Power and Sample Size

Boulder 2006 Benjamin Neale

To Be Accomplished

- Introduce concept of power via correlation coefficient (ρ) example
- Identify relevant factors contributing to power
- Practical:
 - Empirical power analysis for univariate twin model (simulation)
 - How to use mx for power

Simple example

Investigate the linear relationship (ρ) between two random variables X and Y: $\rho=0$ vs. $\rho\neq0$ (correlation coefficient).

- draw a sample, measure X,Y
- calculate the measure of association ρ (Pearson product moment corr. coeff.)
- test whether $\rho \neq 0$.

How to Test $\rho \neq 0$

- assumed the data are normally distributed
- defined a null-hypothesis ($\rho = 0$)
- chosen α level (usually .05)
- utilized the (null) distribution of the test statistic associated with ρ =0
- t=ρ √ [(N-2)/(1-ρ²)]

How to Test $\rho \neq 0$

- Sample N=40
- r=.303, t=1.867, df=38, p=.06 α=.05
- As $p > \alpha$, we fail to reject $\rho = 0$

have we drawn the correct conclusion?

α = type I error rate probability of deciding $\rho \neq 0$ (while in truth ρ =0)

α is often chosen to equal .05...why?DOGMA

N=40, r=0, nrep=1000 – central t(38), α=0.05 (critical value 2.04)

Observed non-null distribution (ρ=.2) and null distribution

In 23% of tests of ρ =0, |t|>2.024 (α =0.05), and thus draw the correct conclusion that of rejecting ρ = 0.

The probability of rejecting the nullhypothesis (ρ =0) correctly is 1- β , or the power, when a true effect exists

Hypothesis Testing

- Correlation Coefficient hypotheses:
 - $-h_o$ (null hypothesis) is $\rho=0$
 - $-h_a$ (alternative hypothesis) is $\rho \neq 0$
 - Two-sided test, where $\rho > 0$ or $\rho < 0$ are one-sided
- Null hypothesis usually assumes no effect
- Alternative hypothesis is the idea being tested

Summary of Possible Results H-0 true H-0 false accept H-0 $1-\alpha$ β reject H-0 α $1-\beta$

α=type 1 error rate
β=type 2 error rate
1-β=statistical power

STATISTICS

Power

- The probability of rejection of a false null-hypothesis depends on:
 - -the significance criterion (α)
 - -the sample size (N)
 - -the effect size (Δ)

"The probability of detecting a given effect size in a population from a sample of size N, using significance criterion α "

Effects on Power Recap

- Larger Effect Size
- Larger Sample Size
- Alpha Level shifts <Beware the False Positive!!!>
- Type of Data:
 - Binary, Ordinal, Continuous
- Multivariate analysis
- Empirical significance/permutation

When To Do Power Calculations?

- Generally study planning stages of study
- Occasionally with negative result
- No need if significance is achieved
- Computed to determine chances of success