19th International Workshop on Methodology of Twin and Family Studies: Introductory course

- Mike Neale (director)
- Hermine Maes
 - Nathan Gillespie 찬 🔆
- Ben Neale
- Fruhling Rijsdijk 🗾
- Dorret Boomsma 💸
- Danielle Posthuma 💸
- Danielle Dick

- Jeff Lessem
- Stacey Cherny
- Nick Martin
- Sarah Medland Sarah Medland
- Manuel Ferreira

Kate Morley

History of International Methodology Workshops

	Year	Location	Туре	#Faculty	# Students
TC1	1987	Leuven	Introductory	10	24
TC2	1989	Leuven	Introductory	11	41
TC3	1990	Boulder	Introductory	11	28
TC4	1991	Leuven	Introductory	14	49
			Advanced	12	55
TC5	1993	Boulder	Introductory	13	49
TC6	1994	Boulder	Introductory	16	43
TC7	1995	Helsinki	Introductory	10	29
TC8	1996	Boulder	Introductory	10	49
TC9	1997	Boulder	Introductory	10	55
TC10	1998	Boulder	Introductory	12	57
TC11	1998	Leuven	Introductory	10	55
			Advanced	13	62
TC12	1999	Boulder	Advanced	12	37
TC13	2000	Boulder	Introductory	12	63
TC14	2001	Boulder	Advanced	18	65
TC15	2002	Boulder	Introductory	18	95
TC16	2003	Boulder	Advanced	15	82
TC17	2004	Boulder	Introductory	16	93
TC18	2005	Boulder	Advanced	18	64

Attendance at International Methodology Workshops

Frequency	1	2	3	4	5	6	7	8	9	10	16	17	19	20	
Faculty	8	4	3	2	5	2	3	1	2	3	1	1	3	3	41
Student	507	171	32	14	5	4		1							734
	# of '	'Uniq	ue' \$	Stud	ents										
Introductory	Worl	kshop	o # c	of Stu	uden	ts									730
Advanced	Worl	kshop	o # c	of Stu	uden	ts									365
Total															1095

Causes of Human Variation

Nick Martin Queensland Institute of Medical Research

Boulder workshop: March 6, 2006

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

OR THE

PRESERVATION OF FAVOURED RACES IN THE STRUGGLE FOR LIFE.

By CHARLES DARWIN, M.A.,

FRLLOW OF THE ROYAL, GEOLOGICAL, LINE MAN, ETC., SOCIETIES: AUTHOR OF 'JOURNAL OF RESEARCHES DURING H. M. S. BRAGLE'S VOYAGE (\cdot) BOUND THE WORLD." 1.2 4.001 .ting ់ លំងព 1. 31. 1.10 1 130 5 1 in the LONDON: JOHN MURRAY, ALBEMARLE STREET. 1859. 1.20 they (i) -山谷 林道田 二十 The right of Translation is reserve WELL ADDITION OF ST WWW THAT IS

VARIATION UNDER DOMESTICATION

CHAPTER I

ta Anna Canada Canada

Causes of Variability - Effects of Habit - Correlation of Growth - Inheritance - Character of Domestic Varieties - Difficulty of distinguishing between Varieties and Species - Origin of Domestic Varieties from one or more Species - Domestic Pigeons, their Differences and Origin - Principle of Selection anciently followed, its Effects - Methodical and Unconscious Selection - Unknown Origin of our Domestic Productions -Circumstances favourable to Man's power of Selection

WHEN we look to the individuals of the same variety or subrariety of our older cultivated plants and animals, one of the first points which strikes us, is, that they generally differ much more from each other, than do the individuals of any one species or variety in a state of nature. When we reflect on the vast diversity of the plants and animals which have been cultivated, and which have varied during all ages under the most different climates and creatment, I think we are driven to conclude that this greater variability is simply due to our domestic productions having been raised under conditions of life not so uniform as, and somewhat different from, those to which the parent-species have been exposed under nature. There is, also, I think, some probability in the view propounded by Andrew Knight, that this variability may be partly connected with excess of food. It seems pretty clear that organic beings must be exposed during several generations to the new conditions of life to cause any appreciable amount of variation; and that when the organisation has once begun to vary, it generally continues to vary for many generations. No case is on record of a variable being ceasing to be variable under cultivation. Our oldest cultivated plants, such as wheat, still often yield new varieties: our oldest domesticated animals are still capable of rapid improvement or modification.

It has been disputed at what period of life the causes of

71

It's all about genetic variation ...

Stature in adolescent twins

Stature

galton.org

Sir Francis Galton F.R.S 1822 - 1911

[Bibliography] [Editor] [Biography]

Franci Galta

Sir Francis Galton F.R.S. 1822-1911

Victorian polymath: geographer, meteorologist, tropical explorer, founder of differential psychology, inventor of fingerprint identification, pioneer of statistical correlation and regression, convinced hereditarian, eugenicist, proto-geneticist, half-cousin of Charles Darwin and best-selling author.

I have no patience with the hypothesis occasionally expressed, and often implied, especially in tales written to teach children to be good, that babies are born pretty much alike, and that the sole agencies in creating differences between boy and boy, and man and man, are steady application and moral effort. It is in the most unqualified manner that I object to pretensions of natural equality. The experiences of the nursery, the school, the University, and of professional careers, are a chain of proofs to the contrary.

-- Francis Galton, Hereditary Genius

[Galton, 1889]

The height vs. pea debate (early 1900s)

Biometricians

Mendelians

Do quantitative traits have the same hereditary and evolutionary properties as discrete characters?

XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. By R. A. Fisher, B.A. Communicated by Professor J. ARTHUR THOMSON. (With Four Figures in Text.)

(MS, received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918.)

CONTENTS.

							PAGE :		PAGE
1.	The superposition of fact	ors d	istr	ibute	ed ind	le-		15. Homogamy and multiple allelo.norphism	416
	pendently				• .		402	16. Coupling	418
2.	Phase frequency in each a	array					402	17. Theories of marital correlation; ancestral	
3.	Parental regression .	• .					403	correlations	419
4.	Dominance deviations						403	18. Ancestral correlations (second and third	
5.	Correlation for parent; g	eneti	c co	orrela	tions		404	theories)	421
6.	Fraternal correlation						405	19. Numerical values of association	421
7.	Correlations for other rel	atives	3				406	20. Fraternal correlation	422
8.	Epistacy					• •	408	21. Numerical values for environment and domi-	
9.	Assortative mating .						410	nance ratios; analysis of variance	423
10.	Frequency of phases						410	22. Other relatives	424
11.	Association of factors				· .		411	23. Numerical values (third theory) .	425
12.	Conditions of equilibrium	n ·					412	24. Comparison of results	427
13.	Nature of association						413	25. Interpretation of dominance ratio (diagrams) .	428
14.	Multiple allelomorphism	, i		۰.			415	26. Summary	432
	-								

Several attempts have already been made to interpret the well-established results of biometry in accordance with the Mendelian scheme of inheritance. It is here attempted to ascertain the biometrical properties of a population of a more general type than has hitherto been examined, inheritance in which follows this scheme. It is hoped that in this way it will be possible to make a more exact analysis of the causes of human variability. The great body of available statistics show us that the deviations of a human measurement from its mean follow very closely the Normal Law of Errors, and, therefore, that the variability may be uniformly measured by the standard deviation corresponding to the square root of the mean square error. When there are two independent causes of variability capable of producing in an otherwise uniform population distributions with standard deviations σ_1 and σ_2 , it is found that the distribution, when both causes act together, has a standard deviation $\sqrt{\sigma_1^2 + \sigma_2^2}$. It is therefore desirable in analysing the causes of variability to deal with the square of the standard deviation as the measure of variability. We shall term this quantity the Variance of the normal population to which it refers, and we may now ascribe to the constituent causes fractions or percentages of the total variance which they together produce. It

RA Fisher (1918). *Transactions of the Royal Society of Edinburgh* **52**: 399-433.

$$var(A)=2p(1-p)\alpha^2$$

Kenneth Mather 1911-1990

John Jinks 1929-1987

Polygenic Traits									
1 Gene	2 Genes	3 Genes	4 Genes						
\rightarrow 3 Genotypes	→ 9 Genotypes	\rightarrow 27 Genotypes	→ 81 Genotypes						
\rightarrow 3 Phenotypes	→ 5 Phenotypes	\rightarrow 7 Phenotypes	→ 9 Phenotypes						

Central Limit Theorem

The normal distribution is to be expected whenever variation is produced by the addition of a large number of effects.

Multifactorial Threshold Model of Disease

Complex Trait Model

3 Stages of Genetic Mapping

- Are there genes influencing this trait?
 - Genetic epidemiological studies
- Where are those genes?
 - Linkage analysis
- What are those genes?
 - Association analysis

Variance components

P = eE + aA + cC + dD

Controversy: nature vs nurture

Designs to disentangle G + E

Resemblance between relatives caused by:

- shared Genes (G = A + D)
- environment Common to family members (C)

Differences between relatives caused by:

- nonshared Genes
- Unique environment (U or E)

Psychological Bulletin

COMPARISON OF THE BIOMETRICAL GENETICAL, MAVA, AND CLASSICAL APPROACHES TO THE ANALYSIS OF HUMAN BEHAVIOR¹

J. L. JINKS AND D. W. FULKER ²

University of Birmingham, England

The techniques which can be used in the analysis of human behavior by the methods of biometrical genetics are described and compared with those of the Multiple Abstract Variance Analysis (MAVA), and other approaches. These techniques are applied to a number of personality and cognitive measures using published data. Underlying assumptions of the analyses used are discussed, and tests of significance for departure from them are demonstrated. Although data were often inadequate, the techniques provided new information on the gene action controlling the measures and on their evolution. The authors conclude that the outcome of the reanalyses indicates the unique value of the biometrical approach.

There are currently three alternative approaches to the genetical analysis of human twin and familial data. There is what might be mental influences within the family as well as within the culture. This approach is openended and based on the comparison of within-

http://genepi.qimr.edu.au/staff/classicpapers.html

Designs to disentangle G + E

- Family studies G + C confounded
- MZ twins alone G + C confounded
- MZ twins reared apart rare, atypical, selective placement ?
- Adoptions increasingly rare, atypical, selective placement ?
- MZ and DZ twins reared together
- Extended twin design

MZ twins reared apart - note the same way of supporting their cans of beer

Body postures of MZ twins reared apart

Body postures of DZ twins reared apart

Designs to disentangle G + E

- Family studies G + C confounded
- MZ twins alone G + C confounded
- MZ twins reared apart rare, atypical, selective placement ?
- Adoptions increasingly rare, atypical, selective placement ?
- MZ and DZ twins reared together
- Extended twin design

Percentage of adoptees convicted of violent and property offenses by biological parents' convictions

- Denmark
 - 14,427 nonfamilial adoptions 1927-47
- Court convictions available for biological and adoptive parents
- Mednick et al (1984)
 Science 224:891-4

Designs to disentangle G + E

- Family studies G + C confounded
- MZ twins alone G + C confounded
- MZ twins reared apart rare, atypical, selective placement ?
- Adoptions increasingly rare, atypical, selective placement ?
- MZ and DZ twins reared together
- Extended twin design

Placentation and zygosity

Dichorionic Two placentas MZ 19% DZ 58% Dichorionic Fused placentas MZ 14% DZ 42% Monochorionic Diamniotic MZ 63% DZ 0% Monochorionic Monoamniotic MZ 4% DZ 0%

Identity at marker loci except for rare mutation

MZ and DZ twins: determining zygosity using ABI Profiler™ genotyping

(9 STR markers + sex)

Total mole count for MZ and DZ twins

MZ twins - 153 pairs, r = 0.94

DZ twins - 199 pairs, r = 0.60

Heritability of Adult Body Height: A Comparative Study of Twin Cohorts in Eight Countries

Karri Silventoinen¹, Sampo Sammalisto², Markus Perola², Dorret I. Boomsma⁵, Belinda K. Cornes³, Chayna Davis⁷, Leo Dunkel¹⁰, Marlies de Lange⁸, Jennifer R. Harris⁶, Jacob V.B. Hjelmborg⁴, Michelle Luciano³, Nicholas G. Martin³, Jakob Mortensen⁴, Lorenza Nisticò⁹, Nancy L. Pedersen⁷, Axel Skytthe⁴, Tim D. Spector⁸, Maria Antonietta Stazi⁹, Gonneke Willemsen⁵, and Jaakko Kaprio¹

Twin Research 6: 399-408

Twin Cor	Twin Correlations for Height by Country and Zygosity Group									
	Australia	Denmark	Finland	Italy	Netherlands	Norway	Sweden	UK		
MZm	0.87	0.89	0.92	0.94	0.89	0.87	0.89	n.a.		
DZm	0.42	0.47	0.53	0.57	0.47	0.49	0.56	n.a.		
MZf	0.84	0.89	0.87	0.94	0.90	0.89	0.89	0.88		
DZf	0.49	0.55	0.53	0.49	0.49	0.49	0.49	0.56		
DOS	0.46	0.50	0.49	0.30	0.43	0.44	n.a.	n.a.		

Note: MZm = male monozygotic twins, DZm = male dizygotic twins, MZt = female monozygotic twins,

DZf = female dizygotic twins, DOS = opposite sex twin pairs

Table 3

				Men							Women	1		
	Model	Va	Vc	Ve	Vp	h²	$\Delta \chi_1^2$	Model	Va	Vc	Ve	Vp	h²	$\Delta \chi_1^2$
Australia	ACE AE	40.26 40.26	0.00	6.30 6.30	46.60 46.60	0.87 0.87	0.00	ACE AE	33.80 39.27	6.00	7.60 7.47	47.40 46.74	0.71 0.84	4.86*
Denmark	ACE AE	37.20 38.80	1.90	5.00 5.00	44.20 43.80	0.84 0.89	0.55	ACE AE	29.50 35.20	6.60	4.20 4.20	40.30 39.40	0.73 0.89	13.38***
Finland	ACE AE	34.28 40.10	6.98	3.77 3.71	45.03 43.81	0.76 0.89	3.51	ACE AE	24.30 29.61	6.10	4.30 4.25	34.70 33.86	0.70 0.87	 5.25*
Italy	ACE AE	37.48 48.31	12.90	3.29 3.25	53.67 51.56	0.70 0.94	2.60	ACE AE	25.57 29.34	4.39	2.31 2.30	32.27 31.64	0.79 0.93	 0.99
Netherlands	ACE AE	38.71 43.66	5.49	5.66 5.62	49.86 49.28	0.78 0.89	1.20	ACE AE	33.49 35.50	2.23	3.94 3.92	39.65 39.42	0.84 0.90	 0.58
Norway	ACE AE	33.32 37.17	4.47	5.47 5.40	43.26 42.57	0.77 0.87	2.47	ACE AE	30.00 32.95	3.34	4.28 4.25	37.66 37.19	0.79 0.89	 2.33
Sweden	ACE AE	29.80 33.32	4.10	5.00 4.94	38.90 38.26	0.77 0.87	14.44***	ACE AE	25.94 26.90	1.08	3.48 3.50	30.50 30.40	0.85 0.89	 1.87
UK	ACE AE							ACE AE	26.96 33.89	8.16	4.56 4.34	39.68 38.23	0.68 0.89	 8.21**

Estimates of Variance Components and Heritabilities for Height

Table 4

Note: Va = additive genetic variance, Vc = shared environmental variance, Ve = specific environmental variance, Vp = total phenotypic variance, h^2 = heritability estimate, $\Delta \chi^2$ = change in the χ^2 -values between AE and ACE models *p < .05, **p < .01, ***p < .001

Genetic covariance between relatives

$$\text{COV}_{G}(y_{i}, y_{j}) = a_{ij}\sigma_{A}^{2} + d_{ij}\sigma_{D}^{2}$$

- a = additive coefficient of relationship
 - = 2 * coefficient of kinship (= $E(\pi)$)
- d = coefficient of fraternity
 - = Prob(2 alleles are IBD)

|--|

Relatives	а	d
Parent-offspring	1/2	0
MZ twins	1	1
Fullsibs	1/2	1⁄4
Double first cousins	1⁄4	¹ / ₁₆

[Lynch & Walsh 1998]

ACE Model for twin data

Structural equation modeling

- Both continuous and categorical variables
- Systematic approach to hypothesis testing
- Tests of significance
- Can be extended to:
 - More complex questions
 - Multiple variables
 - Other relatives

Direction of causation modeling with cross-sectional twin data

Designs to disentangle G + E

- Family studies G + C confounded
- MZ twins alone G + C confounded
- MZ twins reared apart rare, atypical, selective placement ?
- Adoptions increasingly rare, atypical, selective placement ?
- MZ and DZ twins reared together
- Extended twin design

Extended Twin Design

Truett, et al (1994) Behavior Genetics, 24: 35-49

Extended kinship model

- twins
- siblings
- parents
- children
- grandparents
- aunts, uncles
- cousins

Estimated contributions of sources of variation to differences in stature and conservatism

	Proportion of total variation (%)								
	St	ature	Cons	ervatism					
Source	Males	Females	Males	Females					
Genetic									
Additive	55.8	59.6	35.5	19.8					
Assortment	16.1	17.2	22.2	12.4					
Dominance	9.4	6.9	6.7	12.5					
"Total genetic"	83.9	86.7	64.4	44.7					
Environment									
Maternal	0.0	0.2	1.5	1.0					
Paternal	0.0	0.2	0.0	0.1					
Twin	4.7	7.6	0.1	4.2					
Sibling	0.0	1.6	0.0	5.2					
Within-family	0.0	1.4	17.5	32.4					
"Error"	15.3	13.1	22.9	4.1					
G-E covariance	-1.2	-7.9	-6.2	8.1					

Linkage

Association

We also run a journal

- Editor: Nick Martin
- Editorial assistant + subscriptions: Marisa Grimmer
- Publisher: Australian
 Academic Press
- Fully online
- http://www.ists.qimr .edu.au/journal.html

Rationale for QTL analysis

- QTL = quantitative trait locus
- Biology: Understanding genetic variation by dissecting complex traits
 - basic biology
 - applications in agriculture
 - applications in medicine

Thomas Hunt Morgan – discoverer of linkage

Linkage = Co-segregation

13 14 15 16 17 18 19 20 21 22 X Y

For disease traits (affected/unaffected) Affected sib pairs selected

For continuous measures Unselected sib pairs

