Type 1 Error and Power Calculation for Association Analysis

Pak Sham \& Shaun Purcell

Advanced Workshop
Boulder, CO, 2005

Statistical Tests

Standard test theory

Type 1: Rejecting the null hypothesis when it is true (α).
Type 2: Not rejecting the null hypothesis when it is false (β).
Fix α (e.g. genome wide α of 0.05 for linkage).
Optimise 1- β

Gold standard: REPLICATION

Problem: Low Replication Rate

Hirschhorn et al. 2002: Reviewed 166 putative single allelic association with 2 or more replication attempts:

6 reliably replicated ($\geq 75 \%$ positive replications)
97 with at least 1 replication
63 with no subsequent replications
Other such surveys have similar findings (Ioannidis 2003; Ioannidis et al. 2003; Lohmueller et al. 2003)

Reasons for Non-Replication

The original finding is false positive
Systematic bias (e.g. artefacts, confounding) Chance (type 1 error)

The attempted replication is false negative
Systematic bias (e.g. artifacts, confounding) Heterogeneity (population, phenotypic)

Chance (inadequate power)

Type 1 Error Rate vs False Positive Rate

Type 1 error rate = probability of significant result when there is no association

False positive rate = probability of no association among significant results

Why so many false positives?

Multiple testing
Multiple studies
Multiple phenotypes
Multiple polymorphisms
Multiple test statistics
Not setting a sufficiently small critical p-value
Inadequate Power
Small sample size
Small effect size
\rightarrow High false positive rate

Both error rates affect false positive rate

 1000 Tests

Multiple testing correction

Bonferroni correction: Probability of a type 1 error among k independent tests each with type 1 error rate of α

$$
\alpha^{*}=1-(1-\alpha)^{k} \approx k \alpha
$$

Permutation Procedures
Permute case-control status, obtain empirical distribution of maximum test statistic under null hypothesis

False Discovery Rate (FDR)

Under H0: P-values should be distributed uniformly between 0 and 1.

Under H1: P-values should be distributed near 0.
Observed distribution of P -values is a mixture of these two distributions.

FDR method finds a cut-off P-value, such that results with smaller P-values will likely (e.g. 95\%) to belong to the H 1 distribution.

False Discovery Rate (FDR)

Ranked P-value FDR Rank FDR*Rank
0.001
$0.05 \quad 1 / 7 \quad 0.007143$
0.006
$\begin{array}{lll}0.05 & 2 / 7 & 0.014286\end{array}$
0.01
$0.05 \quad 3 / 7 \quad 0.021429$
0.05
$0.05 \quad 4 / 7 \quad 0.028571$
0.2
$0.05 \quad 5 / 7 \quad 0.035714$
0.5
$0.05 \quad 6 / 7 \quad 0.042857$
0.8
$0.05 \quad 7 / 7 \quad 0.05$

Multi-stage strategies

All SNPs

Sample 1

Top ranking SNPs
Sample 2

Positive SNPs

Meta-Analysis

Combine results from multiple published studies to: enhance power obtain more accurate effect size estimates assess evidence for publication bias assess evidence for heterogeneity explore predictors of effect size

Discrete

Case-control	
Aff UnAff	
a	n_{1}
n_{3}	n_{2}

TDT	
$\underline{\mathrm{Tr}} \mathrm{UnTr}$	
A	$\begin{array}{ll}n_{1} & n_{2} \\ n_{3} & n_{4}\end{array}$

Threshold

Quantitative

Discrete trait calculation

$p \quad$ Frequency of high-risk allele
Prevalence of disease
$R_{\text {AA }}$
$R_{\text {Aa }}$
$N, \alpha, \beta \quad$ Sample size, Type I \& II error rate

Risk is $P(D \mid G)$

$$
g_{A A}=R_{A A} g_{a \mathrm{a}} \quad g_{A \mathrm{~A}}=R_{\mathrm{Aa}} g_{\mathrm{aa}}
$$

$$
K=p^{2} g_{A A}+2 p q g_{A a}+q^{2} g_{a a}
$$

$$
g_{\mathrm{aa}}=K /\left(p^{2} R_{A A}+2 p q R_{A a}+q^{2}\right)
$$

Odds ratios (e.g. for AA genotype) $=g_{A A} /\left(1-g_{A A}\right)$

$$
g_{\mathrm{aa}} /\left(1-\mathrm{g}_{\mathrm{aa}}\right)
$$

Need to calculate P(G|D)

Expected proportion d of genotypes in cases
$\begin{aligned} & d_{A A}=g_{A A} p^{2} /\left(g_{A A} p^{2}+g_{A a} 2 p q+g_{a a} q^{2}\right) \\ & d_{A a}=g_{A a} 2 p q /\left(g_{A A} p^{2}+g_{A a} 2 p q+g_{a a} q^{2}\right)\end{aligned} \quad P(G \mid D)=\frac{P(D \mid G) P(G)}{\sum_{G} P(D \mid G) P(G)}$
$d_{a a}=g_{a a} q^{2} /\left(g_{A A} p^{2}+g_{A a} 2 p q+g_{a a} q^{2}\right)$

Expected number of A alleles for cases

$$
2 N_{\text {Case }}\left(d_{A A}+d_{\text {Aa }} / 2\right)
$$

Expected proportion c of genotypes in controls
$\mathrm{c}_{\mathrm{AA}}=\left(1-\mathrm{g}_{\mathrm{AA}}\right) \mathrm{p}^{2} /\left(\left(1-\mathrm{g}_{\mathrm{AA}}\right) \mathrm{p}^{2}+\left(1-\mathrm{g}_{\mathrm{Aa}}\right) 2 \mathrm{pq}+\left(1-\mathrm{g}_{\mathrm{aa}}\right) \mathrm{q}^{2}\right)$

Full contingency table

	"A" allele	"a" allele
Case	$2 \mathrm{~N}_{\text {Case }}\left(\mathrm{d}_{\mathrm{AA}}+\mathrm{d}_{\mathrm{Aa}} / 2\right)$	$2 \mathrm{~N}_{\text {Case }}\left(\mathrm{d}_{\mathrm{aa}}+\mathrm{d}_{\mathrm{Aa}} / 2\right)$
Control	$2 \mathrm{~N}_{\text {Control }}\left(\mathrm{c}_{\mathrm{AA}}+\mathrm{c}_{\mathrm{Aa}} / 2\right)$	$2 \mathrm{~N}_{\text {Control }}\left(\mathrm{c}_{\mathrm{aa}}+\mathrm{c}_{\mathrm{Aa}} / 2\right)$

$$
\chi^{2}=\frac{(O-E)^{2}}{E}
$$

Incomplete LD

Effect of incomplete LD between QTL and marker

	A	a
M	$p m_{1}+\delta$	$q m_{1}-\delta$
m	$p m_{2}-\delta$	$q m_{2}+\delta$
$\delta=D^{\prime} \times D_{\text {MAX }}$	$D_{\text {MAX }}=\min \left\{p m_{2}, q m_{1}\right\}$	

Note that linkage disequilibrium will depend on both D' and QTL \& marker allele frequencies

Incomplete LD

Consider genotypic risks at marker:

$$
\begin{aligned}
P(D \mid M M)= & \left(\mathrm{pm}_{1}+\delta\right)^{2} P(\mathrm{D} \mid \mathrm{AA}) \\
& +2\left(\mathrm{pm}_{1}+\delta\right)\left(\mathrm{qm}_{1}-\delta\right) P(\mathrm{D} \mid \mathrm{Aa}) \leftarrow \text { АамМ } \\
& \left.+\left(\mathrm{qm}_{1}-\delta\right)^{2} P(\mathrm{D} \mid \mathrm{aa})\right] \\
& / \mathrm{m}_{1}{ }^{2}
\end{aligned}
$$

Calculation proceeds as before, but at the marker

Fulker association model

The genotypic score ($1,0,-1$) for sibling i is decomposed into between and within components:

$$
[A]_{i}=\left(\frac{\sum_{j=1}^{s} A_{j}}{s}\right)+\left(A_{i}-\frac{\sum_{j=1}^{s} A_{j}}{s}\right)=\left[A_{B}\right]_{i}+\left[A_{w}\right]_{i}
$$

sibship
genotypic mean
deviation from sibship genotypic mean

NCPs of B and W tests

Approximation for between test

$$
\lambda_{B} \approx \frac{\frac{s+1}{2} V_{A}+\frac{s+3}{4} V_{D}}{V_{N}+s V_{S}}
$$

Approximation for within test

$$
\lambda_{W} \approx(s-1)\left[\frac{\frac{1}{2} V_{A}+\frac{3}{4} V_{D}}{V_{N}}\right]
$$

Sham et al (2000) AJHG 66

GPC

Usual URL for GPC

http://statgen.iop.kcl.ac.uk/gpc/

Purcell S, Cherny SS, Sham PC. (2003)
Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics, 19(1):149-50

Exercise 1:

Candidate gene case-control study

Disease prevalence 2\%
Multiplicative model
genotype risk ratio $\mathrm{Aa}=2$
genotype risk ratio $\mathrm{AA}=4$
Frequency of high risk disease allele $=0.05$
Frequency of associated marker allele $=0.1$
Linkage disequilibrium D-Prime $=0.8$
Sample size: 500 cases, 500 controls
Type 1 error rate: 0.01

Calculate

Parker allele frequencies in cases and controls
NCP, Power

Exercise 2

For a discrete trait TDT study

Assumptions same models as in Exercise 1
Sample size: 500 parent-offspring trios
Type 1 error rate: 0.01
Calculate:

Ratio of transmission of marker alleles from heterozygous parents NCP, Power

Exercise 3:

Candidate gene TDT study of a threshold trait 200 affected offspring trios
"Affection" = scoring > 2 SD above mean
Candidate allele, frequency 0.05, assumed additive
Type 1 error rate: 0.01
Desired power: 0.8

What is the minimum detectable QTL variance?

Exercise 4:

An association study of a quantitative trait
QTL additive variance 0.05 , no dominance
QTL allele frequency 0.1
Marker allele frequency 0.2
D-Prime 0.8
Sib correlation: 0.4
Type 1 error rate $=0.005$
Sample: 500 sib-pairs

Find NCP and power for between-sibship, within-sibship and overall association tests.

What is the impact of adding 100 sibships of size 3 on the NCP and power of the overall association test?

Exercise 5:

Using GPC for case-control design

Disease prevalence: 0.02
Assume multiplicative model
genotype risk ratio $\mathrm{Aa}=2$
genotype risk ratio AA = 4
Frequency of high risk allele $=0.05$
Frequency of marker allele $=0.05$, D-prime $=1$
Find the type 1 error rates that correspond to 80% power 500 cases, 500 controls

1000 cases, 1000 controls
2000 cases, 2000 controls

Exploring power of association using GPC

Linkage versus association
difference in required sample sizes for specific QTL size

TDT versus case-control
difference in efficiency?

Quantitative versus binary traits loss of power from artificial dichotomisation?

Linkage versus association

QTL linkage: 500 sib pairs, $r=0.5$
QTL association: 1000 individuals

Case-control versus TDT

N units for 90\% power

N individuals for 90\% power

$$
p=0.1 ; R A A=R A a=2
$$

Quantitative versus discrete

$\mathrm{K}=0.05$

$\mathrm{K}=0.2$

$\mathrm{K}=0.5$

To investigate: use threshold-based association
Fixed QTL effect (additive, $5 \%, p=0.5$) 500 individuals
For prevalence K Group 1 has N 500 K and $T \quad-6 \leq X \leq \Phi^{-1}(K)$ Group 2 has N $500(1-K)$ and $T \quad \Phi^{-1}(K) \leq X \leq 6$

Quantitative versus discrete

Quantitative versus discrete

Incomplete LD
what is the impact of D^{\prime} values less than 1 ? does allele frequency affect the power of the test? (using discrete case-control calculator)

Family-based VC association: between and within tests what is the impact of sibship size? sibling correlation? (using QTL VC association calculator)

Incomplete LD

Case-control for discrete traits
Disease $\quad \mathrm{K}=0.1$
QTL $\quad R_{A A}=R_{A a}=2 \quad p=0.05$

Marker1
$m=0.05 D^{\prime}=\{1,0.8,0.6,0.4,0.2,0\}$
Marker2

$$
m=0.25 D^{\prime}=\{1,0.8,0.6,0.4,0.2,0\}
$$

Sample 250 cases, 250 controls

Incomplete LD

Genotypic risk at marker1 (left) and marker2 (right)

 as a function of D^{\prime}

Incomplete LD

Expected likelihood ratio test as a function of D'

Family-based association

Sibship type

1200 individuals, 600 pairs, 400 trios, 300 quads
Sibling correlation

$$
r=0.2,0.5,0.8
$$

QTL (diallelic, equal allele frequency)
$2 \%, 10 \%$ of trait variance

Between-sibship association

Within-sibship association

Total association

