Multivariate Mx Exercise

D Posthuma Files: \\danielle\Multivariate

Short summary of terminology

- Genetic correlation for MZ twins
- Genetic correlation for DZ twins
- Genetic correlation
- Proportion of the observed correlation (or covariance) explained by correlation at the genetic level

TC 19 - Boulder 2006

Bivariate ACE Model for a Twin Pair

Genetic correlation

$$r_g = \frac{x_{21}x_{11}}{\sqrt{x_{11}^2 * (x_{21}^2 + x_{22}^2)}}$$

Matrix Function in Mx: T = \stnd(A)

Standardized drawing or correlated factors solution <u>1/.5</u> <u>1/.5</u>

The contribution to the observed correlation is a function of both heritabilities and the rg

Proportion of the observed correlation explained by correlation at the genetic level

Observed correlation is the result of correlation at

- The genetic level
- Common environmental level
- Unique environmental level

 $c_{x,v}^2 = \sqrt{c_x^2 * r_c * \sqrt{c_v^2}}$

r_{ph} due to E

 $e_{x,v}^2 = \sqrt{e_x^2 * r_e * 1}$

Genetic contribution to observed correlation (h_{xv}^2) is a function of rg and both heritabilities

Observed correlation

$$r = \sqrt{h_x^2} * r_g * \sqrt{h_y^2}$$
$$+ \sqrt{c_x^2} * r_c * \sqrt{c_y^2}$$
$$+ \sqrt{e_x^2} * r_e * \sqrt{e_y^2}$$

Observed correlation and contributions

$$.58 = \sqrt{.45} * .86 * \sqrt{.56} = 0.43$$
$$+ \sqrt{.44} * 0.39 * \sqrt{0.36} = 0.16$$
$$+ \sqrt{.11} * -0.02 * \sqrt{0.08} = -.00$$

Proportion of the observed correlation (or covariance) explained by correlation at the genetic level: 0.43/0.58 = 0.74

Proportion of the observed correlation (or covariance) explained by correlation at the shared environmental level: 0.16/0.58 = 0.27

Proportion of the observed correlation (or covariance) explained by correlation at the non-shared environmental level: 0/0.58 = 0

Percentage of correlation explained MATRIX **S**

This is a computed FULL matrix of order 2 by 6 [=A%(A+C+E)|C%(A+C+E)|E%(A+C+E)]

TC 19 - Boulder 2006

Brain Volume (MRI)

Identical Eraternal

2

Table I. Random effects analysis regressing individual regional gray matter measures on the IQ measure, Spearman's g (n = 40 subjects).

(a) Random effects analysis	Controlling f	Controlling for overall gray matter only			After controlling for other predictors	
Measure	Regression coefficient (β)	Effect size (t)	Significance	F _{1,33}	Significance	
Whole brain gray matter volum	e 0.0037	1.73	0.046	3.92	0.056 l	
Frontal gray matter volume	0.072	1.95	0.02.9 ^{**}	9.37	0.0044**	
Temporal gray matter volume	0.039	0.23	0.411	3.77	0.0607	
Parietal gray matter volume	0.055	0.41	0.343	0.54	0.4690	
Occipital gray matter volume	0.033	0.15	0.439	0.04	0.8376	
Frontal	ay matter	me pos		<i>P</i> 0001 tiQ1		

P M Thompson, et al. Genetic influences on brain structure. Nat. Neurosci 2001

M Thompson, et al. Genetic influences on brain strugture. Nat. Neurosci 2001

>0.05

Significance

Nature of the correlation?

	nature neuroscience	ARCH	IVE Grey matter	CLASSINEDITE SUBSCRIBET - IC	Q
Observ correlat	ed io <u>Helifoscience</u>	Fe	0.25*	0.24*	
MZ cross tr correlat	ai Cross ty	win T V	0.26*	0.22*	
DZ cross tr correlat	TOP ait FCTOSS tv FIGURES/TABLES	win g	0.14	0.19	
Genetic observe	contribution d correlation	on to on	100%	100%	

Brain volume-IQ dataset

IQ: 688 subjects from 271 families (twins and siblings) MRI: 258 subjects from 111 families (twins and siblings) Overlapping: 135 subjects from 60 families

This example

We will use Brain volume-IQ dataset, but twins only, no additional siblings

- Variables: Grey matter, White matter, Working memory dimension of the WAISIII IQ test
- Data have been corrected for age and sex on SPSS

\danielle\Multivariate Copy the files

Open Mx script

Now run it and open the output

Results

MATRIX S

This is a computed FULL matrix of order 2 by 6 [=A%(A+C+E)|C%(A+C+E)| [E%(A+C+E)]

MATRIX T

This is a computed FULL matrix of order 2 by 2

 $[= SQRT(I.A) \sim A \otimes SQRT(I.A) \sim]$

Correlation due to A is a function of the heritabilities and rg:

sqrt(a²grey)*Rg* sqrt(a²wmem) =

sqrt(.82)*.36* sqrt(.69) = .27

MATRIX V

This is a computed FULL matrix of order 2 by 2

 $[= SQRT(I.E) \sim E \times SQRT(I.E) \sim]$

Correlation due to E:

sqrt(e^2grey)* Re*sqrt(e^2wmem) =

 $sqrt(.18)^* - .18 * sqrt(.31) = - .04$

Correlation due to A: 0.27

Correlation due to E: -0.04

Total (phenotypic) correlation between Grey Matter and Working Memory: 0.23

% due to A= 0.27/0.23 *100=118% % due to E= -.04/0.23 *100= -18%

Results

MATRIX S This is a computed FULL matrix of order 2 by 6 [=A%(A+C+E)|C%(A+C+E)|E%(A+C+E)]A1 A2 C1 C2 E1 E2 GREYM 0.82 1.18 0.00 0.00 -0.18 0.18 (1.18) 0.69 0.00 0.00 (-0.18) **WMEM** 0.31 % contribution to the phenotypic correlation due to A, and E

TC 19 - Boulder 2006

Exercise

- Add a third variable (white matter volume 'whitem')
- Fit the model in this order:
- Grey matter White matter Working memory
- Use these starting values:
 - Start 400 G 1 1 G 1 2 Start 70 G 1 3 st 18 X 1 1 Z 1 1 X 2 2 Z 2 2
 - st 4 X 3 3 Z 3 3
 - □ If correctly: -2II = 8429.042, df = 929

Exercise

- What are the genetic correlations between grey matter, white matter and working memory?
- What are the correlations of unique E factors?
- What are a² and e²?
- What determines the phenotypic correlation?

Α	Grey	White	Wmem
Grey	a ²	contrib	contrib
White	rg	a ²	contrib
Wmem	rg	rg	a ²

Contrib=bivariate heritability= $rg*sqrt(a_1^2)*sqrt(a_2^2)$

Ε	Grey	White	Wmem
Grey	e ²	contrib	contrib
White	re	e ²	contrib
Wmem	re	re	e ²

Contrib= bivariate environmentability=re*sqrt(e_1^2) *sqrt(e_2^2)

Α	Grey	White	Wmem
Grey	.82	.68*sqrt.82*sqrt.87 = .57	.34*sqrt.82*sqrt.69 = .26
White	.68	.87	.21*sqrt.87*sqrt.69 = . 16
Wmem	.34	.21	.69

Ε	Grey	White	Wmem
Grey	.18	.0*sqrt.18*sqrt.13 = _00	15*sqrt.18*sqrt.31 = 04
White	.00	.13	.02*sqrt.13*sqrt.31 =
Wmem	15	.02	.31

	Contr A	+	Contr E	= Pheno corr
Grey – White	0.57	+	0.00	= 0.57
Grey – Wmem	0.26	+	04	= 0.22
White – Wmer	n 0.16	+	0.00	= 0.16

You could further test whether the -.04 = zero, by constraining the re to be zero or by dropping the Z 2 1 parameter

Central place for Mx scripts genetic analyses

http://www.psy.vu.nl/mxbib

Funded by the GenomEUtwin project

(European Union Contract No. QLG2-CT-2002-01254).