Summarizing Variation Matrix Algebra & Mx

Michael C Neale PhD Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

19th International workshop on Methodology Twin and Family Studies

Overview

- Mean/Variance/Covariance
 Coloulating
 - Calculating
 - Estimating by ML
- Matrix Algebra
- Normal Likelihood Theory
- Mx script language

Computing Mean

• Formula $\Sigma(x_i)/N$

- Can compute with
 - Pencil
 - Calculator
 - SAS
 - SPSS
 - Mx

One Coin toss 2 outcomes

Two Coin toss 3 outcomes

Four Coin toss 5 outcomes

Ten Coin toss 9 outcomes

Outcome

Infinite outcomes

De Moivre 1733 Gauss 1827

Dinosaur (of a) Joke

 Elk: The Theory by A. Elk brackets Miss brackets. My theory is along the following lines.

 Host: Oh God.

Elk:

All brontosauruses are thin at one end, much MUCH thicker in the middle, and then thin again at the far end.

Pascal's Triangle

Frequency	Probability
1	1/1
1 1	1/2
121	1/4
1331	1/8
14641	1/16
1 5 10 10 5 1	1/32
1 6 15 20 15 6 1	1/64
1 7 21 35 35 21 7 1	1/128

Pascal's friend Chevalier de Mere 1654; Huygens 1657; Cardan 1501-1576

Variance

Measure of Spread

Easily calculated

Individual differences

Average squared deviation

Normal distribution

Variance = $\Sigma d_i^2/N$

Measuring Variation Weighs & Means

- Absolute differences?
- Squared differences?
- Absolute cubed?
- Squared squared?

Measuring Variation Ways & Means

Squared differences

Fisher (1922) Squared has minimum variance under normal distribution

Covariance

Measure of association between two variables

- Closely related to variance
- Useful to partition variance

Concept: Area of a rectangle

A square, perimeter 4
Area 1______

Concept: Area of a rectangle

- A skinny rectangle, perimeter 4
- Area .25*1.75 = .4385

Concept: Area of a rectangle

Points can contribute negatively
Area -.25*1.75 = -.4385

Covariance Formula: Average cross product of deviations from mean

$$\sigma_{xy} = \sum (X_i - \mu_x)(y_i - \mu_y)$$
N

Correlation

Standardized covarianceLies between -1 and 1

Summary

Formulae for sample statistics; i=1...N observations

$\mu = (\Sigma \mathbf{x}_i) / \mathbf{N}$ $\sigma_x^2 = \Sigma \left(\mathbf{x}_i - \mu_x \right) / (\mathbf{N})$ $\sigma_{xy} = \Sigma(x_i - \mu_x)(y_i - \mu_y) / (N)$ r_{xy} = О ху $\begin{array}{c|c} 2 & 2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \end{array}$

Variance covariance matrix

Several variables

Var(X)Cov(X,Y)Cov(X,Z)Cov(X,Y)Var(Y)Cov(Y,Z)Cov(X,Z)Cov(Y,Z)Var(Z)

Variance covariance matrix

Univariate Twin Data

Var(Twin1) Cov(Twin1,Twin2)

Cov(Twin2,Twin1) Var(Twin2)

Only suitable for complete data Good conceptual perspective

Conclusion

- Means and covariances
- Basic input statistics for "Traditional SEM"
- Easy to compute
- Can use raw data instead

Likelihood computation Calculate height of curve

Univariate - height of normal pdf
 - \(\phi(x)) = \)

Multivariate - height of multinormal pdf

$$-|2\Pi\Sigma|^{-n/2}e^{-.5((\mathbf{x}_{i} - \mu)\Sigma^{-1}(\mathbf{x}_{i} - \mu)')}$$

Height of normal curve Probability density function

 $\phi(x_i)$ is the likelihood of data point x_i for particular mean & variance estimates

Height of bivariate normal curve

An unlikely pair of (x,y) values

Exercises: Compute Normal PDF

Get used to Mx script language

Use matrix algebra

Taste of likelihood theory