Continuous heterogeneity

Danielle Dick & Sarah Medland

Boulder Twin Workshop March 2006

Ways to Model Heterogeneity in Twin Data

• Multiple Group Models

- Sex Effects
- Young/Old cohorts

Problem:

- Many variables of interest do not fall into groups
 - Age
 - Socioeconomic status
 - Regional alcohol sales
 - Parental warmth
 - Parental monitoring
 - Grouping these variables into high/low categories loses a lot of information

'Definition variables' in Mx

- <u>General definition</u>: Definition variables are variables that may vary per subject and that are not dependent variables
- <u>In Mx</u>: The specific value of the def var for a specific individual is read into a matrix in Mx when analyzing the data of that particular individual

'Definition variables' in Mx

create dynamic var/cov structure

- <u>Common uses</u>:
- 1. As covariates/effects on the means (e.g. age and sex)
- 2. To model changes in variance components as function of some variable (e.g., age, SES, etc)

Cautionary note about definition variables

- Def var should not be missing if dependent is not missing
- Def var should not have the same missing value as dependent variable (e.g., use -2.00 for def var, -1.00 for dep var)

Definition variables used as covariates

General model with age and sex as covariates: $y_i = \alpha + \beta_1(age_i) + \beta_2(sex_i) + \varepsilon$

Where y_i is the observed score of individual *i*, α is the intercept or grand mean, β_1 is the regression weight of age, **age**_i is the age of individual *i*, β_2 is the deviation of males (if sex is coded 0= female; 1=male), **sex**_i is the sex of individual *i*, and ε is the residual that is not explained by the covariates (and can be decomposed further into ACE etc).

Standard model

• Means vector

$$\begin{pmatrix} m & m \end{pmatrix}$$

• Covariance matrix

$$\begin{pmatrix} a^{2} + c^{2} + e^{2} \\ Za^{2} + c^{2} & a^{2} + c^{2} + e^{2} \end{pmatrix}$$

Allowing for a main effect of *X*

• Means vector

$$\begin{pmatrix} m + \beta X_{1i} & m + \beta X_{2i} \end{pmatrix}$$

• Covariance matrix

$$\begin{pmatrix} a^{2} + c^{2} + e^{2} \\ Za^{2} + c^{2} & a^{2} + c^{2} + e^{2} \end{pmatrix}$$

! Basic model + main effect of a definition variable

```
G1: Define Matrices
Data Calc NGroups=3
Begin Matrices;
X full 1 1 free
                    !genetic influences
Y full 1 1 free
                    !common environmental influences
Z full 1 1 free
                    !unique environmental influences
M full 1 1 free
                    ! grand mean
B full 1 1 free
                    ! moderator-linked means model
H full 1 1
                    !coefficient for DZ genetic relatedness
R full 1 1 ! twin 1 moderator (definition variable)
S full 1 1 ! twin 2 moderator (definition variable)
End Matrices;
Ma M O
Ma B O
Ma X 1
Ma Y 1
Ma Z 1
Matrix H .5
Options NO Output
End
```



```
G2: MZ
Data NInput vars=6 NObservations=0
Missing =-999
RE File=f1.dat
Labels id zyg p1 p2 m1 m2
Select if zyg = 1 /
Select p1 p2 m1 m2 /
Definition m1 m2 /
Matrices = Group 1
Means M + B*R \mid M + B*S /
Covariance
X*X' + Y*Y' + Z*Z' | X*X' + Y*Y' _
X^*X' + Y^*Y' | X^*X' + Y^*Y' + Z^*Z' /
!twin 1 moderator variable
Specify R - 1
!twin 2 moderator variable
Specify S -2
End
```

```
G3: DZ
Data NInput vars=6 NObservations=0
Missing =-999
RE File=f1.dat
Labels id zyg p1 p2 m1 m2
Select if zyq = 2 /
Select p1 p2 m1 m2 /
Definition m1 m2 /
Matrices = Group 1
Means M + B*R \mid M + B*S /
Covariance
X*X' + Y*Y' + Z*Z' | H@X*X' + Y*Y' _
H@X*X' + Y*Y' | X*X' + Y*Y' + Z*Z' /
!twin 1 moderator variable
Specify R - 1
!twin 2 moderator variable
Specify S -2
End
```

MATRIX X This is a FULL matrix of order 1 by 1 1 1 1.3228 MATRIX B This is a FULL matrix of order 1 by 1 1 1 0.3381 MATRIX Y This is a FULL matrix of order 1 by 1 1 1 1.1051 MATRIX Z This is a FULL matrix of order 1 by 1 1 1 0.9728 MATRIX M This is a FULL matrix of order 1 by 1 1 1 0.1035 Your model has 5 estimated parameters and 800 Observed statistics -2 times log-likelihood of data >>> 3123.925 795

MATRIX X This is a FULL matrix of order 1 by 1 1 1 1.3078 MATRIX B This is a FULL matrix of order 1 by 1 1 1 0.0000 MATRIX Y This is a FULL matrix of order 1 by 1 1 1 1.1733 MATRIX Z This is a FULL matrix of order 1 by 1 1 1 0.9749 MATRIX M This is a FULL matrix of order 1 by 1 1 1 0.1069 Your model has 4 estimated parameters and 800 Observed statistics -2 times log-likelihood of data >>> 3138.157 796

Model-fitting approach to GxE

Adding Covariates to Means Model

'Definition variables' in Mx

create dynamic var/cov structure

- <u>Common uses</u>:
- 1. As covariates/effects on the means (e.g. age and sex)
- 2. To model changes in variance components as function of some variable (e.g., age, SES, etc)

Model-fitting approach to GxE

Individual specific moderators

E x E interactions

ACE - XYZ - M

Main effects and moderating effects

Definition Variables in Mx GUI

Dick et al., 2001

• Classic Twin Model: Var (P) = $a^2 + c^2 + e^2$

• Moderation Model: Var (P) = $(a + \beta_X M)^2 + (c + \beta_Y M)^2 + (e + \beta_Z M)^2$

Purcell 2002, Twin Research

Var (T) = $(a + \beta_X M)^2 + (c + \beta_Y M)^2 (e + \beta_Z M)^2$

Where *M* is the value of the moderator and

Significance of β_X indicates genetic moderation Significance of β_Y indicates common environmental moderation Significance of β_Z indicates unique environmental moderation

 B_M indicates a main effect of the moderator on the mean

Plotting VCs as Function of Moderator

- For the additive genetic VC, for example
 - Given a, β (estimated in Mx model) and a range of values for the moderator variable
- For example,

a = 0.5, $\beta = -0.2$ and M ranges from -2 to +2

Model-fitting approach to GxE

Matrix Letters as Specified in Mx Script


```
! GxE - Basic model
G1: Define Matrices
Data Calc NGroups=3
Begin Matrices;
X full 1 1 free
Y full 1 1 free
Z full 1 1 free
T full 1 1 free
                       ! moderator-linked A component
U full 1 1 free
                       ! moderator-linked C component
V full 1 1 free
                       ! moderator-linked E component
M full 1 1 free
                       ! grand mean
                       ! moderator-linked means model
B full 1 1 free
H full 1 1
R full 1 1
               ! twin 1 moderator (definition variable)
S full 1 1
               ! twin 2 moderator (definition variable)
End Matrices;
Ма Т О
Ma U O
Ma V O
Ma M O
Ma B O
Ma X 1
Ma Y 1
Ma 7 1
Matrix H .5
Options NO_Output
End
```

```
G2: MZ
Data NInput vars=6 NObservations=0
Missing =-999
RE File=f1.dat
Labels id zyg p1 p2 m1 m2
Select if zyg = 1 /
Select p1 p2 m1 m2 /
Definition m1 m2 /
Matrices = Group 1
Means M + B*R \mid M + B*S /
Covariance
(X+T*R)*(X+T*R) + (Y+U*R)*(Y+U*R) + (Z+V*R)*(Z+V*R)
(X+T*R)*(X+T*S) + (Y+U*R)*(Y+U*S)
(X+T*S)*(X+T*R) + (Y+U*S)*(Y+U*S)
(X+T*S)*(X+T*S) + (Y+U*S)*(Y+U*S) + (Z+V*S)*(Z+V*S) /
!twin 1 moderator variable
Specify R -1
!twin 2 moderator variable
Specify S -2
Options NO Output
End
```

```
G2: DZ
Data NInput vars=6 NObservations=0
Missing =-999
RE File=f1.dat
Labels id zyg p1 p2 m1 m2
Select if zyq = 1 /
Select p1 p2 m1 m2 /
Definition m1 m2 /
Matrices = Group 1
Means M + B*R \mid M + B*S /
Covariance
  (X+T*R)*(X+T*R) + (Y+U*R)*(Y+U*R) + (Z+V*R)*(Z+V*R)
H@(X+T*R)*(X+T*S) + (Y+U*R)*(Y+U*S)
H@(X+T*S)*(X+T*R) + (Y+U*S)*(Y+U*S)
  (X+T*S)*(X+T*S) + (Y+U*S)*(Y+U*S) + (Z+V*S)*(Z+V*S) /
!twin 1 moderator variable
Specify R -1
!twin 2 moderator variable
Specify S -2
Options NO Output
End
```

Practical

- Cohort (young/old) model using definition variables (coded 0/1)
- Extension to continuous age

Cohort Moderation

Younger Cohort

Older Cohort

Cohort Moderation

Younger Cohort

Older Cohort

Your task

- Add tests to age_mod.mx to test
 - the significant of age moderation on A
 - the significant of age moderation on E
 - the significant of age moderation on both A and E jointly
Age Moderation

17 years old

83 years old

Comparing Results

Model	-2LL	df	chi-sq	p
4 group cohort	3760.030	1761		
Cohort mod.	3760.030	1761		
Age mod.	3764.448	1761		
Drop A mod.	3764.873	1762	0.426	0.514
Drop E. mod.	3768.636	1762	4.189	0.041
No mod.	3768.680	1763	4.232	0.120

Why is the fit worse using the continuous moderator?

- Artefact was the GxE due to the arbitrary cut-point?
- Confound is there a second modifier involved?
- Non-linear would we expect the effect of age on BMI in adults to be linear?

Nonlinear Moderation can be modeled with the addition of a quadratic term

Non-linear Age Moderation

17 years old

83 years old

Comparing Results

Model	-2LL	df	chi-sq	p
$Age + Age^2 \mod$.	3698.365	1758		
Drop both A mod.	3701.449	1760	3.084	0.214
Drop both E mod.	3702.907	1760	4.543	0.103
Age mod. No Age ² terms.	3764.448	1761	66.083	.00000 etc
No mod.	3768.680	1763	70.315	.00000 etc

Age Effects

Young

 $a_{Y} = a_{O}?$ $c_{Y} = c_{O}?$ $e_{Y} = e_{O}?$

GxE Effects

Urban

Rural

 $a_U = a_R ?$ $c_U = c_R ?$ $e_U = e_R ?$

Gene-Environment Interaction

- Genetic control of sensitivity to the environment
- Environmental control of gene expression
- <u>Bottom line</u>: nature of genetic effects differs among environments

Gene-Environment Interaction

- First observed by plant breeders:
 - Sensitive strains did great under ideal conditions (soil type, sunlight, rainfall), but very poorly under less than ideal circumstances
 - Insensitive strains did OK regardless of the condition; did worse under ideal conditions but better under poor conditions

Conceptualizing Gene-Environment Interaction

Standard Univariate Model

Contributions of Genetic, Shared Environment, Genotype x Environment Interaction Effects to Twin/Sib Resemblance

	Shared Environment	Additive Genetic Effects	Genotype x Shared Environment Interaction
MZ Pairs	1	1	1 x 1 = 1
DZ Pairs/Full Sibs	1	1/2	$1 \text{ x} \frac{1}{2} = \frac{1}{2}$

Contributions of Genetic, Shared Environment, Genotype x Environment Interaction Effects to Twin/Sib Resemblance

	Shared Environment	Additive Genetic Effects	Genotype x Shared Environment Interaction
MZ Pairs	1	1	1 x 1 = 1
DZ Pairs/Full Sibs	1	$\frac{1}{2}$	$1 \times \frac{1}{2} = \frac{1}{2}$

In other words—if gene-(shared) environment interaction is not explicitly modeled, it will be subsumed into the A term in the classic twin model.

Contributions of Genetic, Unshared Environment, Genotype x Unshared Environment Interaction Effects to Twin/Sib Resemblance

	Unshared (Unique) Environment	Additive Genetic Effects	Genotype x Unshared Environment Interaction
MZ Pairs	0	1	$0 \ge 1 = 0$
DZ Pairs/Full Sibs	0	$1/_{2}$	$0 \ge \frac{1}{2} = 0$

Contributions of Genetic, Unshared Environment, Genotype x Unshared Environment Interaction Effects to Twin/Sib Resemblance

	Unshared (Unique) Environment	Additive Genetic Effects	Genotype x Unshared Environment Interaction
MZ Pairs	0	1	$0 \ge 1 = 0$
DZ Pairs/Full Sibs	0	1/2	$0 \ge \frac{1}{2} = 0$

If gene-(unshared) environment interaction is not explicitly modeled, it will be subsumed into the E term in the classic twin model.

ACE - XYZ - M

Main effects and moderating effects

Gene x (Quasi-Continuous) Environment Models

	a^2	c^2	e^2
Fewest 20-24 yr olds	0.11	0.57	0.32
Most 20-24 yr olds	0.61	0.01	0.38
Lowest migration	0.17	0.48	0.35
Highest migration	0.64	0.01	0.35

Dick et al., 2001

Turkheimer et al (2003)

Testing for GxE Moderation

- Continuous data
 - Moderation of means and variance
- Ordinal data
 - Moderation of thresholds and variance

Expanding the Model

- Nonlinear Interaction
- Gene-Environment Correlation

Nonlinear Moderation

Moderator

Nonlinear Moderation can be modeled with the addition of a quadratic term

Gene-environment Interaction

- Genetic control of sensitivity to the environment
- Environmental control of gene expression

Gene-environment Correlation

- Genetic control of <u>exposure</u> to the environment
- Environmental control of gene <u>frequency</u>

This complicates interpretation of GxE effects

- If there is a correlation between the moderator (environment) of interest and the outcome, and you find a GxE effect, it's not clear if:
 - The environment is moderating the effects of genes or
 - Trait-influencing genes are simply more likely to be present in that environment

Ways to deal with rGE

- Limit study to moderators that aren't correlated with outcome
 - Pro: easy
 - Con: not very satisfying
- Moderator in means model will remove from the covariance genetic effects shared by trait and moderator
 - Pro: Any interaction detected will be moderation of the trait specific genetic effects
 - Con: Will fail to detect GxE interaction if the moderated genetic component is shared by the outcome and moderator
- Explicitly model rGE using a bivariate framework

 β_{XS} indicates moderation of shared genetic effects

 B_{XU} indicates moderation of unique genetic effects on trait of interest

Ways to deal with rGE

- Limit study to moderators that aren't correlated with outcome
 - Pro: easy
 - Con: not very satisfying
- Moderator in means model will remove from the covariance genetic effects shared by trait and moderator
 - Pro: Any interaction detected will be moderation of the trait specific genetic effects
 - Con: Will fail to detect GxE interaction if the moderated genetic component is shared by the outcome and moderator
- Explicitly model rGE using a bivariate framework
 - Pro: explicitly models rGE
 - Con: Power to detect B_{XU} decreases with increasing rGE; difficulty converging
 - NOTE: THIS MODEL IS NOT INFORMATIVE FOR FAMILY-LEVEL VARIABLES (E.G., SES, PARENTING, ETC)

Final Things to Consider

Unstandardized versus standardized effects

	ENVIRONMENT 1		ENVIRONMENT 2	
	Unstandardized Variance	Standardized Variance	Unstandardized Variance	Standardized Variance
Genetic	60	0.60	60	0.30
Common environmental	35	0.35	70	0.35
Unique environmental	5	0.05	70	0.05
Total variance	100		200	

Final Things to Consider

- Unstandardized versus standardized effects
- Don't forget about theory!

Final Things to Consider

- Unstandardized versus standardized effects
- Don't forget about theory!

- "Moderation in all things....including moderation" -Mike Neale http://pngu.mgh.harvard.edu/%7Epurcell/gxe/

Confidence intervals

- Easy to get CIs for individual parameters
- Additionally, CIs on the moderated VCs are useful for interpretation
- e.g. a 95% CI for $(a+\beta M)^2$, for a specific M

• Define two extra vectors in Group 1

```
P full 1 13
O Unit 1 13
Matrix P -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
```

• Add a 4th group to calculate the CIs

```
CIs
Calc
Matrices = Group 1
Begin Algebra;
F= ( A@O + T@P ) . ( A@O + T@P ) /
G= ( C@O + U@P ) . ( C@O + U@P ) /
I= ( E@O + V@P ) . ( E@O + V@P ) /
End Algebra;
Interval @ 95 F 1 1 to F 1 13
Interval @ 95 G 1 1 to G 1 13
Interval @ 95 I 1 1 to I 1 13
End;
```

Calculation of CIs

F= (A@O + T@P) . (A@O + T@P) /

• E.g. if P were $(0 \ 1 \ 2)$

then (A@O + T@P) equals
$$(a \otimes (1 \ 1 \ 1) + x \otimes (0 \ 1 \ 2))$$

or $(a \ a \ a) + (0 \ x \ 2x)$
or $(a \ a + x \ a + 2x)$

Finally, the dot-product squares all elements to give $(a^2 (a+x)^2 (a+2x)^2)$

Confidence intervals on VCs

Plotting VCs

- For the additive genetic VC, for example
 - Given a, β and a range of values for the moderator variable
- For example,

a = 0.5, $\beta = -0.2$ and M ranges from -2 to +2

Sample Gene-Environment Interaction

Moderator