Developmental Models/
Longitudinal Data Analysis

Danielle Dick & Nathan Gillespie
Boulder, March 2006
Why conduct longitudinal analyses?

- Can improve power by using multiple observations from the same individual
- Can examine time-dependent genetic and environmental effects
 - Changing magnitude of genetic/environmental influence across development
 - Same versus different genes across development
Methods for Longitudinal Analysis

- Cholesky Models
- Simplex Models
- Growth Curve Models
Cholesky Model

A longitudinal study with 4 waves (single individual):
Cholesky Model

Advantages:

• Logical: organized such that all factors are constrained to impact later, but not earlier timepoints

• Requires few assumptions, can predict any pattern of change

Disadvantages:

• Not falsifiable

• Does not make predictions about what will happen in the future (as yet unmeasured timepoints)

• Only feasible for limited number of measurements
Cholesky Model

Questions you can address:

• Magnitude of genetic/environmental influence at each time
• Extent to which genetic/environmental influences overlap across time
Trivariate Cholesky Decomposition

A1

Age 16 Substance Use

A2

Age 17 Substance Use

A3

Age 18 Substance Use

C1

C2

C3

E1

E2

E3
Partitioning of Variance from Longitudinal Drinking Data

Rose, Dick 2001, ACER
Best-fitting model for drinking
Cholesky Model

- Questions you can address:
 - Magnitude of genetic/environmental influence at each time
 - Extent to which genetic/environmental influences overlap across time
 - Other standard multivariate extensions (e.g., multiple group models)
Methods for Longitudinal Analysis

- Cholesky Models
- Simplex Models
- Growth Curve Models
What are simplex/autoregressive models?

- Models with a specific structure of association whereby correlations are largest between adjoining measures, and drop off systematically as distance between variables increases.

- This structure is frequently observed with longitudinal data:
 - Classic example: weight measurements
 - 2 year intervals from age 5 to 15
 - You would expect that weight at age 5 would be most highly correlated with weight at 7, somewhat less correlated with weight at 9, less correlated with weight at 11, etc.
Simplex Model

A longitudinal study with 4 waves (single individual):

(Boomsma & Molenaar, 1987)
Genetic Simplex Model

x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively
u = error variances
Simplex Model

Advantages:

• Makes restrictive predictions about covariance pattern
• Falsifiable
Figure 2
Best fitting genetic simplex model for female and male extraversion.

\(E_{12-16} = \) extraversion 12–16 yrs

\(A_{1-3}, E_{1-3}, C_{1-3} = \) additive genetic and nonshared and shared environmental effects

\(\zeta_{11-3}, \zeta_{10-3}, \zeta_{21-3} = \) additive genetic innovations, nonshared and shared environmental innovations

\(\epsilon_{1-3} = \) error parameters 12–16 yrs

double/single headed arrows = variance components/path coefficients
Figure 3
Best fitting genetic simplex model for female and male neuroticism.

N_{12-16} = neuroticism 12–16 yrs
A_{1-3}, E_{1-3} = additive genetic and nonshared environmental effects
$\zeta_{1-3}, \zeta_{e1-3}$ = additive genetic innovations and nonshared environmental innovations
ϵ_{l-3} = error parameters 12–16 yrs

double/single headed arrows = variance components/path coefficients
Figure 3

Best fitting simplex model for female depression with unstandardized variance components and path coefficients.

Note: $g_{i} - g_{i} = \text{additive genetic effects}$, $e_{i} - e_{i} = \text{non-shared environmental effects}$, $\zeta_{g} = \text{additive genetic innovations}$, $\zeta_{e} = \text{non-shared environmental innovations}$, $\varepsilon = \text{error terms}$ (where $e_{i} = e_{i}$)
Today’s example

- Grant et al., 1999, Behavior Genetics, 29, 463-472.
- Australian alcohol challenge data, collected between 1979 and 1981
 - Mean age = 23.5 years
- Subjects drank 0.75 g/kg alcohol at a steady rate over a 20-minute period. Blood Alcohol Concentration (BAC) was assessed at 6 points after consumption:

<table>
<thead>
<tr>
<th>BAC 1</th>
<th>Minutes post-consump.</th>
<th>Mean BAC</th>
<th># of individuals with data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MZM (43 prs)</td>
</tr>
<tr>
<td>BAC 1</td>
<td>56</td>
<td>89.0</td>
<td>83</td>
</tr>
<tr>
<td>BAC 2</td>
<td>68</td>
<td>88.9</td>
<td>83</td>
</tr>
<tr>
<td>BAC 3</td>
<td>83</td>
<td>88.8</td>
<td>84</td>
</tr>
<tr>
<td>BAC 4</td>
<td>123</td>
<td>80.9</td>
<td>86</td>
</tr>
<tr>
<td>BAC 5</td>
<td>143</td>
<td>76.6</td>
<td>52</td>
</tr>
<tr>
<td>BAC 6</td>
<td>182</td>
<td>67.7</td>
<td>83</td>
</tr>
</tbody>
</table>
A simplex correlation pattern...

Sample correlations (the DZM twin A quadrant of an intraclass correlation matrix)

<table>
<thead>
<tr>
<th></th>
<th>BAC 2</th>
<th>BAC 3</th>
<th>BAC 4</th>
<th>BAC 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAC 2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAC 3</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAC 4</td>
<td>0.69</td>
<td>0.84</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>BAC 6</td>
<td>0.58</td>
<td>0.77</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>
x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively
u = error variances
x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively
u = error variances
Practical - Simplex Model

\[\text{x and } z = \text{genetic and nonshared environmental innovations respectively} \]
\[n \text{ and } p = \text{genetic and nonshared environmental transmission respectively} \]
\[u = \text{error variances} \]
Full Genetic Simplex Model

A

BAC2

E

BAC3

E

BAC4

E

BAC6

E

A

A

A

A

12.0279 0.9892 6.5234 0.5332 0.7036 1.3123 4.2649

-0.1840 -0.1840 -0.1840 -0.1840 -0.1840 -0.1840

0.7001 0.5027 0.4130 0.7036 5.0094 10.3650 5.1284

9.4624 -0.1840

11 11 11

Basic_simplex.mxo -2*LL=4620.028, 23 est. parameters, 606 df
Sub-Models

1) Is the error variance on individual variable assessments significant?

2) Is the genetic innovations on BAC6 significant? BAC4? BAC2?
Sub-Models

1) Is the error variance on individual variable assessments significant?
 - drop 200

2) Is the genetic innovations on BAC6 significant? BAC4? BAC2?
 - drop 4, 3, 2
Simplex Model

- **Advantages:**
 - Makes restrictive predictions about covariance pattern
 - Falsifiable

- **Disadvantages:**
 - Makes restrictive predictions about covariance pattern (future depends on current state only)
 - Number of parameters increases with number of measurements
Methods for Longitudinal Analysis

- Cholesky Models
- Simplex Models
- Growth Curve Models
Latent Growth Curve Model
(shown here as linear)

- Mean Level of the Trait (Intercept)
- Rate of Change In Trait (Slope)
Latent Growth Curve Model
(shown here as linear)

\[Y_{i,t} = \alpha_i + \beta_i(t - 1) + \epsilon_{i,t}, \quad i = 1, 2 \quad t = 1, 2, 3, 4 \]
Genetically Informative
Latent Growth Curve Model
Genetically Informative
Latent Growth Curve Model

Methods of quantitative genetics:

\[
\begin{align*}
\alpha_i &= G_{\alpha, i} + E_{\alpha, i} = A_{\alpha, i} + D_{\alpha, i} + C_{\alpha, i} + E_{\alpha, i} \\
\beta_i &= G_{\beta, i} + E_{\beta, i} = A_{\beta, i} + D_{\beta, i} + C_{\beta, i} + E_{\beta, i}
\end{align*}
\]

for twin \(i = 1, 2 \).

Where:

- \((A_{\alpha, i}, A_{\beta, i})\) are the additive genetic components of intercept and slope
- \((D_{\alpha, i}, D_{\beta, i})\) are the respective dominant genetic components
- \((C_{\alpha, i}, C_{\beta, i})\) are the respective shared environmental components
- \((E_{\alpha, i}, E_{\beta, i})\) are the respective non-shared environmental components

→ Like a bivariate model
Growth Model Questions

- What is the contribution of genetic/environmental factors to the variation of α (intercept) and β (slope)?

- Same or different genes influencing α (intercept) and β (slope)?

- Same or different environments influencing α (intercept) and β (slope)?
Mx latent growth curve example
(script from http://www.psy.vu.nl/mxbib/)

Submodels to test:
1. No covariance between slope and intercept
2. No genetic effect on intercept
3. No genetic effect on slope
4. No common environmental effect on intercept
5. No common environmental effect on slope
6. Best fitting model? (i.e., ACE, AE, CE, E?)
Practical

- Mx latent growth curve example
 (script from http://www.psy.vu.nl/mxbib/)

Submodels to test:
1. No covariance between slope and intercept – signif decrease in fit
2. No genetic effect on intercept – signif decrease in fit
3. No genetic effect on slope – signif decrease in fit
4. No common environmental effect on intercept -- ns
5. No common environmental effect on slope -- ns
6. Best fitting model? (i.e., ACE, AE, CE, E?) -- AE
Growth Curve Model

Advantages:

• Very efficient: number of parameters does not increase with number of measurements
• Provides prediction about behavior beyond measured timepoints

Disadvantages:

• Note regarding slope parameters
• Can be computationally intense
• Assumptions to reduce computational burden
 • Linearity, no genetic effects on residuals, equal variance among residuals at differing timepoints
Latent Growth Curve Modeling
Additional Considerations

- Standard approach assumes data are collected at identical set of fixed ages for all individuals (e.g., start at age 12, yearly assessments)

- Age heterogeneity and unequal spacing of measurements can be handled using definition variables
 - Mehta & West, 2000, Psychological Methods
Latent Growth Curve Model with Measured Variable
Extensions of Growth Curve Models

- Incorporation of measured variables (genotype, environment)

- Nonlinear growth
Latent Growth Curve Modeling

Summary of Longitudinal Models

- **Cholesky Model**
 - Few assumptions, predict any pattern of correlations
 - Not falsifiable
 - Limited measurements

- **Simplex Model**
 - Falsifiable
 - Limited measurements

- **Growth Curve Model**
 - G, E influences on initial level, rate of change
 - Unlimited measurements
 - Computationally intensive, assumptions