

Starting at the beginning

Data preparation

- Mx expects 1 line per case/family
- Almost limitless number of families and variables
- Space delimited is best
- Can use a missing code ie -9 or can use the default '.'

Important structural stuff (As I was going to St Ives ...)

- Script is composed of one or more jobs (can handle many 'nested' jobs in one script or 2 non nested jobs)
- Each job is composed of one or more groups
 - Each group is 'opened' with a title
 - Each group is 'closed' with an end statement
 - You must tell Mx how many groups will be in the job

A bit about groups

- 3 types of groups
 - Calculation
 - Data
 - If analysing raw data Mx expects a Means Model and a Covariance Model
 - Constraint

Matrices: the building blocks

- Many types
- Denoted by a single letter
 - Elements defined by letter and 3 numbers
 - A 1 2 1 = A matrix group 1 row 2 column 1
- All constants and estimated parameters must be placed in a matrix & Mx must be told what type of matrix it is
- Letters can be reused in subsequent groups

Short cuts

- Anything after ! is read as a comment
- Can predefine frequently used/changed parameters
 - #define nvar=2
- Can read in another file within the script
 - #include starting_values.txt
- Can run loops via the repeat comand
- Use an end of line signal (; or /) except in the Labels command

Setting up the script – calculation group

- 1st line is the title
- 2nd specifies group type
- Matrix definition
 - Begin Matrices End Matrices
 - If a matrix is not specified free it will be considered fixed
- Algebra
 - Begin Algebra End Algebra
- Starting values for free/estimated parameters or specified values for constants
- End

Setting up the script data group

- 1st line is the title
- 2nd specifies group type and number of variables
- 3rd line gives data location
 - Rectangular file = continuous data
 - Ordinal file = ordinal data (Mx will expect a thresholds model not a means model)
- List the variables
- Select if …
- Select variables
 - Order is important! Select all vs for twin1 then twin2 then sib1 ect
- Specify which vs are covariates (definition variables)

Setting up the script data group

- Matrix definition
 - Call matrices from previous groups and/or define new matrices
- Algebra & starting values
- Means Model
 - can include covariates ie age, sex …
- Covariance Model
 - Expected to be nsib*nvar by nsib*nvar
- End

Mx starts by reading back the script

** Mx startup successful **

MX-PC 1.54 Job started on 03/08/05 at 16:45:51

* SCRIPT NAME : example_ace.mx (dp)
GOAL : To calculate variance components
DATA : continuous
INPUT : raw data
UNI/BI/MULTI : uni
DATA-GROUPS : MZM DZM MZF DZF DOSMF DOSFM
MEANS MODEL : grand mean, sex effect
The following MX script lines were read for group 1
#DEFINE NUAR 1

! MX READS 1. THIS CORRESPONDS TO ONE PHENOTYPE TO BE ANALYSED

#DEFINE NDEF 1 ! NUMBER OF COVARIATES (AGE AND SEX IN THIS SCRIPT) #DEFINE NSIB 2 !TELLS MX THE SIZE OF THE LARGEST SIBSHIP G1: CALCULATION GROUP DATA CALC NGROUPS=3

Data summary

Summary of VL file data for group 2

	SEX2	SEX1	TWIN1	TWIN2
Code	-2.0000	-1.0000	1.0000	2.0000
Number	100.0000	100.0000	100.0000	100.0000
Mean	0.5000	0.5000	0.4696	0.5929
Variance	0.2500	0.2500	10.0539	7.6557
Minimum	0.0000	0.0000	-8.6900	-6.5100
Maximum	1.0000	1.0000	5.9600	7.1800

Summary of VL file data for group 3

	SEX2	SEX1	TWIN1	TWIN2
Code	-2.0000	-1.0000	1.0000	2.0000
Number	150.0000	150.0000	150.0000	150.0000
Mean	0.5267	0.4933	0.2276	-0.0323
Variance	0.2493	0.2500	9.0769	8.6139
Minimum	0.0000	0.0000	-10.1800	-5.9100
Maximum	1.0000	1.0000	7.4500	7.6300

 Parameter specifications PARAMETER SPECIFICATIONS GROUP NUMBER: 1

G1: calculation group

MATRIX A This is a computed FULL matrix of order 1 by 1 It has no free parameters specified

MATRIX C This is a computed FULL matrix of order 1 by 1 It has no free parameters specified

MATRIX E This is a computed FULL matrix of order 1 by 1 It has no free parameters specified

MATRIX G This is a FULL matrix of order 1 by 2 1 2 1 4 5

MATRIX H

This is a FULL matrix of order 1 by 1 It has no free parameters specified

MATRIX P

This is a FULL matrix of order 1 by 1

1 6

Estimates	MX PARAMETER ESTIMATES				
	GROUP NUMBER: 1				
	G1: calculation group				
	MATRIX A This is a computed FULL matrix of order [=X*X'] 1 4.9765	1 by	1		
	MATRIX C This is a computed FULL matrix of order [=Y*Y'] 1 2.2310	1 by	1		
	MATRIX E This is a computed FULL matrix of order [=Z*Z'] 1 1.6885	1 by	1		

```
    Warnings & Fit information
```

```
*** WARNING! ***
Minimization may not be successful. See above
CODE GREEN - it probably was OK
Your model has 6 estimated parameters and 500 Observed statistics
-2 times log-likelihood of data >>> 2355.338
494
This problem used 0.0% of my workspace
Task
                      Time elapsed (DD:HH:MM:SS)
Reading script & data
                        0: 0: 0: 1.61
Execution
                        0: 0: 0:-1.10
TOTAL
                        0: 0: 0: 0.51
```

Testing for significance

- Drop the parameter(s) from the model or equate parameters using the multiple job option
 - Specify the matrix elements you wish to drop/equate
 - Drop A 1 1 1
 - EQ A 1 1 1 B 1 1 1
 - Compare the fit of the two models

Exercise 1

- Save the full ACE model
 - save name.mxs
- Drop C
- Retrieve the full model
 - get name.mxs
- Drop A
- Drop C
- Record standardised VC and fit function

Questions

- Can you drop A?
- Can you drop C?
- Can you drop E from a model?
- How would you test to see if the means were equal for twin1 and twin2?
- How would you test to see if there was a significant effect of sex on the means?

Exercise 2: Adding a constraint group

What will this do?

G4: Constraint Group for G1 Constraint Begin Matrices; A Computed nvar nvar =A1 C Computed nvar nvar =C1 E Computed nvar nvar =E1 I Unit 1 nvar End matrices; Begin algebra; P=A+C+E ; End algebra; Constrain \d2v(P)=I ; End

General Advice/Problem solving

- Scripting styles differ
- Check the parameter numbers
- Check the sample description
- Learn to love the manual
- Comments are your friends

Time for coffee

