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-Multiple regression 
-Fixed effects (M)ANOVA 
-Random effects (M)ANOVA
-Factor analysis / PCA 
-Time series (ARMA)
-Path / LISREL models 

Multivariate statistical methods; for example



Multiple regression
x predictors (independent), e residuals, y dependent; 

both x and y are observed

x
x
x
x

y
y
y

e

e
e



Factor analysis:
measured and unmeasured (latent) variables. Measured 
variables can be “indicators” of unobserved traits.



Path model / SEM model

Latent traits can influence other latent traits



Measurement and causal models in 
non-experimental research

• Principal component analysis (PCA)
• Exploratory factor analysis (EFA)
• Confirmatory factor analysis (CFA)
• Structural equation models (SEM)
• Path analysis

These techniques are used to analyze multivariate data that 
have been collected in non-experimental designs and often 
involve latent constructs that are not directly observed. 
These latent constructs underlie the observed variables and 
account for inter-correlations between variables.



All models specify a covariance matrix Σ and 
means vector µ:

Σ = ΛΨΛt + Θ

total covariance matrix [Σ] =  
factor variance [ΛΨΛt ] + residual variance [Θ]

means vector µ can be modeled as a function of 
other (measured) traits e.g. sex, age, cohort, SES

Models in non-experimental research



Outline

• Cholesky decomposition
• PCA (eigenvalues)
• Factor models (1,..4 factors)
• Application to personality data
• Scripts for Mx, [Mplus, Lisrel]



Application: personality

• Personality (Gray 1999): a person’s general 
style of interacting with the world, especially 
with other people – whether one is withdrawn 
or outgoing, excitable or placid, conscientious 
or careless, kind or stern.

• Is there one underlying factor?
• Two, three, more?



Personality: Big 3, Big 5, Big 9?

Big 3 Big5 Big 9 MPQ scales

Extraversion Extraversion Affiliation Social Closeness
Potency Social Potency
Achievement Achievement

Psychoticism Conscientious Dependability Control

Agreeableness Agreeableness Aggression

Neuroticism Neuroticism Adjustment Stress Reaction
Openness Intellectance Absorption

Individualism
Locus of Control



Software scripts
• Mx MxPersonality (also includes data)
• (Mplus) Mplus
• (Lisrel) Lisrel

• Copy from dorret\2006

Data:
Neuroticism, Somatic anxiety, Trait Anxiety, Beck Depression, 
Anxious/Depressed, Disinhibition, Boredom susceptibility, Thrill 
seeking, Experience seeking, Extraversion, Type-A behavior, Trait 
Anger, Test attitude (13 variables)



Cholesky decomposition: S = Q Q’
where Q = lower diagonal (triangular)

For example, if S is 3 x 3, then Q looks like:

f1l 0 0
f21 f22 0
f31 f32 f33

I.e. # factors = # variables, this approach gives a transformation 
of S; completely determinate.

Cholesky decomposition for 13 personality traits



Subjects: Birth cohorts (1909 – 1989)
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Four data sets were created:

1 Old male (N = 1305)
2 Young  male (N = 1071)
3 Old female (N = 1426)
4 Young female (N = 1070)

What is the structure of 
personality?
Is it the same in all datasets?

Total sample: 46% male, 54% female



195294468685942360447457528Total

19503521598Spouse of twin

303314687976961071Mother

2739402725664955Father
28473236118441069Sib
89534468671145147121892835Twin
Total6x5x4x3x2x1x

Application: Analysis of  Personality in twins, spouses, sibs, parents 
from Adult Netherlands Twin Register: longitudinal participation

Data from multiple occasions were averaged for each subject;
Around 1000 Ss were quasi-randomly selected for each sex-age group

Because it is March 8, we use data set 3 (personShort sexcoh3.dat)



dorret\2006\Mxpersonality (docu.doc)
• Datafiles for Mx (and other programs; free format)
• personShort_sexcoh1.dat old males N=1035 (average yr birth 1943)
• personShort_sexcoh2.dat young males N=1071 (1971)
• personShort_sexcoh3.dat old females N=1426 (1945)
• personShort_sexcoh4.dat young females N=1070 (1973)

• Variables (53 traits): (averaged over time survey 1 – 6)
trappreg trappext sex1to6 gbdjr twzyg halfsib id_2twns drieli: demographics
neu ext nso tat  tas es bs dis sbl jas angs boos  bdi : personality
ysw ytrg ysom ydep ysoc ydnk yatt ydel yagg yoth yint yext ytot yocd: YASR
cfq mem dist blu nam fob blfob scfob agfob hap sat self imp cont chck urg obs com: other

• Mx Jobs
• Cholesky 13vars.mx : cholesky decomposition (saturated model)
• Eigen 13vars.mx: eigenvalue decomposition of computed correlation matrix (also 

saturated model)
• Fa 1 factors.mx: 1 factor model
• Fa 2 factors.mx : 2 factor model
• Fa 3 factors.mx: 3 factor model (constraint on loading)
• Fa 4 factors.mx: 1 general factor, plus 3 trait factors
• Fa 3 factors constraint dorret.mx
• Fa 3 factors constraint dorret.mx: alternative constraint to identify the model



title cholesky for sex/age groups
data ng=1 Ni=53 !8 demographics, 13 scales, 14 yasr, 18 extra
missing=-1.00 !personality missing = -1.00
rectangular file =personShort_sexcoh3.dat
labels
trappreg trappext sex1to6 gbdjr twzyg halfsib id_2twns drieli neu ext nso etc.

Select NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT /
begin matrices;
A lower 13 13 free !common factors
M full 1 13 free !means
end matrices;

covariance A*A'/
means M  /
start 1.5 all etc.
option nd=2
end



NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT /

MATRIX A: This is a LOWER TRIANGULAR matrix of order   13 by 13

• 23.74
• 3.55    4.42
• 6.89    0.96    5.34
• 1.70    0.72    0.80    2.36
• 2.79    0.32    0.68   -0.08    2.87
• -0.30    0.03   -0.01    0.16    0.18    7.11
• 0.28    0.13    0.17   -0.04    0.24    3.32    6.03
• 1.29   -0.08    0.30   -0.15   -0.09    0.96    1.52    6.01
• 0.83   -0.07    0.35   -0.30    0.15    1.97    0.91    1.16    5.23
• -4.06   -0.11   -1.41   -0.20   -0.90    2.04    1.07    3.14    0.94  14.06
• 1.85   -0.02    0.70   -0.28    0.01    0.47    0.00    0.43   -0.08    1.11    3.98
• 1.86   -0.09    0.80   -0.49   -0.18    0.13    0.04    0.21    0.18    0.51    0.97    3.36
• -1.82    0.16   -0.34    0.02   -1.26   -0.16   -0.46   -0.80   -0.53 -1.21   -1.20   -1.64   7.71



To interpret the solution, standardize the factor loadings both with 
respect to the latent and the observed variables.
In most models, the latent variables have unit variance;
standardize the loadings by the variance of the observed variables 
(e.g. λ21 is divided by the SD of P2)

F1 F2 F3 F4 F5

P1 P2 P3 P4 P5



Group 2 in Cholesky script
Calculate Standardized Solution
Calculation
Matrices = Group 1
I Iden 13 13
End Matrices;

Begin Algebra;
S=(\sqrt(I.R))~;   ! diagonal matrix of standard deviations
P=S*A;  ! standardized estimates for  factors loadings
End Algebra; 

End

(R=(A*A'). i.e. R has variances on the diagonal)



Standardized solution: standardized loadings

NEU NSO ANX BDI YDEP   TAS ES BS DIS    EXT JAS ANGER TAT /

• 1.00 
• 0.63 0.78   
• 0.79 0.11    0.61 
• 0.55 0.23    0.26    0.76  
• 0.69 0.08    0.17   -0.02    0.70    
• -0.04    0.00   0.00    0.02    0.03    0.99
• 0.04    0.02    0.02   -0.01    0.04    0.48 0.87
• 0.20   -0.01    0.05   -0.02   -0.01    0.15 0.24    0.94 
• 0.14   -0.01    0.06   -0.05    0.02    0.34 0.15    0.20    0.89
• -0.27   -0.01   -0.09   -0.01   -0.06  0.13    0.07    0.21   0.06   0.92
• 0.40    0.00    0.15   -0.06    0.00    0.10    0.00   0.09   -0.02  0.24 0.86
• 0.45   -0.02    0.19   -0.12   -0.04   0.03    0.01    0.05    0.04  0.12   0.24 0.82
• -0.22    0.02   -0.04    0.00   -0.15   -0.02   -0.05 -0.09   -0.06 -0.14 -0.14 -0.19  0.91



NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT /

• Your model has104 estimated parameters :
• 13 means
• 13*14/2 = 91 factor loadings
•
• -2 times log-likelihood of data >>>108482.118



Eigenvalues, eigenvectors & principal 
component analyses (PCA)

1) data reduction technique
2) form of factor analysis
3) very useful transformation



Principal components analysis (PCA)

PCA is used to reduce large set of variables into a smaller 
number of uncorrelated components.

Orthogonal transformation of a set of variables (x) into a set 
of uncorrelated variables (y) called principal components that 
are linear functions of the x-variates.

The first principal component accounts for as much of the 
variability in the data as possible, and each succeeding 
component accounts for as much of the remaining variability 
as possible. 



Principal component analysis of 13 personality / 
psychopathology inventories: 3 eigenvalues > 1

(Dutch adolescent and young adult twins, data 1991-1993; SPSS)
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Principal components analysis (PCA)
PCA gives a transformation of the correlation matrix R and is a 
completely determinate model.

R (q x q) = P D P’, where 
P = q x q orthogonal matrix of eigenvectors
D = diagonal matrix (containing eigenvalues)

y = P’ x and the variance of yj is pj

The first principal component y1 = p11x1 + p12x2 + ... + p1qxq
The second principal component y2 = p21x1 + p22x2 + ... + p2qxq
etc.

[p11, p12, … , p1q] is the first eigenvector
d11 is the first eigenvalue (variance associated with y1)



Principal components analysis (PCA)

The principal components are linear combinations of the 
x-variables which maximize the variance of the linear 
combination and which have zero covariance with the 
other principal components. 

There are exactly q such linear combinations (if R is 
positive definite).

Typically, the first few of them explain most of the 
variance in the original data. So instead of working with 
X1, X2, ..., Xq, you would perform PCA and then use 
only Y1 and Y2, in a subsequent analysis. 



PCA, Identifying constraints: 
transformation unique

Characteristics:
1) var(dij) is maximal
2) dij is uncorrelated with dkj

are ensured by imposing the constraint:
PP' = P'P = I (where ' stands for transpose)



Principal components analysis (PCA)

The objective of PCA usually is not to account for 
covariances among variables, but to summarize the 
information in the data into a smaller number of 
(orthogonal) variables. 
No distinction is made between common and unique 
variances. One advantage is that factor scores can be 
computed directly and need not to be estimated.

- H. Hotelling (1933): Analysis of a complex of statistical variables into 
principal component. Journal Educational Psychology, 417-441, 498-520



PCA

Primarily data reduction technique, but often used 
as form of exploratory factor analysis:

•Scale dependent (use only correlation matrices)!
•Not a “testable” model, no statistical inference
•Number of components based on rules of thumb 
(e.g. # of eigenvalues > 1)



title eigen values
data ng=1 Ni=53
missing=-1.00
rectangular file =personShort_sexcoh3.dat
labels
trappreg trappext sex1to6 gbdjr twzyg halfsib id_2twns drieli neu ext nso tat  tas etc.
Select NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT / 

begin matrices;
R stand 13 13 free !correlation matrix
S diag 13 13 free !standard deviations
M full 1 13 free !means
end matrices;
begin algebra;
E = \eval(R); !eigenvalues of R
V = \evec(R); !eigenvectors of R
end algebra;

covariance S*R*S'/
means M  /

start 0.5 all etc.
end



MATRIX R:  This is a STANDARDISED matrix of order 13 by 13

• 1.000
• 0.625    1.000
• 0.785    0.576    1.000
• 0.548    0.523    0.612    1.000
• 0.685    0.490    0.648    0.421    1.000
• -0.041   -0.023   -0.033   -0.005   -0.011    1.000
• 0.041    0.040    0.049    0.028    0.059    0.480    1.000
• 0.202    0.116    0.186    0.102    0.136    0.140    0.288  1.000
• 0.142    0.080    0.146    0.052    0.125    0.329    0.305  0.306    1.00
• -0.266   -0.172   -0.266   -0.181   -0.239    0.143    0.110    0.172  0.108    
• 0.400    0.247    0.406    0.211    0.301    0.083    0.070 0.191
• 0.451    0.265    0.470    0.201    0.312    0.009    0.045 0.159   ETC
• -0.216   -0.120   -0.192   -0.123   -0.258   -0.013   -0.071   -0.148

Correlations NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT /



Eigenvalues

• MATRIX E:  This is a computed FULL matrix 
of order 13 by 1,   [=\EVAL(R)]

• 1      0.200
• 2      0.263
• 3      0.451
• 4      0.457
• 5      0.518
• 6      0.549
• 7      0.677
• 8      0.747
• 9      0.824
• 10     0.856
• 11     1.300
• 12     2.052
• 13     4.106

What is the fit of this model?

It is the same as for Cholesky

Both are saturated models



Principal components analysis (PCA): S = P D P' = P* P*'

where S = observed covariance matrix
P'P = I (eigenvectors)
D = diagonal matrix (containing eigenvalues)
P* = P (D1/2)

Cholesky decomposition: S = Q Q’
where Q = lower diagonal (triangular)

For example, if S is 3 x 3, then Q looks like:
f1l 0 0
f21 f22 0
f31 f32 f33

If # factors = # variables, Q may be rotated to P*. Both approaches 
give a transformation of S. Both are completely determinate.



PCA is based on the eigenvalue decomposition.
S=P*D*P’

If the first component approximates S:
S≈P1*D1*P1’

S≈Π1*Π1’, Π1 = P1*D1
1/2

It resembles the common factor model
S≈ Σ=Λ*Λ’ +Θ, Λ≈Π1



η

y1 y2 y3 y4

pc1

y1 y2 y3 y4

pc2 pc3 pc4

pc1

y1 y2 y3 y4

η

y1 y2 y3 y4

If pc1 is large, in the sense that it accounts for much variance

=>

Then it resembles the common factor model (without unique variances)



Aims at accounting for covariances among observed 
variables / traits in terms of a smaller number of latent 
variates or common factors. 

Factor Model: x = Λ f + e,

where x = observed variables
f = (unobserved) factor score(s)
e = unique factor / error
Λ = matrix of factor loadings

Factor analysis



Factor analysis: Regression of observed 
variables (x or y) on latent variables (f or η)

One factor model 
with specifics



Factor Model: x = Λ f + e,

With covariance matrix: Σ = Λ Ψ Λ ' + Θ

where Σ = covariance matrix
Λ = matrix of factor loadings
Ψ = correlation matrix of factor scores
Θ = (diagonal) matrix of unique variances

To estimate factor loadings we do not need to know the individual 
factor scores, as the expectation for Σ only consists of Λ, Ψ, and Θ.

•C. Spearman (1904): General intelligence, objectively determined and measured. 
American Journal of Psychology, 201-293 
•L.L. Thurstone (1947): Multiple Factor Analysis, University of Chicago Press

Factor analysis



One factor model for personality?

• Take the cholesky script and modify it into a 
1 factor model (include unique variances for 
each of the 13 variables)

• Alternatively, use the FA 1 factors.mx script
• NB think about starting values (look at the 

output of eigen 13 vars.mx for trait variances)



Confirmatory factor analysis

An initial model (i.e. a matrix of factor loadings) for a confirmatory 
factor analysis may be specified when for example:

– its elements have been obtained from a previous 
analysis in another sample.

– its elements are described by a clinical model or a theoretical
process (such as a simplex model for repeated measures).



Mx script for 1 factor model
title factor
data ng=1 Ni=53
missing=-1.00
rectangular file =personShort_sexcoh3.dat
labels
trappreg trappext sex1to6 gbdjr twzyg halfsib id_2twns drieli neu ext ETC
Select NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT  /
begin matrices;
A full 13 1 free !common factors
B iden 1 1     !variance common factors
M full 13 1  free !means
E diag 13 13 free !unique factors (SD)
end matrices;
specify A
1 2  3 4  5  6  7 8 9 10 11 12 13
covariance A*B*A' + E*E'/
means M /
Starting values
end



Mx output for 1 factor model
loadings 1
• neu 21.3153
• nso 3.7950
• anx 7.7286
• bdi 1.9810
• ydep 3.0278
• tas      -0.1530
• es        0.4620
• bs 1.4337
• dis       0.9883
• ext -3.9329
• jas        2.1012
• anger 2.1103
• tat -2.1191

Unique loadings are found on the
Diagonal of E.

Means are found in M matrix

Your model has 39 estimated parameters 
-2 times log-likelihood of data 109907.192

13 means
13 loadings on the common factor
13 unique factor loadings



Factor Model: x = Λ f + e,
Covariance matrix: Σ = Λ Ψ Λ ' + Θ

Because the latent factors do not have a “natural” scale, the user 
needs to scale them. For example:

If Ψ = I: Σ = ΛΛ ' + Θ

• factors are standardized to have unit variance
• factors are independent

Another way to scale the latent factors would be to constrain one 
of the factor loadings.

Factor analysis



• a model is constructed in advance
• that specifies the number of (latent) factors
• that specifies the pattern of loadings on the factors
• that specifies the pattern of unique variances specific to each
observation
• measurement errors may be correlated
• factor loadings can be constrained to be zero (or any other value)
• covariances among latent factors can be estimated or constrained
• multiple group analysis is possible

We can TEST if these constraints are consistent with the data.

In confirmatory factor analysis:



In exploratory factor analysis:

• no model that specifies the number of latent factors
• no hypotheses about factor loadings (usually all variables load 
on all factors, factor loadings cannot be constrained)
• no hypotheses about interfactor correlations (either no 
correlations or all factors are correlated)
• unique factors must be uncorrelated
• all observed variables must have specific variances
• no multiple group analysis possible
• under-identification of parameters

Distinctions between exploratory (SPSS/SAS) 
and confirmatory factor analysis (LISREL/Mx)



Exploratory Factor Model
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Confirmatory Factor Model
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Confirmatory factor analysis
A maximum likelihood method for estimating the parameters in the
model has been developed by Jöreskog and Lawley (1968) and 
Jöreskog (1969). 
ML provides a test of the significance of the parameter estimates and 
of goodness-of-fit of the model. 
Several computer programs (Mx, LISREL, EQS) are available.

• K.G. Jöreskog, D.N. Lawley (1968): New Methods in maximum likelihood factor 
analysis. British Journal of Mathematical and Statistical Psychology, 85-96 
•K.G. Jöreskog (1969): A general approach to confirmatory maximum likelihood factor 
analysis Psychometrika, 183-202 
• D.N. Lawley, A.E. Maxwell (1971): Factor Analysis as a Statistical Method. 
Butterworths, London
• S.A. Mulaik (1972): The Foundations of Factor analysis, McGraw-Hill Book Company, 
New York
• J Scott Long (1983): Confirmatory Factor Analysis, Sage



Structural equation models

Sometimes x = Λ f + e is referred to as the measurement 
model, and the part of the model that specifies relations 
among latent factors as the covariance structure model, or 
the structural equation model.



Structural Model
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Path analysis diagrams allow us
• to represent linear structural models, such as regression, factor 
analysis or genetic models.

• to derive predictions for the variances and covariances of our 
variables under that model.

Path analysis is not a method for discovering causes, but a method 
applied to a causal model that has been formulated in advance. It can 
be used to study the direct and indirect effects of exogenous 
variables ("causes") on endogenous variables ("effects").

• C.C. Li (1975): Path Analysis: A primer, Boxwood Press
• E.J. Pedhazur (1982): Multiple Regression Analysis Explanation and Prediction, 
Hold, Rinehart and Wilston

Path Analysis & Structural Models



Two common factor model

y1 y2 y3 y4 y.. y13

η1 η2

e1 e2 e3 e4 e.. e13

Λ1,1 Λ13,2



Two common factor model

yij, i=1...P tests, j=1...N cases
Yij = λi1j η1j + λi2j η2j + eij

Λ matrix of factor loadings:
λ11 λ12

λ21 λ22

... ...
λP1 λP2



Identification
The factor model in which all variables load 
on all (2 or more) common factors is not 
identified. It is not possible in the present 
example to estimate all 13x2 loadings. 

But how can some programs (e.g. SPSS) 
produce a factor loading matrix with 13x2 
loadings?



Identifying constraints

Spss automatically imposes the identifying 
constraint similar to:

LtΘ-1L is diagonal,

Where L is the matrix of factor loadings and Θ is the 
diagonal covariance matrix of the residuals (eij).



Other identifying constraints

3 factors 2 factors

λ11 0 0 λ11 0 
λ21 λ22 0 λ21 λ22

λ31 λ32 λ33 λ31 λ32

... ... ... ... ...
λP1 λP2 λP3 λP1 λP2

Where you fix the zero is not important!



Confirmatory FA

Specify expected factor structure directly and fit the 
model. 

Specification should include enough fixed parameter 
in Λ (i.e., zero’s) to ensure identification. 

Another way to guarantee identification is the 
constraint that Λ Θ-1Λ’ is diagonal (this works for
orthogonal factors). 



2, 3, 4 factor analysis
• Modify an existing script (e.g. from 1 into 2 and 

common factors)
• ensure that the model is identified by putting at least 

1 zero loading in the second set of loading and at 
least 2 zero’s in the third set of loadings

• Alternatively, do not use zero loadings but use the 
constraint that Λ Θ-1Λ’ is diagonal

• Try a CFA with 4 factors: 1 general, 1 Neuroticism, 
1 Sensation seeking and 1 Extraversion factor



3 factor script
BEGIN MATRICES;  
A FULL 13 3 FREE  !COMMON FACTORS
P IDEN  3 3      !VARIANCE COMMON FACTORS
M FULL 13 1  FREE   !MEANS
E DIAG 13 13 FREE  !UNIQUE FACTORS
END MATRICES;

SPECIFY A
1  0    0
2  14   98
3  15   28
4  16   29
5  17   30
6  18   0
7  19   31
8  20   32
9  21   33
10 22   34
11 23   35
12 24   36
13 25   37

COVARIANCE A*P*A' + E*E'/
MEANS M /



3 factor output:
NEU NSO ANX BDI YDEP  TAS ES BS DIS  EXT JAS ANGER TAT /

• MATRIX A
• 1     21.3461 0.0000     0.0000
• 2      3.8280 0.0582    -0.6371
• 3      7.7261 0.0621     0.0936
• 4      1.9909 0.0620    -0.5306
• 5      3.0229 0.1402    -0.1249
• 6     -0.2932     4.6450 0.0000
• 7      0.3381     4.9062 -0.1884
• 8      1.3199     2.3474 1.1847
• 9      0.8890     2.8024 0.6020
• 10     -4.3455     3.3760     5.8775
• 11      2.0539     0.4507     2.2805
• 12      2.0803     0.1255     1.8850
• 13     -2.0109    -0.6641    -3.0246



Analyses

• 1 factor -2ll = 109,097 parameters = 39
• 2 factor -2ll = 109,082 51
• 3 factor -2ll = 108,728                          62
• 4 factor -2ll = 108,782 52

• saturated -2ll = 108,482                        104

χ2 = -ll(model) - -2ll(saturated;
e.g. -2ll(model3) - -2ll(sat) = 108,728-108,482 = 246; df = 104-62 = 42



Confirmatory factor model: x = Λ f + e, where
x = observed variables 
f = (unobserved) factor scores
e = unique factor / error 
Λ = matrix of factor loadings

"Univariate" genetic factor model
P j = hGj + e Ej + c Cj , j = 1, ..., n (subjects)

where P =  measured phenotype 
f  = G: unmeasured genotypic value 

C: unmeasured environment common  to family members 
E: unique environment 

Λ = h, c, e (factor loadings/path coefficients)

Genetic Structural Equation Models



x = Λ f + e
Σ = Λ Ψ Λ ' + Θ

Genetic factor model
Pji = hGji + c Cji + e Eji, j=1,..., n (pairs) and i=1,2 (Ss within pairs)

The correlation between latent G and C factors is given in Ψ (4x4) 

Λ contains the loadings on G and C: h 0 c 0
0 h 0 c

And Θ is a 2x2 diagonal matrix of E factors.

Covariance matrix: h*h + c*c | h*h + c*c + e*e | 0
(MZ pairs) h*h + c*c | h*h + c*c 0 | e*e 

Genetic Structural Equation Models



The covariance matrix of a set of observed variables is a function
of a set of parameters: Σ = Σ(Θ)

where Σ is the population covariance matrix,
Θ is a vector of model parameters and
Σ is the covariance matrix as a function of Θ

Example: x = λf + e,

The observed and model covariances matrices are:

Var(x) λ2 Var(f)+Var(e)
Cov(x,f) Var(f) λ Var(f) Var(f)

KA Bollen (1990): Structural Equation with Latent Variables, John Wiley & Sons

Structural equation models, summary



1. Model Specification
2. Identification
3. Estimation of Parameters 
4. Testing of Goodness of fit 
5. Respecification

K.A. Bollen & J. Scott Long: Testing Structural Equation Models, 
1993, Sage Publications

Five steps characterize structural equation models:



Most models consist of systems of linear equations. 
That is, the relation between variables (latent and 
observed) can be represented in or transformed to 
linear structural equations. However, the covariance 
structure equations can be non-linear functions of the 
parameters.

1: Model specification



Consider 2 vectors Θ1 and Θ2, each of which contains 
values for unknown parameters in Θ.

If Σ(Θ1) = Σ(Θ2) then the model is identified if Θ1 = Θ2

One necessary condition for identification is that the 
number of observed statistics is larger than or equal to the 
number of unknown parameters.
(use different starting values; request CI)

2: Identification: do the unknown parameters 
in Θ have a unique solution?

Identification in “twin” models depends on the multigroup design



X 1 Y1

rG

A X

hX

A Y

hY

X 1 Y1

A SX

hSX

A SY

hSY

A C

hC hC

X 1 Y1

h1

A 2

h3

A 1

h2

Identification: Bivariate Phenotypes: 1 correlation and 2 variances

Correlation Common factor Cholesky
decomposition



Correlated factors

X 1 Y1

rG

A X

hX

A Y

hY

• Two factor loading (hx and hy) 
and one correlation rG

• Expectation:
rXY = hXrGhY



Common factor

X 1 Y1

A SX

hSX

A SY

hSY

A C

hC hC

Four factor loadings:
A constraint on the factor 
loadings is needed to 
make this model 
identified.
For example: loadings on 
the common factor are 
the same.



Cholesky decomposition

X 1 Y1

h1

A 2

h3

A 1

h2

• Three factor loadings
• If h3 = 0: no influences 

specific to Y
• If h2 = 0: no covariance



Values for the unknown parameters in Θ can be obtained by a 
fitting function that minimizes the differences between the model 
covariance matrix Σ(Θ) and the observed covariance matrix S.

The most general function is called Weighted Least Squares 
(WLS): F = (s - σ) t W-1 (s - σ) 
where s and σ contain the non-duplicate elements of the input 
matrix S and the model matrix Σ.
W is a positive definite symmetric weight matrix.
The choice of W determines the fitting function.

Rationale: the discrepancies between the observed and the model 
statistics are squared and weighted by a weight matrix. 

3: Estimation of parameters & standard errors



Choose estimates for parameters that have the highest 
likelihood given the data.

A good (genetic) model should make our empirical results 
likely, if a theoretical model makes our data have a low 
likelihood of occurrence then doubt is cast on the model.

Under a chosen model, the best estimates for parameters are 
found (in general) by an iterative procedure that maximizes the 
likelihood (minimizes a fitting function).

Maximum likelihood estimation (MLE)



The most widely used measure to assess goodness-of-fit is the chi-squared 
statistic: χ2 = F (N-1), where F is the minimum of the fitting function and N 
is the number of observations on which S is based.

The overall χ2 tests the agreement between the observed and the predicted 
variances and covariances.

The degrees of freedom (df) for this test equal the number of independent 
statistics minus the number of free parameters. A low χ2 with a high 
probability indicates that the data are consistent with the model.

Many other indices of fit have been proposed, eg Akaike's information 
criterion (AIC): χ2-2df or indices based on differences between S and Σ.

Differences in goodness-of-fit between different structural equation models 
may be assessed by likelihood-ratio tests by subtracting the chi-square of a 
properly nested model from the chi-square of a more general model.

4: Goodness-of-fit & 5: Respecification



Compare models by chi square (χ²) tests:

A disadvantage is that χ² is influenced by the unique 
variances of the items (Browne et al., 2002).

If a trait is measured reliably, the inter-correlations of 
items are high, and unique variances are small, the χ²
test may suggest a poor fit even when the residuals 
between the expected and observed data are trivial.

The Standardized Root Mean-square Residual (SRMR; 
is a fit index that is based on the residual covariation
matrix and is not sensitive to the size of the 
correlations (Bentler, 1995).

Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: 
Multivariate Software 

Browne, M. W., MacCallum, R. C., Kim, C., Andersen, B. L., & Glaser, R. (2002). 
When fit indices and residuals are incompatible. Psychological Methods, 7, 403-421.



Estimates of factor loadings and unique variances can be used 
to construct individual factor scores: f = A’P, where A is a 
matrix with weights that is constant across subjects, depending 
on the factor loadings and the unique variances.

• R.P. McDonald, E.J. Burr (1967): A comparison of four methods of 
constructing factor scores. Psychometrika, 381-401
• W.E. Saris, M. dePijper, J. Mulder (1978): Optimal procedures for
estimation of factor scores. Sociological Methods & Research, 85-106

Finally: factor scores



Issues

• Distribution of the data
• Averaging of data over time (alternatives)
• Dependency among cases (solution: correction)
• Final model depends on which phenotypes are 

analyzed (e.g. few indicators for extraversion)
• Do the instruments measure the same trait in e.g. 

males and females (measurement invariance)?



Neuroticism (N=5293 Ss)
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Extraversion (N=5299 Ss)

Distribution personality data
(Dutch adolescent and young adult twins, data 1991-1993)
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Disinhibition (N=52813 Ss)



Beck Depression Inventory
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Mean  = 1,9282
Std. Dev. = 2 ,72794
N = 10.467



Alternative to averaging over time

Rebollo, Dolan, Boomsma



The end

• Scripts to run these analyses in other 
programs: Mplus and Lisrel


