Extended sibships

Danielle Posthuma
Kate Morley

Files:
danielle\ExtSibs

Classic Twin Design

Twins share the same womb at the same

- ACE / ADE
- heterogeneity
 biktvarfanderinquteviffsphfferesentative of the normal population
- multivariate
- Sibling interaction
- Developmental
- Issues
- generalizibility
>Additional Siblings
- Assortative mating >Parents/spouses
- Cultural transmission >Parents

Random vs Assortative Mating

- Random mating
- Assortment will increase DZ correlations
- When fitting ACE model, with assortment present, C will be overestimated
- When fitting AE model, with assortment present, A will be overestimated

There is more than the classical twin

 design- Larger pedigrees
- Parent-offspring (incl. cultural transmission, assortative mating)
- Grandparents-parents-offspring
- Spouses of co-twins/siblings
- Larger sibships
- Adoption studies
- MZA DZA MZT DZT
- Non-biological siblings
- Virtual twins (non-biological siblings of same age)

Parent - Offspring

Genetic Transmission Model

- Genetic transmission
- Fixed at . 5
- Residual Genetic

Variance

- Fixed at . 5
- Equilibrium of variances across generations

Common Environment Model

- Common environment
- Same for all family members
- Assortment
- Function of common environment

Social Homogamy Model

- Assortment
- Social
- Cultural Transmission
- From C to C
- Non-parental Shared Environment
- Residual

Phenotypic Assortment Model

- Assortment
- Phenotypic
- Cultural Transmission
- From P to C
- Non-parental Shared Environment
- Residual
- Genotype-Environment Covariance

Spouses and offspring of twins

Model for spouses and children of twins

 (Eaves)

TC 19 - Boulder 2006

Extended sibships

Twins Only

TC 19 - Boulder 2006

Twins Only: var-cov matrices

Adding siblings

Is easy!
But why should I?

Sample size required to detect A

With power of 80% and probability of 5%

Sample size required to detect C

With power of 80% and probability of 5%

Larger sibships

-Provides a bit more power to detect A
-Provides a lot more power to detect C
Since C is usually small (e.g. A $=.60, C=.20$, $\mathrm{E}=.20$), C is usually dropped from the model as it is not significant. As C is a familial source of variance, part of it will the end up in A, which will now be overestimated. Therefore, more power for C protects against overestimation of A.

Larger sibships

- Will also allow you to test certain assumptions such as:
- Are twins different from singletons with respect to means?
- Are twins different from singletons with respect to variances?
- Do DZ twins correlate any different than non-twin sibpairs?

Adding siblings

TC 19 - Boulder 2006

MZ and one additional sibling

	t1	t2	s1
t1	$\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$	$\mathrm{a}^{2}+\mathrm{c}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$
t2	$\mathrm{a}^{2}+\mathrm{c}^{2}$	$\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$
s1	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$	$\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$

DZ and one additional sibling

	t 1	t 2	s 1
t 1	$\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$
t 2	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$	$\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$
s 1	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$	$0.5 \mathrm{a}^{2}+\mathrm{c}^{2}$	$\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{e}^{2}$

Exercise

- Copy TwinsOnly.mx and mriiq.rec
- Open Mx script TwinsOnly.mx

Modify this script such that

- Data from sib 1 is included
- Data from sib 1 to sib 6 are included
- Check -2ll, df, estimated pms, n observations for each model

Twins
Twins +1
Twins +6
-2ll df est obs
3878.1774944498
5025.1926394643
5388.9806844688

Adding more siblings becomes tedious!

 (and errorprone..)
MZ's and 6 additional siblings

```
A+C+E | A+C | H@A+C |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _
A+C |A+C+E | H@A+C |H@A+C|H@A+C |H@A+C|H@A+C |H@A+C _
H@A+C | H@A+C |A+C+E |H@A+C|H@A+C |H@A+C|H@A+C |H@A+C _
H@A+C | H@A+C |H@A+C|A+C+E|H@A+C |H@A+C|H@A+C|H@A+C _
H@A+C | H@A+C | H@A+C|H@A+C|A+C+E|H@A+C|H@A+C|H@A+C _
H@A+C | H@A+C |H@A+C|H@A+C|H@A+C |A+C+E|H@A+C|H@A+C _
H@A+C | H@A+C |H@A+C|H@A+C|H@A+C |H@A+C|A+C+E|H@A+C _
H@A+C | H@A+C |H@A+C|H@A+C|H@A+C|H@A+C|H@A+C|A+C+E ;
```


Adding more siblings

6 extra siblings

MZ's and 6 additional siblings

```
A+C+E | A+C | H@A+C |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _
A+C |A+C+E | H@A+C |H@A+C|H@A+C|H@A+C|H@A+C|H@A+C _
H@A+C | H@A+C |A+C+E |H@A+C|H@A+C |H@A+C|H@A+C|H@A+C _
H@A+C | H@A+C |H@A+C|A+C+E|H@A+C |H@A+C|H@A+C|H@A+C _
H@A+C | H@A+C | H@A+C|H@A+C|A+C+E|H@A+C|H@A+C|H@A+C _
H@A+C | H@A+C | H@A+C|H@A+C|H@A+C|A+C+E|H@A+C|H@A+C _
H@A+C | H@A+C | H@A+C|H@A+C|H@A+C |H@A+C|A+C+E|H@A+C __
H@A+C | H@A+C | H@A+C|H@A+C|H@A+C|H@A+C|H@A+C|A+C+E ;
```


MZ's and 6 additional siblings

Q@A

Twin pair and 6 additional siblings

```
1|1|1|1|1|1|1|1_
    C|C|C|C|C|C|C|C_
1|1|1|1|1|1|1|1_
C|C|C|C|C|C|C|C_
1|1|1|1|1|1|1|1_
C|C|C|C|C|C|C|C_
1|1|1|1|1|1|1|1_
@ C=
1|1|1|1|1|1|1|1_
1|1|1|1|1|1|1|1_
C|C|C|C|C|C|C|C_
1|1|1|1|1|1|1|1_
C|C|C|C|C|C|C|C_
1|1|1|1|1|1|1|1;
C|C|C|C|C|C|C|C;
```


S@C, S Unit 88

Twin pair and 6 additional siblings

$1\|0\| 0\|0\| 0\|0\| 0 \mid 0{ }_{-}$	$\mathrm{E}\|0\| 0\|0\| 0\|0\| 0 \mid 0$										
0\|1	0	0	0	0	0	0	0\|E	$0\|0\| 0\|0\| 0$			
0\|0	1	0	0	0	0	0	0\|0	E	$0\|0\| 0 \mid 0$		
$0\|0\| 0\|1\| 0\|0\| 0 \mid 0$	0\|0	0	E	0	0						
0\|0	0	0	1	0	0	0	0\|0	0	0	E	$0 \mid 0$
$0\|0\| 0\|0\| 0\|1\| 0 \mid 0$	0\|0	0	0	0	E	0	0				
$0\|0\| 0\|0\| 0\|0\| 1 \mid 0$	0\|0	0	0	0	0	E	0				
0\| $0\|0\| 0\|0\| 0\|0\| 1$;	0\| $0\|0\| 0\|0\| 0\|0\| E ;$										

T@E, T = Ident 88

Mx

- Copy Twins\&6.mx
- Open Twins\&6.mx

Exercise

- Modify this script for maximum nr of siblings
$=3,4$, or 5 , write down $-2 l l$, df, estimated pms, n observations for each model

Twins
Twins +1
Twins +2
Twins +3
Twins +4
Twins +5
Twins +6
-2II df est obs
3878.1774944498
5025.1926394643
5279.0026714675
$5337.380678 \quad 4 \quad 682$
5374.6176824686
$5381.883683 \quad 4 \quad 687$
$5388.980684 \quad 4688$

Exercise

- Modify the script with 6 additional siblings (so 8 persons) to a bivariate script for wmem and greym. If correct:
- $-2 \mathrm{ll}=8083.085, \mathrm{df}=935$
- You can start the mean for wmem at 60 and the mean for greym at 400. all variance components (SD) can be started at 30
- Add standardization matrices for A and E

In Summary

- Be aware of assumptions of the twin design
- Adding additional persons: add expectations to Covariance statement
- Adding additional phenotypes: change matrix dimensions

