
\nathan\RaterBias

Observer Ratings: Dealing with rater bias

Multiple raters

Rather than measure individual's phenotypes directly, we often rely on observer ratings

Example Parent & teacher ratings of children

Problem How do you handle bias which is a tendency of a rater to over or underestimate scores consistently

- Response Bias stereotyping, different normative standards, response style
- Projection Bias psychopathology of the parent influences his/her judgement of the behavior of the child e.g. several studies suggest that depression in mothers may lead to overestimating their children's symptoms

Rater bias can inflate C

How to disentangle child's phenotype from rater bias?

Example of multiple rater data: Problem behavior

Data from Netherlands Twin Registry

Questionnaires ages 3, 5, 7, 10 & 12 - maternal & paternal ratings ages 7, 10, and 12 - teacher ratings ages 12, 14, 16 - self report

- Internalizing Anxious/Depressed, Somatic Complaints & Withdrawn subscales
- Externalizing Aggressive & Rule Breaking subscales.

Mother's & father's ratings of aggressive behaviour in boys at 12 yrs

Multiple raters

Analysis of parent / teacher ratings depends on assumptions YOU make!

1. Biometric model – agnostic i.e. treat data as assessing different phenotypes. Good if mothers and fathers rate / observe kids in different situations!

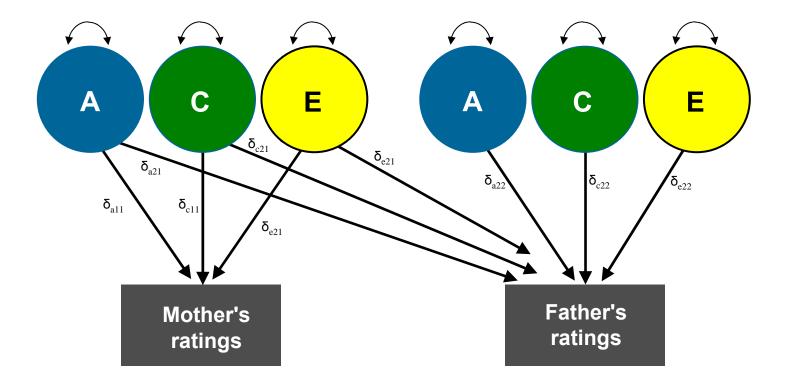
2. Psychometric model – assume there is a common phenotype assessed by both parents + specific effects uniquely observed by each each parent

3. Rater bias model – Ratings of a child's phenotype modeled as a function of child's phenotype + bias introduced by the rater

1. Biometric model

Model mother's and father's ratings agnostically

The mother's and father's ratings may be correlated but for unspecified reasons.


Mothers' and fathers' ratings are assessing different phenotypes.

- ratings are taken across different situations
- mums and dad don't have a common understanding of the behavioural description

In this case we would simply model the ratings in terms of a standard bivariate analysis

1. Biometric model

Treat parental ratings as separate phenotypes

The Mx script

Script Cholesky1.mx

Data: TAD.dat

TaskFix error & calculate standardized variance
components

Variance-covariance matrices in Mx

- MZ (A+C+E | A+C_ A+C | A+C+E) ;
- DZ (A+C+E | H@A+C_ H@A+C | A+C+E) ;

Polychoric correlations

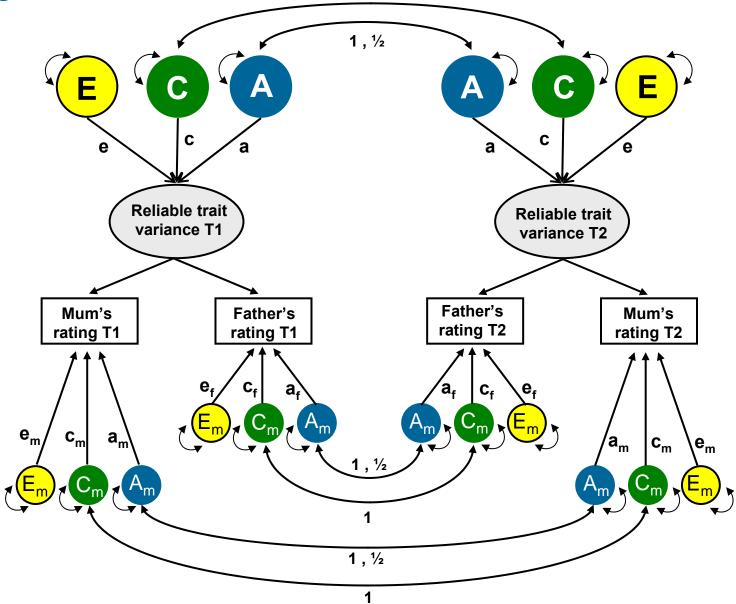
	1.	2.	3.	4.
1. Mother T1	1.00			
2. Father T1	.72	1.00		
3. Mother T2	.71	.57	1.00	
4. Father T2	.57	.71	.73	1.00

Variance Decomposition

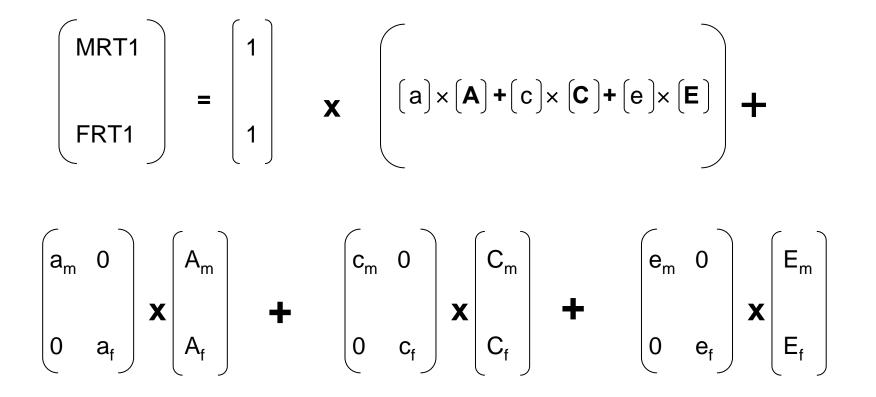
	Mother's ratings	Father's rating	S		
Α	.59	.58			
С	.23	.28	-2LL	df	
Е	.18	.14	3243.16	1816	

2. Psychometric Model

More restrictive assumptions


There is a common phenotype which is being assessed by mothers and fathers

AND


There is a component of the each parent's ratings which assesses an independent aspect of the children's behaviour.

Mother and father ratings would therefore correlate because they are making assessments based on shared observations and shared understanding of the behavioural descriptions

2. Psychometric Model₁

Total variance for an individual

The Mx script

- Script Psychometric1.mx
- Data TAD.dat
- **Task**Fix error & note variance components

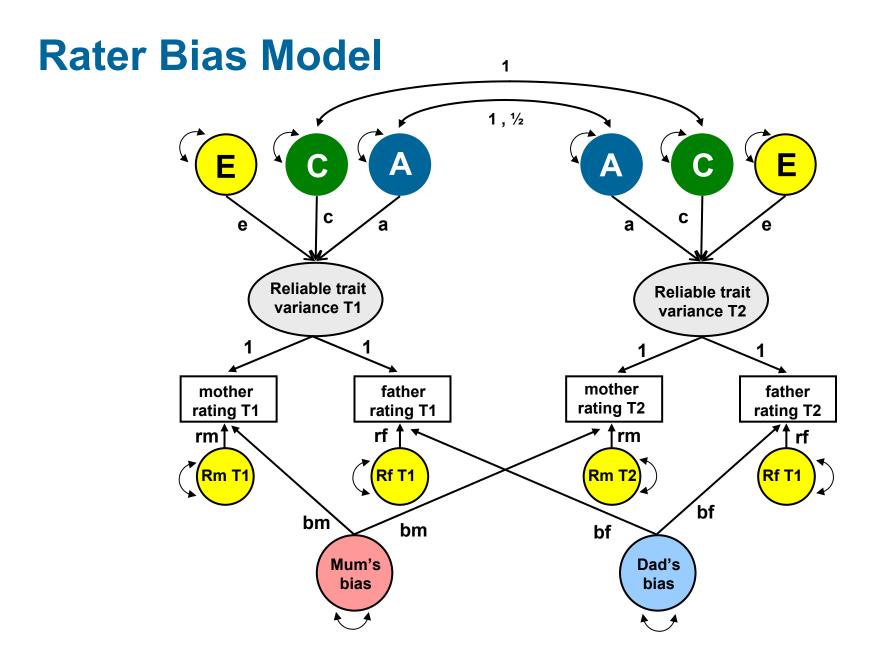
Variance-covariance matrices in Mx

Variance decomposition

	Mother's ratings	Father's ratings			
	Latent	factor			
Α	.42	.39			
C	.14	.13			
Е	.03	.03			
	Resi	Residuals			
A _{res}	.17	.19			
C _{res}	.09	.14			
E _{res}	.14	.11			

-2LL	df
3243.16	1816

Rater Bias Model


Even more restrictive

Assumes that there is a common phenotype which is being assessed by mothers and fathers

Phenotype is again a function of three latent factors underlying the ratings of both mothers *and* fathers: a genetic factor (A), a shared environmental factor (C), and a non-shared environmental factor (E).

Rater-specific factors are modeled: a maternal rater bias factor, a paternal rater bias factor, & residual (unreliability) factors affecting each rating.

The influence of the common factors is assumed to be independent of the maternal and paternal rater bias and unreliability factors.

Total variance for an individual

$$\begin{pmatrix} \mathsf{M}\mathsf{R}\mathsf{T}\mathsf{1} \\ \mathsf{F}\mathsf{R}\mathsf{T}\mathsf{1} \end{pmatrix} = \begin{bmatrix} \mathsf{1} \\ \mathsf{1} \end{bmatrix} \mathbf{X} \qquad \left[(\mathsf{a}) \times [\mathsf{A}] + [\mathsf{c}] \times [\mathsf{C}] + [\mathsf{e}] \times [\mathsf{E}] \right] \mathbf{+} \\ \\ \begin{pmatrix} \mathsf{b}\mathsf{m} & \mathsf{0} \\ \mathsf{0} & \mathsf{b}\mathsf{f} \end{pmatrix} \mathbf{X} \begin{pmatrix} \mathsf{B}\mathsf{m} \\ \mathsf{B}\mathsf{f} \end{pmatrix} \mathbf{+} \begin{pmatrix} \mathsf{rm} & \mathsf{0} \\ \mathsf{0} & \mathsf{r}\mathsf{f} \end{pmatrix} \mathbf{X} \begin{pmatrix} \mathsf{R}\mathsf{m} \\ \mathsf{R}\mathsf{f} \end{pmatrix}$$

The Mx script

- Script Raterbias1.mx
- Data TAD.dat
- **Task**Fix error & note variance components

Variance-covariance matrices in Mx

DZ (S+F | S_ S | S+F) + L * (A+C+E | H@A+C_ H@A+C | A+C+E) * L';

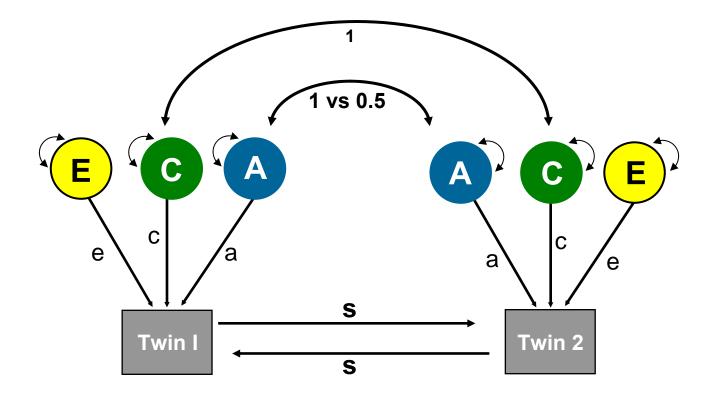
Variance decomposition

	Mother's ratings	Father's ratings	
	Latent	factor	
Α	.53	.51	
С	.05	.05	
E	.00	.00	
	Resid		
Rater Bias	.23	.29	-2L
E _{res}	.19	.15	3257

-2LL	df
3257.37	1818

Results: Model comparison

	-2LL	df	BIC
Cholesky	3243.16	1816	-1171.22
Psychometric	3243.16	1816	-1171.22
Rater Bias	3257.37	1818	-1167.19


Conclusions

1. Rater bias, if not controlled for, ends up in shared environment

2. Besides rater bias, rater specific views are a source of rater disagreement > multiple rater design valuable

3. Psychometric model provides most information on sources of rater disagreement

Sibling Interaction / Rater Contrast

Path *s* implies an interaction between phenotypes

Sibling Interaction

Social Interaction between siblings (Carey, 1986; Eaves, 1976)

Behaviour of one child has a certain effect on the behavior of his or her co-twin:

Cooperation - behavior in one twin leads to like-wise behavior in the cotwin

Competition - increased behavior in one twin leads to decreased behavior in co-twin

Rater Contrast

Behavioural judgment / rating of one child of a twin pair is NOT independent of the rating of the other child of the twin pair.

Rate compares the twins behaviour against one another

The behaviour of the one child becomes a 'standard' by the which the behaviour of the other co-twin is judged / rated.

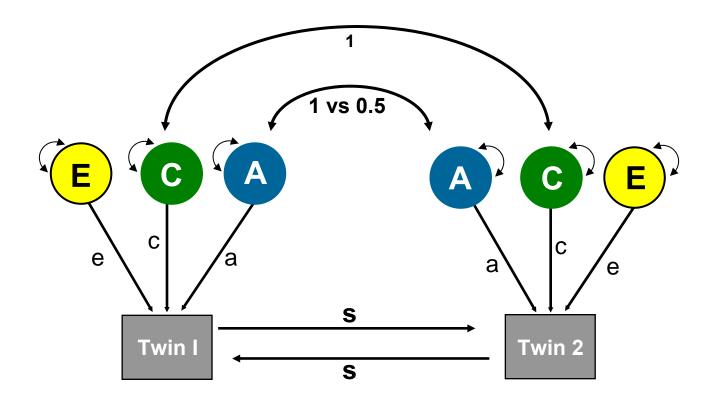
Parents may either stress the similarities or differences between the children

Effects of rater contrast

Phenotypic cooperation / positive rater contrast Mimics the effects of shared environment Increases the variance of more closely related individuals (var MZ >> var DZ)

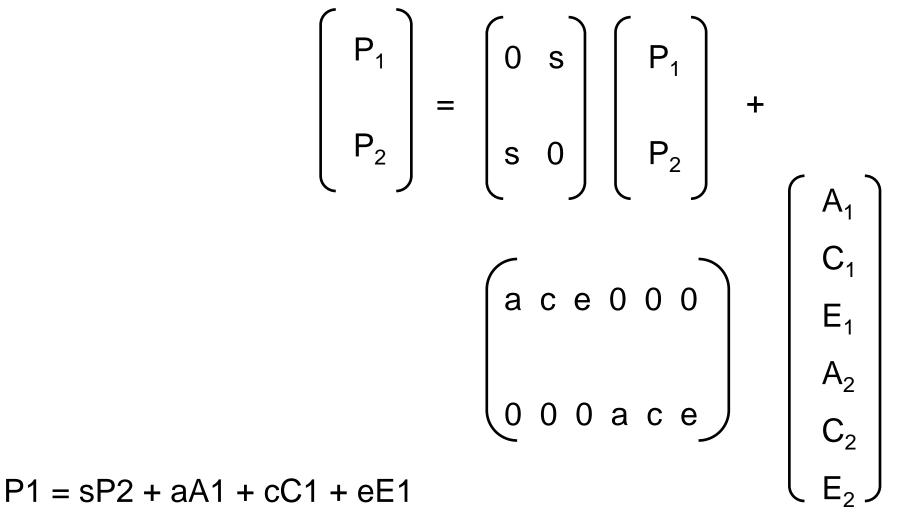
Phenotypic competition / negative rater contrast Mimics the effects of non-additive genetic variance Increases the variance of more closely related individuals the least (var MZ << var DZ)

Numerical Illustration


a²=0.5, d²=0, c²=0, e⁵=0.5

S = 0; cooperation >> s = 0.5; competition >> s = -0.5

	MZ			DZ			Unrelated		
	Var	Cov	r	Var	Cov	r	Var	Cov	r
None	1	.50	.50	1	.25	.25	1	0	0
Cooperation	3.11	2.89	.93	2.67	2.33	.88	2.22	1.78	.80
Competition	1.33	.44	.33	1.78	67	38	2.22	-1.78	80


Social interactions cause the variance of the phenotype to depend on the degree of relationship of the social actors

Contrast Effect

 $P_1 = sP_2 + aA_1 + cC_1 + eE_1$ $P_2 = sP_1 + aA_2 + cC_2 + eE$

Contrast Effect

P2 = sP1 + aA2 + cC2 + eE2

```
y = By + Gx
y - By = Gx
(I-B) y = Gx
(I-B)<sup>-1</sup> (I-B)y = (I-B)<sup>-1</sup> Gx
y = (I-B)<sup>-1</sup> Gx
```

Matrix expression

Begin Matrices;B full 2 2 ! constrast effectEnd Matrices;

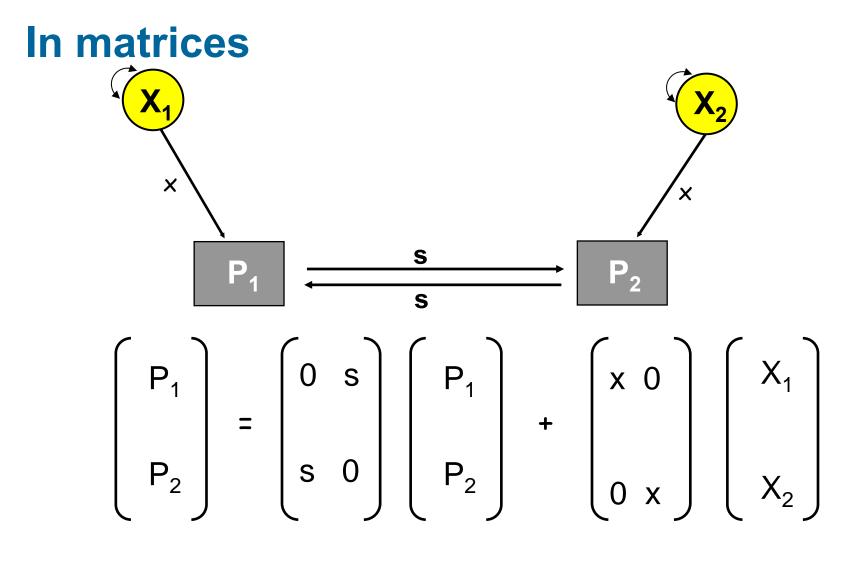
Begin Algebra; P = (I-B)~; End Algebra

Variance – Covariance Matrix

MZs P & (A + C + E | A + C_ A + C | A + C + E) /

DZs P & (A + C + E | H@A + C_ H@A + C | A + C + E) /


The Mx script


Script: Contrast.mx

Data: TAD.dat

Consequences for variation & covariation

Basic model

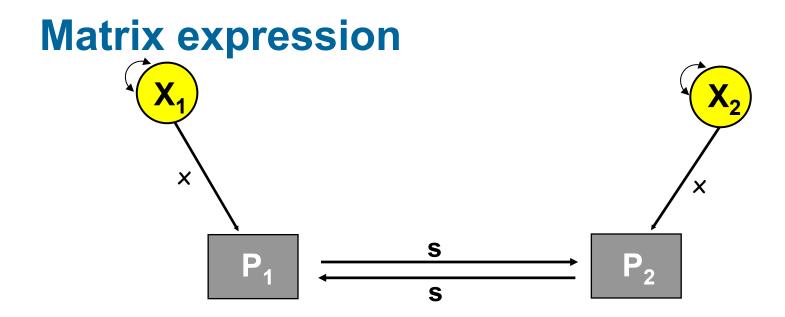
y = By + Gx

Matrix expression

y = (I-B)⁻¹ Gx

Matrix expression y = (I-B)⁻¹ Gx where (I-B) is

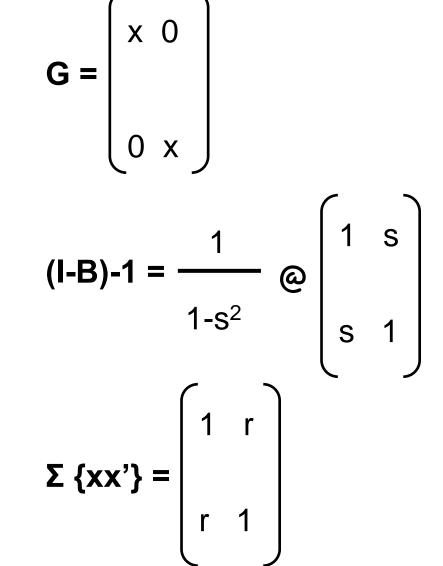
$$\begin{pmatrix} 1 & 0 \\ & \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & s \\ & \\ s & 0 \end{pmatrix} = \begin{pmatrix} 1 & -s \\ & \\ -s & 1 \end{pmatrix}$$


Which has determinant: $(1*1-s*s) = 1-s^2$, so $(I-B)^{-1}$ is

$$\frac{1}{1-s^2} \bigotimes \left(\begin{matrix} 1 & s \\ & \\ s & 1 \end{matrix} \right)$$

Matrix expression

Variance-covariance matrix for P1 and P2


where Σ {xx'} is covariance matrix of the x variables

We want to standardize variables X_1 and X_2 to have unit variance and correlation r, therefore

$$\boldsymbol{\Sigma} \{ \mathbf{x}\mathbf{x}' \} = \begin{bmatrix} 1 & r \\ & \\ r & 1 \end{bmatrix}$$

To compute the covariance matrix recall that...

To compute the covariance matrix recall that...

$$\Sigma \{ yy'\} = \frac{x^2}{(1-s^2)^2} \bigotimes \left(\begin{array}{ccc} 1+2sr+s^2 & r+2s+rs^2 \\ r+2s+rs^2 & 1+2sr+s^2 \end{array} \right)$$

The effects of sibling interaction on variance and covariance components between pairs of relatives

Source

Additive genetic Dominance Shared env Non-shared env

Variance

ω(1+2sra+s2)a2 $ω(1+2sr_d+s^2)d^2$ $ω(1+2sr_c+s^2)c^2$ $ω(1+2sr_c+s^2)e^2$

Covariance

 $\omega(r_a+2s+r_as^2)a^2$ $\omega(r_d+2s+r_ds^2)d^2$ $\omega(r_c+2s+r_cs^2)c^2$ $\omega(r_e+2s+r_es^2)e^2$

where $\omega = \text{scalar } 1/(1-s^2)^2$

Rater Bias

Influence shared environmental variance! Independent of zygosity

Response Bias

- stereotyping, different normative standards, response style

Projection Bias

- Psychopathology of the parent influences his/her judgement of the behavior of the child e.g. several studies suggest that depression in mothers may lead to overestimating their children's symptomology

Multiple raters

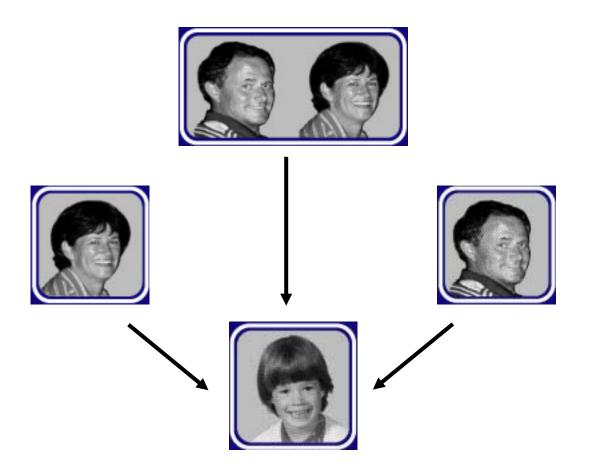
Rather than measure individual's phenotypes directly, we rely on observer ratings.

Example: Parent & teacher ratings of children's behaviour

Problem: How to disentangle child's phenotype from rater bias?

Rater bias can influence C (independent of zygosity)

Parental Disagreement


Rater bias / error (e.g. response style, different normative standards)


Mother or father provide specific information

- distinct situations, parent-specific relation with child

Rater Bias

Parental ratings Agreements versus Disagreements

Male Extraversion

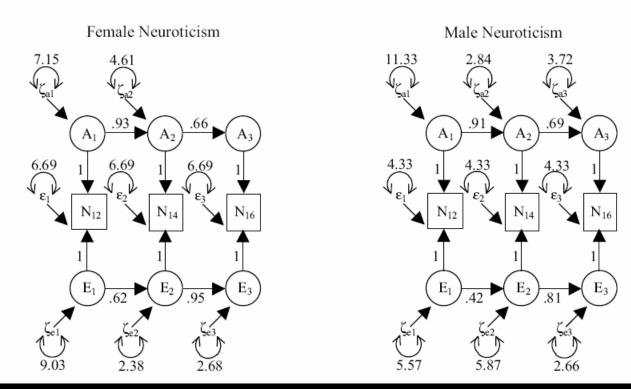
 E_{14}

.25

.17

Figure 2

Best fitting genetic simplex model for female and male extraversion.


E₁₂₋₁₆ = extraversion 12–16 yrs

 $A_{1-3'}$, $E_{1-3'}$, C_{1-3} = additive genetic and nonshared and shared environmental effects

 $\zeta_{a1-3'}$ $\zeta_{c1-3} = additive genetic innovations, nonshared and shared environmental innovations$

 $\varepsilon_{\rm 1-3}$ = error parameters 12–16 yrs

double/single headed arrows = variance components/path coefficients

Figure 3

Best fitting genetic simplex model for female and male neuroticism.

N₁₂₋₁₆ = neuroticism 12-16 yrs

 $A_{1-3^{\prime}} E_{1-3}$ = additive genetic and nonshared environmental effects

 $\zeta_{{}_{a1\!-\!3'}}\,\zeta_{{}_{e1\!-\!3}}$ = additive genetic innovations and nonshared environmental innovations

 ε_{1-3} = error parameters 12–16 yrs

double/single headed arrows = variance components/path coefficients