Calculation of IBD probabilities

David Evans and Stacey Cherny

University of Oxford Wellcome Trust Centre for Human Genetics

This Session

- IBD vs IBS
- Why is IBD important?
- Calculating IBD probabilities
- Lander-Green Algorithm (MERLIN)
- Single locus probabilities
- Hidden Markov Model
- Other ways of calculating IBD status
- Elston-Stewart Algorithm
- MCMC approaches
- MERLIN
- Practical Example
- IBD determination
- Information content mapping
- SNPs vs micro-satellite markers?

Aim of Gene Mapping Experiments

. Identify variants that control interesting traits

- Susceptibility to human disease
- Phenotypic variation in the population
- The hypothesis
- Individuals sharing these variants will be more similar for traits they control
- The difficulty...
- Testing ~10 million variants is impractical...

Identity-by-Descent (IBD)

- Two alleles are IBD if they are descended from the same ancestral allele
- If a stretch of chromosome is IBD among a set of individuals, ALL variants within that stretch will also be shared IBD (markers, QTLs, disease genes)
- Allows surveys of large amounts of variation even when a few polymorphisms measured

A Segregating Disease Allele

All affected individuals IBD for disease causing mutation

Segregating Chromosomes

Affected individuals tend to share adjacent areas of chromosome IBD

Marker Shared Among Affecteds

" 4 " allele segregates with disease

Why is IBD sharing important?

- IBD sharing forms the basis of nonparametric linkage statistics
- Affected relatives tend to share marker alleles close to the disease locus IBD more often than chance

Linkage between QTL and marker

QTL
IBD 0

IBD 1

IBD 1

IBD 2

IBD 2

NO Linkage between QTL and marker

Marker

IBD 1

IBD 2

IBD vs IBS

Identical by Descent
and

Identical by State

Identical by state only

Example: IBD in Siblings

Consider a mating between mother $\mathrm{AB} \times$ father CD :

	Sib1				
			$\mathbf{A C}$	$\mathbf{A D}$	$\mathbf{B C}$
$\mathbf{B D}$					
$\mathbf{S i b}$	$\mathbf{A C}$	2	1	1	0
	$\mathbf{A D}$	1	2	0	1
	BC	1	0	2	1
	$\mathbf{B D}$	0	1	1	2

$$
\text { IBD } 0: 1: 2=25 \%: 50 \%: 25 \%
$$

IBD can be trivial...

Two Other Simple Cases...

A little more complicated...

And even more complicated...

Bayes Theorem

$$
\begin{aligned}
P\left(A_{i} \mid B\right) & =\frac{P\left(A_{i}, B\right)}{P(B)} \\
& =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P(B)} \\
& =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{\sum_{j} P\left(A_{j}\right) P\left(B \mid A_{j}\right)}
\end{aligned}
$$

Bayes Theorem for IBD Probabilities

$$
\begin{aligned}
P(I B D=i \mid G) & =\frac{\mathrm{P}(\mathrm{IBD}=i, G)}{P(G)} \\
& =\frac{P(I B D=i) P(G \mid I B D=i)}{P(G)} \\
& =\frac{P(I B D=i) P(G \mid I B D=i)}{\sum_{j} P(I B D=j) P(G \mid I B D=j)}
\end{aligned}
$$

P(Marker Genotype|IBD State)

Sib 1	Sib 2	P (observing genotypes $/ k$ alleles IBD)		
		$k=0$	$k=1$	$k=2$
$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$p_{1}{ }^{4}$	$p_{1}{ }^{3}$	$p_{1}{ }^{2}$
$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$2 p_{1}{ }^{3} p_{2}$	$p_{1}{ }^{2} p_{2}$	0
$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$\mathrm{~A}_{2} \mathrm{~A}_{2}$	$p_{1}{ }^{2} p_{2}{ }^{2}$	0	0
$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$2 p_{1}{ }^{3} p_{2}$	$p_{1}{ }^{2} p_{2}$	0
$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$4 p_{1}{ }^{2} p_{2}{ }^{2}$	$p_{1} p_{2}$	$2 p_{1} p_{2}$
$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{~A}_{2} \mathrm{~A}_{2}$	$2 p_{1} p_{2}{ }^{3}$	$p_{1} p_{2}{ }^{2}$	0
$\mathrm{~A}_{2} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$p_{1}{ }^{2} p_{2}{ }^{2}$	0	0
$\mathrm{~A}_{2} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$2 p_{1} p_{2}{ }^{3}$	$p_{1} p_{2}{ }^{2}$	0
$\mathrm{~A}_{2} \mathrm{~A}_{2}$	$\mathrm{~A}_{2} \mathrm{~A}_{2}$	$p_{2}{ }^{4}$	$p_{2}{ }^{3}$	$p_{2}{ }^{2}$

Worked Example

Worked Example

$$
\begin{aligned}
& p_{1}=0.5 \\
& P(G \mid I B D=0)=p_{1}^{4}=1 / 16 \\
& P(G \mid I B D=1)=p_{1}^{3}=1 / 8 \\
& P(G \mid I B D=2)=p_{1}^{2}=1 / 4 \\
& P(G)=1 / 4 p_{1}^{4}+1 / 2 p_{1}^{3}+1 / 4 p_{1}^{2}=9 / 64 \\
& P(I B D=0 \mid G)=\frac{1 / 4 p_{1}^{4}}{P(G)}=1 / 9 \\
& P(I B D=1 \mid G)=\frac{1 / 2 p_{1}^{3}}{P(G)}=4 / 9 \\
& P(I B D=2 \mid G)=\frac{1 / 4 p_{1}^{2}}{P(G)}=4 / 9
\end{aligned}
$$

For ANY PEDIGREE the inheritance pattern at every point in the genome can be completely described by a binary inheritance vector:

$$
\mathrm{v}(\mathrm{x})=\left(p_{1}, m_{1}, p_{2}, m_{2}, \ldots, p_{n}, m_{n}\right)
$$

whose coordinates describe the outcome of the 2 n paternal and maternal meioses giving rise to the n non-founders in the pedigree
$p_{i}\left(m_{i}\right)$ is 0 if the grandpaternal allele transmitted $p_{i}\left(m_{i}\right)$ is 1 if the grandmaternal allele is transmitted

Inheritance Vector

In practice, it is not possible to determine the true inheritance vector at every point in the genome, rather we represent partial information as a probability distribution over the $2^{2 \mathrm{n}}$ possible inheritance vectors

Inheritance vector	Prior	Posterior
$--1 / 8$		
0000	$1 / 16$	$1 / 8$
0001	$1 / 16$	0
0010	$1 / 16$	0
0011	$1 / 16$	$1 / 8$
0100	$1 / 16$	$1 / 8$
0101	$1 / 16$	0
0110	$1 / 16$	0
0111	$1 / 16$	$1 / 8$
1000	$1 / 16$	$1 / 8$
1001	$1 / 16$	0
1010	$1 / 16$	0
1011	$1 / 16$	$1 / 8$
1100	$1 / 16$	$1 / 8$
1101	$1 / 16$	0
1110	$1 / 16$	0

Computer Representation

- Define inheritance vector \mathbf{v}_{ℓ}
- Each inheritance vector indexed by a different memory location
- Likelihood for each gene flow pattern
- Conditional on observed genotypes at location ℓ
- $2^{2 n}$ elements !!!
- At each marker location ℓ

a) bit-indexed array

0000	001	0010	011	00	101	0110	0111	1000	01	1010	1011	00	101	110	1111
L_{4}	L_{2}	L_{1}	L_{2}	\bigcirc	\bigcirc	\bigcirc	\bigcirc	L_{1}	L_{2}	L_{1}	L_{2}	\bigcirc	\bigcirc	\bigcirc	-

b) packed tree

c) sparse tree

Abecasis et al (2002) Nat Genet 30:97-101

Multipoint IBD

- IBD status may not be able to be ascertained with certainty because e.g. the mating is not informative, parental information is not available
- IBD information at uninformative loci can be made more precise by examining nearby linked loci

Multipoint IBD

$\operatorname{IBD}=0$

b/d
$1 / 2$
$\mathrm{IBD}=0$ or $\mathrm{IBD}=1 ?$

Complexity of the Problem in Larger Pedigrees

- $2 n$ meioses in pedigree with n nonfounders
- Each meiosis has 2 possible outcomes
- Therefore $2^{2 n}$ possibilities for each locus
- For each genetic locus
- One location for each of m genetic markers
- Distinct, non-independent meiotic outcomes
- Up to $4^{n m}$ distinct outcomes!!!

Example: Sib-pair Genotyped at 10 Markers

$\left(2^{2 \times n}\right)^{m}=\left(2^{2 \times 2}\right)^{10}=10^{12}$ possible paths !!!

Lander-Green Algorithm

- The inheritance vector at a locus is conditionally independent of the inheritance vectors at all preceding loci given the inheritance vector at the immediately preceding locus ("Hidden Markov chain")
- The conditional probability of an inheritance vector v_{i+1} at locus $i+1$, given the inheritance vector v_{i} at locus i is $\theta_{j}^{j}\left(1-\theta_{i}\right)^{2 n-j}$ where θ is the recombination fraction and j is the number of changes in elements of the inheritance vector ("transition probabilities")

Example:

Locus 1	Locus 2
[0000]	[0001]

Conditional probability $=(1-\theta)^{3} \theta$

$Q_{i}=$| $P[0000]$ | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | $P[0001]$ | 0 | 0 |
| 0 | 0 | \cdots | 0 |
| 0 | 0 | 0 | $P[1111]$ |

$2^{2 n} \times 2^{2 n}$ diagonal matrix of single locus probabilities at locus i

$2^{2 n} \times 2^{2 n}$ matrix of transitional probabilities between locus i and locus i+1
$\sim 10 \times\left(2^{2 \times 2}\right)^{2}$ operations $=2560$ for this case !!!

$P(I B D)=2$ at Marker Three

$\mathrm{P}(\mathrm{IBD})=2$ at arbitrary position on the chromosome

Further speedups...

- Trees summarize redundant information
- Portions of inheritance vector that are repeated
- Portions of inheritance vector that are constant or zero
- Use sparse-matrix by vector multiplication
- Regularities in transition matrices
- Use symmetries in divide and conquer algorithm (Idury \& Elston, 1997)

Lander-Green Algorithm Summary

- Factorize likelihood by marker
- Complexity $\propto m \cdot e^{n}$
- Large number of markers (e.g. dense SNP data)
- Relatively small pedigrees
- MERLIN, GENEHUNTER, ALLEGRO etc

Elston-Stewart Algorithm

- Factorize likelihood by individual
- Complexity $\propto n^{\prime} \cdot e^{m}$
- Small number of markers
- Large pedigrees
- With little inbreeding
- VITESSE etc

Other methods

- Number of MCMC methods proposed
- ~Linear on \# markers
- ~Linear on \# people
- Hard to guarantee convergence on very large datasets
- Many widely separated local minima
- E.g. SIMWALK, LOKI

MERLIN-- Multipoint Engine for Rapid Likelihood Inference

Capabilities

- Linkage Analysis
- NPL and K\&C LOD
- Variance Components
- Haplotypes
- Most likely
- Sampling
- All
- IBD and info content
- Error Detection
- Most SNP typing errors are Mendelian consistent
- Recombination
- No. of recombinants per family per interval can be controlled
- Simulation

MERLIN Website

- Reference
- FAQ
- Source
- Tutorial
- Linkage
- Haplotyping
- Simulation
- Error detection
- IBD calculation
- Binaries

Test Case Pedigrees

Timings - Marker Locations

	Top Generation Genotyped			
	$\mathrm{A}(\mathrm{x} 1000)$	B C 37 s 18 m 16 s		D
Genehunter	38s			
Allegro	18s	2m17s	h54m13s	
Merlin	11s	18s	13m55s	*
	Top Generation Not Genotyped			
	A (x1000)	B	C	D
Genehunter	45s	1m54s	*	
Allegro	18s	1m08s	h12m38s	*
Merlin	13s	25s	15m50s	*

Intuition: Approximate Sparse T

- Dense maps, closely spaced markers
- Small recombination fractions θ
- Reasonable to set θ^{k} with zero
- Produces a very sparse transition matrix
- Consider only elements of \mathbf{V} separated by <k recombination events
- At consecutive locations

Additional Speedup...

	Time	Memory
Exact	40 s	100 MB

No recombination	$<1 \mathrm{~s}$	4 MB
≤ 1 recombinant	2 s	17 MB
≤ 2 recombinants	15 s	54 MB

Genehunter $2.1 \quad 16 \mathrm{~min} \quad 1024 \mathrm{MB}$

Keavney et al (1998) ACE data, 10 SNPs within gene, 4-18 individuals per family

Input Files

- Pedigree File
- Relationships
- Genotype data
- Phenotype data
- Data File
- Describes contents of pedigree file
- Map File
- Records location of genetic markers

Example Pedigree File

Encodes family relationships, marker and phenotype information

Example Data File

<contents of example.dat>
T some_trait_of_interest
M some_marker
M another_marker
<end of example.dat>

Provides information necessary to decode pedigree file

Data File Field Codes

Code	Description
M	Marker Genotype
A	Affection Status.
T	Quantitative Trait.
C	Covariate.
Z	Zygosity.

Example Map File

<contents of example.map>
CHROMOSOME MARKER POSITION
2
D2S160 160.0
D2S308 165.0
<end of example.map>

Indicates location of individual markers, necessary to derive recombination fractions between them

Worked Example

$$
\begin{aligned}
& p_{1}=0.5 \\
& P(I B D=0 \mid G)=1 / 9 \\
& P(I B D=1 \mid G)=4 / 9 \\
& P(I B D=2 \mid G)=4 / 9
\end{aligned}
$$

merlin -d example.dat -p example.ped -m example.map --ibd

Application: Information Content Mapping

- Information content: Provides a measure of how well a marker set approaches the goal of completely determining the inheritance outcome
- Based on concept of entropy
- $E=-\Sigma P_{i} \log _{2} P_{i} \quad$ where P_{i} is probability of the th outcome
- $\mathrm{I}_{\mathrm{E}}(\mathrm{x})=1-\mathrm{E}(\mathrm{x}) / \mathrm{E}_{0}$
- Always lies between 0 and 1
- Does not depend on test for linkage
- Scales linearly with power

Application: Information Content Mapping

- Simulations (sib-pairs with/out parental genotypes)
- 1 micro-satellite per 10 cM (ABI)
- 1 microsatellite per 3cM (deCODE)
- 1 SNP per 0.5cM (Illumina)
- 1 SNP per 0.2 cM (Affymetrix)
- Which panel performs best in terms of extracting marker information?
- Do the results depend upon the presence of parental genotypes?
merlin -d file.dat -p file.ped -m file.map --information --step 1 --markerNames

SNPs vs Microsatellites with parents

SNPs vs Microsatellites without parents

