Summarizing Variation Matrix Algebra \& Mx

Michael C Neale PhD

Virginia Institute for Psychiatric and Behavioral Genetics
Virginia Commonwealth University
19th International workshop on Methodology Twin and Family Studies

Overview

- Mean/Variance/Covariance
- Calculating
- Estimating by ML
- Matrix Algebra
- Normal Likelihood Theory
- Mx script language

Computing Mean

- Formula $\sum\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{N}$
- Can compute with
- Pencil
- Calculator
- SAS
- SPSS
- Mx

One Coin toss

2 outcomes

Two Coin toss

3 outcomes

Four Coin toss

5 outcomes

Ten Coin toss

9 outcomes

Outcome

Fort Knox Toss

Infinite outcomes

De Moivre 1733 Gauss 1827

Dinosaur (of a) Joke

- Elk:

The Theory by A. Elk brackets Miss brackets. My theory is along the following lines.

- Host:

Oh God.

- Elk:

All brontosauruses are thin at one end, much MUCH thicker in the middle, and then thin again at the far end.

Pascal's Triangle

> Frequency 1
> 11
> 121
> 1331
> 14641
> 15101051
> 1615201561
> 172135352171

Probability
1/1
1/2
1/4
1/8
1/16
1/32
1/64
1/128

Pascal's friend Chevalier de Mere 1654; Huygens 1657;
Cardan 1501-1576

Variance

- Measure of Spread
- Easily calculated
- Individual differences

Average squared deviation

 Normal distribution

Measuring Variation

 Weighs \& Means- Absolute differences?
- Squared differences?
- Absolute cubed?
- Squared squared?

Measuring Variation
 Ways \& Means

- Squared differences

Fisher (1922) Squared has minimum variance under normal distribution

Covariance

- Measure of association between two variables
- Closely related to variance
- Useful to partition variance

Deviations in two dimensions

Deviations in two dimensions

Measuring Covariation

 Concept: Area of a rectangle- A square, perimeter 4
- Area 1

Measuring Covariation

 Concept: Area of a rectangle- A skinny rectangle, perimeter 4
- Area $.25^{* 1} 1.75=.4385$
.25
1.75

Measuring Covariation Concept: Area of a rectangle

- Points can contribute negatively
- Area -. $25^{* 1} 1.75=-.4385$
1.75
-. 25

Measuring Covariation

Covariance Formula: Average cross poduct of deviations from mean

$$
\sigma_{x y}=\frac{\sum\left(\mathbf{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)\left(\mathbf{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}{\mathbf{N}}
$$

Correlation

- Standardized covariance
- Lies between -1 and 1

$$
\mathbf{r}_{x y}=\frac{\sigma_{x y}}{\sqrt{\sigma_{x}^{2} \sigma_{y}^{2}}}
$$

Summary

Formulae for sample statistics; $\mathrm{i}=1$....N observations

$$
\begin{aligned}
\mu & =\left(\Sigma \mathbf{x}_{\mathrm{i}}\right) / \mathbf{N} \\
\sigma_{\mathrm{x}}^{2} & =\Sigma\left(\mathbf{x}_{\mathrm{i}}-\mu_{\mathrm{x}}^{2}\right)^{2} /(\mathbf{N}) \\
\sigma_{\mathrm{xy}} & =\Sigma\left(\mathbf{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)\left(\mathbf{y}_{\mathrm{i}}-\mu_{\mathbf{y}}\right) /(\mathbf{N}) \\
\mathbf{r}_{\mathrm{x}} & =\frac{\sigma_{\mathrm{xy}}}{\sqrt{\sigma_{\mathrm{x}}^{2} \sigma_{\mathrm{x}}^{2}}}
\end{aligned}
$$

Variance covariance matrix

Several variables

$$
\left.\begin{array}{lll}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) & \operatorname{Cov}(X, Z) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y) & \operatorname{Cov}(Y, Z) \\
\operatorname{Cov}(X, Z) & \operatorname{Cov}(Y, Z) & \operatorname{Var}(Z)
\end{array}\right]
$$

Variance covariance matrix

Univariate Twin Data

Only suitable for complete data Good conceptual perspective

Conclusion

- Means and covariances
- Basic input statistics for "Traditional SEM"
- Easy to compute
- Can use raw data instead

Likelihood computation

Calculate height of curve

Univariate - height of normal pdf

- $\phi(\mathrm{x})=$
$-\left(2 \Pi \sigma^{2}\right)^{-.5} e^{\left.-.5\left(\left(x_{1}-\mu\right)^{\wedge} 2\right) / \sigma^{\wedge} 2\right)}$
- Multivariate - height of multinormal pdf

$$
-\left|2 \Pi \sum\right|-n / 2 e^{-.5\left(\left(x_{1}-\mu\right) \sum^{-1}\left(x_{1}-\mu\right)^{\prime}\right)}
$$

Height of normal curve

Probability density function

$\phi\left(\mathrm{x}_{\mathrm{i}}\right)$ is the likelihood of data point x_{i} for particular mean \& variance estimates

Height of bivariate normal curve

An unlikely pair of (x, y) values

Exercises: Compute Normal PDF

Get used to Mx script language

Use matrix algebra

Taste of likelihood theory

