## (Re)introduction to $M x$



## Starting at the beginning

- Data preparation
- Mx expects 1 line per case/family
- Almost limitless number of families and variables
- Space delimited is best
- Can use a missing code ie -9 or can use the default ".'


## Important structural stuff (As I was going to St Ives ...)

- Script is composed of one or more jobs (can handle many 'nested' jobs in one script or 2 non nested jobs)
- Each job is composed of one or more groups
- Each group is 'opened' with a title
- Each group is 'closed' with an end statement
- You must tell Mx how many groups will be in the job


## A bit about groups

- 3 types of groups
- Calculation
- Data
- If analysing raw data Mx expects a Means Model and a Covariance Model
- Constraint


## Matrices: the building blocks

- Many types
- Denoted by a single letter
- Elements defined by letter and 3 numbers
- A 121 = A matrix group 1 row 2 column 1
- All constants and estimated parameters must be placed in a matrix \& Mx must be told what type of matrix it is
- Letters can be reused in subsequent groups


## Short cuts

- Anything after ! is read as a comment
- Can predefine frequently used/changed parameters
- \#define nvar=2
- Can read in another file within the script
- \#include starting_values.txt
- Can run loops - via the repeat comand
- Use an end of line signal (; or /) except in the Labels command


## Setting up the script calculation group

- $1^{\text {st }}$ line is the title
- $2^{\text {nd }}$ specifies group type
- Matrix definition
- Begin Matrices - End Matrices
- If a matrix is not specified free it will be considered fixed
- Algebra
- Begin Algebra - End Algebra
- Starting values for free/estimated parameters or specified values for constants
- End


## Setting up the script data group

- $1^{\text {st }}$ line is the title
- $2^{\text {nd }}$ specifies group type and number of variables
- $3^{\text {rd }}$ line gives data location
- Rectangular file = continuous data
- Ordinal file = ordinal data ( $M x$ will expect a thresholds model not a means model)
- List the variables
- Select if ...
- Select variables
- Order is important! Select all vs for twin1 then twin2 then sib1 ect
- Specify which vs are covariates (definition variables)


## Setting up the script data group

- Matrix definition
- Call matrices from previous groups and/or define new matrices
- Algebra \& starting values
- Means Model
- can include covariates ie age, sex ...
- Covariance Model
- Expected to be nsib*nvar by nsib*nvar
- End



## So what do you get

- Mx starts by reading back the script

```
** Mx startup successful **
**HX-PC 1.54** Job started on 03/08/05 at 16:45:51
: SCRIPT NAME : example_ace.mx (dp)
! GOAL : To calculate variance components
: DATA : continuous
! INPUT : raw data
! UNI/BI/HULTI : uni
: DATA-GROUPS : MZM DZH MZF DZF DOSMF DOSFM
! MEANS MODEL : grand mean, sex effect
```



```
The following MX script lines were read for group 1
#DEFINE NUAR 1
    ! HX READS 1. THIS CORRESPONDS TO ONE PHENOTYPE TO BE ANALYSED
#DEFINE NDEF 1 : NUMBER OF COUARIATES (AGE AND SEX IN THIS SCRIPT)
#DEFINE NSIB 2 :TELLS MX THE SIZE OF THE LARGEST SIBSHIP
G1: CALCULATION GROUP
DATA CALC NGROUPS=3
```


## So what do you get

- Data summary

|  | SEX2 | SEX1 | TWIN1 | TWIN2 |
| :---: | :---: | :---: | :---: | :---: |
| Code | -2. 0900 | -1. 0905 | 1.0905 | 2.0009 |
| Number | 100.0000 | 100.0005 | 100.0005 | 100.0005 |
| Hean | 0.5000 | 0.5009 | 0.4696 | 0.5929 |
| Variance | 0.2500 | 0.2500 | 16.0539 | 7.6557 |
| Hinimum | 0.6095 | 6.0509 | -8.690 | -6.5100 |
| Maximum | 1.6095 | 1.0509 | 5.9609 | 7.1869 |
| Summary of UL file data for group |  |  |  |  |
|  | SEX2 | SEX1 | TWIN1 | TWIN2 |
| Code | -2.0905 | -1.090] | 1.0905 | 2.0009 |
| Number | 150.0095 | 150.0905 | 150.6095 | 150.0950 |
| Mean | 0.5267 | 0.4933 | 0.2276 | -0. 0323 |
| Variance | 0.2493 | 0.2505 | 9.6769 | 8.6139 |
| Minimum | 0.0095 | 0. 0509 | -10.1895 | -5.9109 |
| Maximum | 1.0005 | 1.0000 | 7.4500 | 7.6309 |

## So what do you get

- Parameter specifications

PARAMETER SPECIFICATIONS
GROUP NUMBER: 1
G1: calculation group
MATRIX A
This is a computed FULL matrix of order 1 by 1
It has no free parameters specified
HATRIX $C$
This is a computed FULL matrix of order 1 by 1
It has no free parameters specified
MATRIX E
This is a computed FULL matrix of order 1 by 1 It has no free parameters specified

MATRIX $G$
This is a FULL matrix of order 1 by 2 12
145
MATRIX H
This is a FULL matrix of order 1 by 1
It has no free parameters specified
MATRIX $P$
This is a FULL matrix of order 1 by 1
1
16

## So what do you get

- Estimates

```
    MX PARAMETER ESTIMATES
    GROUP NUMBER: 1
G1: calculation group
    MATRIX A
    This is a computed FULL matrix of order 1 by }
    [=X*X']
        1
    MATRIX C
This is a computed FULL matrix of order 1 by 1
    [=Y*Y']
1 2.2315
    MATRIX E
This is a computed FULL matrix of order 1 by 1
    [=Z*Z']
1 1.6885
```


## So what do you get

- Warnings \& Fit information
*** WARNING! ***
Minimization may not be successful. See above CODE GREEN - it probably was OK

Your model has 6 estimated parameters and 500 observed statistics
-2 times log-likelihood of data >>> 2355.338
Degrees of freedom >>>>>>>>>>>>>>>> 494
This problem used $0.6 \%$ of my workspace

Task
Reading script $\&$ data Execution

Time elapsed (DD:HH:MH:SS)
0: 0: 0: 1.61
0: 0: 0:-1.16
0: 0: 0: 0.51

## Testing for significance

- Drop the parameter(s) from the model or equate parameters using the multiple job option
- Specify the matrix elements you wish to drop/equate
- Drop A 111
- EQ A 111 B 111
- Compare the fit of the two models



## Exercise 1

- Save the full ACE model
- save name.mxs
- Drop C
- Retrieve the full model
- get name.mxs
- Drop A
- Drop C
- Record standardised VC and fit function


## Questions

- Can you drop A?
- Can you drop C?
- Can you drop E from a model?
- How would you test to see if the means were equal for twin1 and twin2?
- How would you test to see if there was a significant effect of sex on the means?


## Exercise 2: Adding a constraint group

- What will this do?

G4: Constraint Group for G1 Constraint
Begin Matrices;
A Computed nuar nuar =A1
C Computed nuar nuar =C1
E Computed nuar nuar =E1
I Unit 1 nuar
End matrices;
Begin algebra;
$\mathbf{P}=\mathbf{A}+\mathbf{C}+\mathbf{E}$;
End algebra;
Constrain $\ d 2 u(P)=I$;
End

## Exercise 2: Adding siblings



## General Advice/Problem solving

- Scripting styles differ
- Check the parameter numbers
- Check the sample description
- Learn to love the manual
- Comments are your friends


## Time for coffee

## MATH 15 HARD



