noncentrality parameter

Noncentral $\chi^{2} 3$ degrees of freedom

http://www2.ipcku.kansai-u.ac.jp/~aki/pdf/chi21.htm

Short practical on GPC

Genetic Power Calculator is an online resource for carrying out basic power calculations

For our $1^{\text {st }}$ example we will use the probability function calculator to play with power http:///ibgwww.colorado.edu/~pshaun/gpc/

Parameters in probability function calculator

Click on the link to probability function calculator 4 main terms:
X : critical value of the chi-square
$P(X>x)$: Power
df: degrees of freedom
NCP: non-centrality parameter

Exercises

1) Find the power when NCP=5, degrees of freedom=1, and the critical X is 3.84
2) Find the NCP for power of .8, degrees of freedom=1 and critical X is 13.8

Answers

1) Power=0.608922, when NCP=5, degrees of freedom=1, and the critical X is 3.84
2) $\mathrm{NCP}=20.7613$ when power of .8 , degrees of freedom=1 and critical X is 13.8

2) Power for QTL linkage

For chi-squared tests on large samples, power is determined by non-centrality parameter (λ) and degrees of freedom (df)

$$
\begin{aligned}
\lambda & =E\left(2 \ln L_{A}-2 \ln L_{0}\right) \\
& =E\left(2 \ln L_{A}\right)-E\left(2 \ln L_{0}\right)
\end{aligned}
$$

where expectations are taken at asymptotic values of maximum likelihood estimates (MLE) under an assumed true model

Linkage test

$$
2 \ln L=-\ln |\Sigma|-x^{\prime} \Sigma^{-1} x
$$

H_{A}

$$
\left[\Sigma_{L}\right]_{i j}= \begin{cases}V_{A}+V_{D}+V_{S}+V_{N} & \text { for } i=j \\ \hat{\pi} V_{A}+\hat{z} V_{D}+V_{S} & \text { for if }\end{cases}
$$

H_{0}

$$
\left[\Sigma_{N}\right]_{i j}= \begin{cases}V_{A}+V_{D}+V_{S}+V_{N} & \text { for } i=j \\ \frac{V_{A}}{2}+\frac{V_{D}}{4}+V_{S} & \text { for } i \neq j\end{cases}
$$

Linkage test

Expected NCP

$$
\lambda=\ln \left|\Sigma_{0}\right|-\sum_{i=1}^{m} P_{i} \ln \left|\Sigma_{i}\right|
$$

For sib-pairs under complete marker information
$\lambda=\ln \left|\Sigma_{0}\right|-\left[\frac{1}{4} \ln \left|\Sigma_{\pi=0}\right|+\frac{1}{2} \ln \left|\Sigma_{\pi=1}\right|+\frac{1}{4} \ln \left|\Sigma_{\pi=2}\right|\right]$
Determinant of 2-by-2 standardised covariance matrix = $1-\mathrm{r}^{2}$

$$
\lambda_{L}=-\frac{1}{4} \ln \left(1-r_{0}^{2}\right)-\frac{1}{2} \ln \left(1-r_{1}^{2}\right)-\frac{1}{4} \ln \left(1-r_{2}^{2}\right)+\ln \left(1-r_{S}^{2}\right)
$$

Note: standardised trait

Concrete example

200 sibling pairs; sibling correlation 0.5.
To calculate NCP if QTL explained 10% variance:

$$
\begin{aligned}
\lambda_{L} & =-\frac{1}{4} \ln \left(1-r_{0}^{2}\right)-\frac{1}{2} \ln \left(1-r_{1}^{2}\right)-\frac{1}{4} \ln \left(1-r_{2}^{2}\right)+\ln \left(1-r_{S}^{2}\right) \\
& =-\frac{1}{4} \ln \left(1-0.45^{2}\right)-\frac{1}{2} \ln \left(1-0.5^{2}\right)-\frac{1}{4} \ln \left(1-0.55^{2}\right)+\ln \left(1-0.5^{2}\right) \\
& =0.0565+0.1438+0.0900-0.2877 \\
& =0.002791
\end{aligned}
$$

$200 \times 0.002791=\underline{0.5581}$

Approximation of NCP

$$
\begin{aligned}
N C P & \approx \frac{s(s-1)}{2} \frac{\left(1+r^{2}\right)}{\left(1-r^{2}\right)^{2}} \operatorname{Var}\left(r_{\pi}\right) \\
& \approx \frac{s(s-1)}{2} \frac{\left(1+r^{2}\right)}{\left(1-r^{2}\right)^{2}}\left[V_{A}^{2} \operatorname{Var}(\pi)+V_{D}^{2} \operatorname{Var}(z)+V_{A} V_{D} \operatorname{Cov}(\pi, z)\right]
\end{aligned}
$$

NCP per sibship is proportional to

- the \# of pairs in the sibship
(large sibships are powerful)
- the square of the additive QTL variance (decreases rapidly for QTL of v . small effect)
- the sibling correlation
(structure of residual variance is important)

Using GPC

Comparison to Haseman-Elston regression linkage
Amos \& Elston (1989) H-E regression

- 90\% power (at significant level 0.05)
- QTL variance 0.5
- marker \& major gene completely linked ($\theta=0$)
$\rightarrow 320$ sib pairs
- if $\theta=0.1$
$\rightarrow 778$ sib pairs

GPC input parameters

Proportions of variance
additive QTL variance dominance QTL variance residual variance (shared / nonshared)

Recombination fraction (0-0.5)
Sample size \& Sibship size (2-8)
Type I error rate
Type II error rate

GPC output parameters

Expected sibling correlations

- by IBD status at the QTL
- by IBD status at the marker

Expected NCP per sibship
Power

- at different levels of alpha given sample size

Sample size

- for specified power at different levels of alpha given power

GPC

http://ibgwww.colorado.edu/~pshaun/gpc/

Practical 2

Using GPC, what is the effect on power to detect linkage of :

1. QTL variance?
2. residual sibling correlation?
3. marker QTL recombination fraction?

GPC Input

Genetic Power Calculator

QTL Linkage for Sibships

```
QTL additive variance
QTL dominance variance
Residual shared variance
Residual nonshared variance
Recombination fraction
Sample Size
Sibship Size
User-defined type I error rate : 0.05 (0.00000001 - 0.5)
User-defined power: determine N : 0.80 (0 - 1)
(1 - type II error rate)
```

Process Reset

Note : This module will soon be modified, so the user enters the average PIC rather than the recombination fraction. Note : By defult, power is calculated for a 2 degree of feedom test, testing for additive QTL affects as well as dominance If the No dominavse button is checked then only the additive QIL effects are tested. Note, that this implicitly sets the dominance variance to 0 . That is, if you do not test for dominance, then you cannot specify it in the nodel.

[^0]
GPC output

Genetic Power Calculator
QTL Linkage : Sibships

Proportions of variance at QTL	
Additive QTL variance	
Dominance QTL variance	
Shared residual variance	0.1818
Nonshared residual variance	

Sibling correlations by $\mathbb{B D}$ status at QTL		Sibling correlations by IBD status at marker	
IBD 0	0.2727	IBD 0	0.3113
IBD 1	0.3636	IBD 1	0.3905
IBD 2	0.6364	IBD 2	0.5441
Misc. statistics			
Sibship Size			2
Sample Size			2000
Recombination fraction			0.1

Test Statisitics : Power Analysis
QTL Linkage NCP $=25.61$

Alpha	Power	Sample for 80% power
0.1	0.9997	443.6
0.05	0.9989	602.1
0.01	0.9917	943.4
0.001	0.951	1402
0.05	0.9989	602.1

Practical 2

1) One good way of understanding power is to start with a basic case and then change relevant factors in both directions one at a time
2) Let's begin with a basic case of:
3) Additive QTL. 15
4) No dominance (check the box)
5) Residual shared variance .35
6) Residual nonshared environment .5
7) Recombination fraction .1
8) Sample size 200
9) Sibship size 2
10) User-defined Type I error rate . 0001
11) User-defined power 8

GPC

What happens when you vary:

1. QTL variance
2. Dominance vs. additive QTL variance
3. Residual sibling shared variance
4. Recombination fraction
5. Sibship sizes

Pairs required ($\theta=0, \mathrm{p}=0.05$, power=0.8)

Pairs required ($\theta=0, p=0.05$, power=0.8)

Effect of residual correlation

QTL additive effects account for 10\% trait variance
Sample size required for 80% power ($\alpha=0.05$)
No dominance
$\theta=0.1$
A residual correlation 0.35
B residual correlation 0.50
C residual correlation 0.65

Individuals required

Pairs Trios Quads Quints

Effect of incomplete linkage

Effect of incomplete linkage

Some factors influencing power

1. QTL variance
2. Sib correlation
3. Sibship size
4. Marker informativeness \& density
5. Phenotypic selection

Marker informativeness:

Markers should be highly polymorphic

- alleles inherited from different sources are likely to be distinguishable

Heterozygosity (H)
Polymorphism Information Content (PIC)

- measure number and frequency of alleles at a locus

Polymorphism Information Content

IF a parent is heterozygous, their gametes will usually be informative.

BUT if both parents \& child are heterozygous for the same genotype,
origins of child's alleles are ambiguous

IF C = the probability of this occurring,

$$
\begin{aligned}
\text { PIC } & =H-C \\
& =1-\sum_{i=1}^{n} p_{i}^{2}-\sum_{i=1}^{n} \sum_{j=i+1}^{n} 2 p_{i}^{2} p_{j}^{2}
\end{aligned}
$$

Singlepoint

Multipoint

Multipoint PIC: 10 cM map

Multipoint PIC: 5 cM map

迷 Statistical Genetics Group - Mozilla

分Home Booknarks The Mozilla Organization Latest Builds

Genetic Power Calculator

MPIC: Multipoint Polymorphism Information Content
Implements the Rijsdijk \& Sham MPIC method
IMPORTANT: Please ensure there are no blank lines in either text box (including the last line). Also, please whitespace at the end of each line.

See notes for guidance on input parameters

Locus Specification
$\begin{array}{lll}3 & & \\ 2 & 0.5 & 0.5\end{array}$
20.50 .5
20.50 .5

The Singlepoint Information Content of the markers:
Locus 1 PIC = 0.375
Locus 2 PIC $=0.375$
Locus 3 PIC $=0.375$

The Multipoint Information Content of the markers:
Pos MPIC
-10 22.9946
-9 24.9097
-8 26.9843
$-7 \quad 29.2319$
-6 31.6665
$-5 \quad 34.304$
-4 37.1609
$-3 \quad 40.256$
-2 43.6087
$-1 \quad 47.2408$
$0 \quad 51.1754$
149.6898
meaninf 50.2027

Selective genotyping

Unselected

ASP

Proband Selection

Extreme Discordant

EDAC

EDAC

Maximally Dissimilar

Mahalanobis Distance

Genetic Power Calculator

SEL : Selection for Linkage

Trait scores

1	1	
-2	2	
2.0	1.8	2.2
-0.5	0.5	

Sibling correlation \square (0-1)

QTL variance
0.1
(0-1)

E(-2LL)
0.00121621
0.14137692
0.00957190
0.00005954

Sib 1 Sib 2 Sib 3
1.001 .00
-2.00 2.00
$2.00 \quad 1.80 \quad 2.20$
$-0.50 \quad 0.50$

Sibship informativeness : sib pairs

Sibship NCP
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0

Impact of selection

QTL power using Mx

* Power can be calculated theoretically or empirically
* We have shown the theoretical power calculations from Sham et al. 2000
* Empirical calculations can be computed in Mx or from simulated data

类 Most of us are too busy (short IQ pts.) to figure out the theoretical power calculation so empirical is useful

Mx power script

1) Download the script powerFEQ.m x
2) I'll open it and walk through precisely what Mx is doing
3) Briefly, Mx requires that you set up the model under the 'true model', using algebra generating the variance covariance matrices
4) Refit the model from the variance covariance models fixing the parameter you wish to test to 0 .
5) At end of script include the option power= α, df

Same again with raw data

Mx can now estimate the power distribution from raw data. The change in likelihood is taken to be the NCP and this governs the power.

Download realFEQpower.mx and we will use the lipidall.dat data from Danielle's session.
l've highlighted position 79—the maximum.

Summary

The power of linkage analysis is related to:

1. QTL variance
2. Sib correlation
3. Sibship size
4. Marker informativeness \& density
5. Phenotypic selection

If we have time slide

We'll move on to 2 locus models

3) Single additive locus model

locus A shows an association with the trait locus B appears unrelated

Joint analysis

locus B modifies the effects of locus A: epistasis

Partitioning of effects

Locus A

Locus B
M
P

4 main effects

6 twoway interactions

6 twoway interactions

4 threeway interactions

(M) $\times \mathrm{P} \times \mathrm{M}$
(M) $\times \mathrm{P} \times \mathrm{P}$

(P) $\times \mathrm{M} \times \mathrm{P}$

1 fourway interaction

One locus

Two loci

AA
BB $m+a_{A}+a_{B}+a a$
Bb $m+a_{A}+d_{B}+a d$
bb $m+a_{A}-a_{B}-a a$
$m+d_{A}-a_{B}-d a$
$m-a_{A}-a_{B}+a a$

IBD locus

1	2	Expected Sib Correlation
0	0	σ^{2}

$0 \quad 1 \quad \sigma^{2}{ }_{A} / 2+\sigma_{S}^{2}$
$0 \quad 2 \quad \sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{S}^{2}$
$1 \quad 0 \quad \sigma_{A}^{2} / 2+\sigma_{S}^{2}$
$11 \quad \sigma^{2} A^{\prime} / 2+\sigma^{2}{ }_{A} / 2+\sigma^{2}{ }_{A A} / 4+\sigma^{2}{ }_{S}$
$12 \quad \sigma_{A}^{2} / 2+\sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{A A}^{2} / 2+\sigma_{A D}^{2} / 2+\sigma_{S}^{2}$
$20 \quad \sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{S}^{2}$
$21 \quad \sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{A}^{2} / 2+\sigma_{A A}^{2} / 2+\sigma_{D A}^{2} / 2+\sigma_{S}^{2}$
$22 \sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{A}^{2}+\sigma_{D}^{2}+\sigma_{A A}^{2}+\sigma_{A D}^{2}+\sigma_{D A}^{2}+\sigma_{D D}^{2}+\sigma^{2}$

Estimating power for QTL models

Using $M x$ to calculate power

i. Calculate expected covariance matrices under the full model
ii. Fit model to data with value of interest fixed to null value
i.True model ii. Submodel

Q
0
S
S
N
N
-2LL $0.000=$ NCP

Model misspecification

Using the domqtl.mx script

	i.True	ii. Full	iii. Null
Q_{A}	Q_{A}	0	
	Q_{D}	0	0
	S	S	S
-2LL	N	N	
	0.000	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$

Test: dominance only
additive \& dominance additive only
T_{1}
$\mathrm{~T}_{2}$
$\mathrm{~T}_{2} \mathbf{- T}_{\mathbf{1}}$

Results

Using the domqt l.mx script

| | i.True | ii. Full | iii. Null |
| ---: | :--- | :--- | :--- | :--- |
| Q_{A} | 0.1 | 0.217 | 0 |
| Q_{D} | 0.1 | 0 | 0 |
| S | 0.4 | 0.367 | 0.475 |
| N | 0.4 | 0.417 | 0.525 |
| $-2 L L$ | 0.000 | 1.269 | 12.549 |

Test: dominance only (1df) 1.269
additive \& dominance (2df) 12.549
additive only (1df) $\quad 12.549-1.269=11.28$

Expected variances, covariances

	i.True	ii. Full	iii. Null
Var	1.00	1.0005	1.0000
$\operatorname{Cov}(I B D=0)$	0.40	0.3667	0.4750
$\operatorname{Cov}(I B D=1)$	0.45	0.4753	0.4750
$\operatorname{Cov}(I B D=2)$	0.60	0.5839	0.4750

Potential importance of epistasis

"... a gene's effect might only be detected within a framework that accommodates epistasis..."

Locus A

> Full $\quad \mathrm{V}_{\mathrm{A} 1} \quad \mathrm{~V}_{\mathrm{D} 1} \quad \mathrm{~V}_{\mathrm{A} 2} \quad \mathrm{~V}_{\mathrm{D} 2} \quad \mathrm{~V}_{\mathrm{AA}} \quad \mathrm{V}_{\mathrm{AD}} \quad \mathrm{V}_{\mathrm{DA}} \quad \mathrm{V}_{\mathrm{DD}}$
> - DD $\quad \mathrm{V}^{*}{ }_{\mathrm{A} 1} \quad \mathrm{~V}^{*}{ }_{\mathrm{D} 1} \quad \mathrm{~V}^{*}{ }_{\mathrm{A} 2} \quad \mathrm{~V}^{*}{ }_{\mathrm{D} 2} \quad \mathrm{~V}^{*}{ }_{\mathrm{AA}} \quad \mathrm{V}^{*}{ }_{A D} \quad \mathrm{~V}^{*}{ }_{\mathrm{DA}} \quad$ -
> - $\mathrm{AD} \quad \mathrm{V}^{*}{ }_{\mathrm{A} 1} \quad \mathrm{~V}_{\mathrm{D} 1}^{*} \quad \mathrm{~V}_{\mathrm{A} 2}^{*} \quad \mathrm{~V}_{\mathrm{D} 2}^{*} \quad \mathrm{~V}^{*}{ }_{\mathrm{AA}} \quad-$
> - AA $\quad \mathrm{V}^{*}{ }_{\mathrm{A} 1} \quad \mathrm{~V}^{*}{ }_{\mathrm{D} 1} \quad \mathrm{~V}^{*}{ }_{\mathrm{A} 2} \quad \mathrm{~V}^{*}{ }_{\mathrm{D} 2}$
> -D $\mathrm{V}^{*}{ }_{\mathrm{A} 1}-\quad \mathrm{V}^{*}{ }_{\mathrm{A} 2}$
> - A $\mathrm{V}^{*}{ }_{\mathrm{A} 1}$ -
> $\mathrm{H}_{0} \quad-\quad-\quad-$
V_{S} and V_{N} estimated in all models

True model VC

Means matrix
000
000
011

NCP for test of linkage

NCP1 Full model
NCP2 Non-epistatic mode

Apparent VC under non-epistatic model

Means matrix

Summary

Linkage has low power to detect QTL of small effect

Using selected and/or larger sibships increases power

Single locus additive analysis is usually acceptable

GPC: two-locus linkage

Using the module, for unlinked loci A and B with
Means :

0	0	1	$p_{A}=p_{B}=0.5$
0	0.5	0	
1	0	0	

Power of the full model to detect linkage?
Power to detect epistasis?
Power of the single additive locus model?
(1000 pairs, 20\% joint QTL effect, VS=VN)

[^0]: Last updated 4th September 2001 by Shawn Puccell

