# **Biometrical genetics**

Manuel Ferreira
Shaun Purcell
Pak Sham

# **Outline**

- 1. Aim of this talk
- 2. Genetic concepts
- 3. Very basic statistical concepts
- 4. Biometrical model

# 1. Aim of this talk

- Revisit common genetic parameters such as allele frequencies, genetic effects, dominance, variance components, etc
- Use these parameters to construct a biometrical genetic model

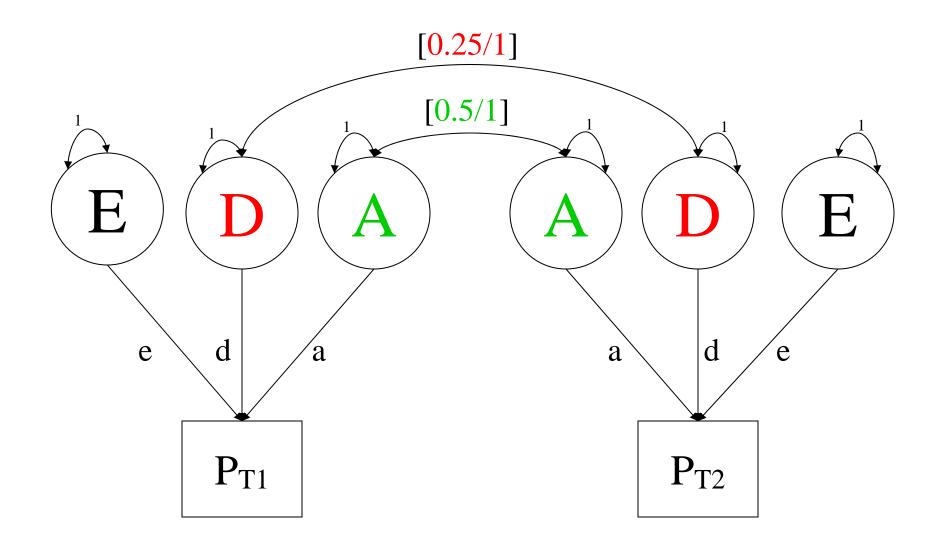
Model that expresses the:

(1) <u>Mean</u>

(2) Variance

(3) Covariance between individuals

for a quantitative phenotype as a function of genetic parameters.



# 2. Genetic concepts

### Population level

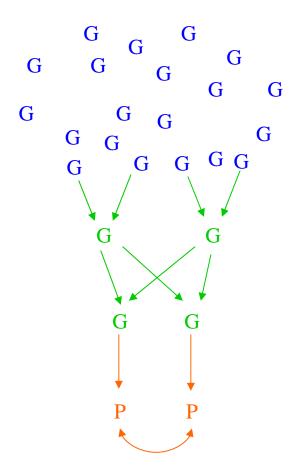
Allele and genotype frequencies

#### > Transmission level

Mendelian segregation Genetic relatedness

### Phenotype level

Biometrical model Additive and dominance components



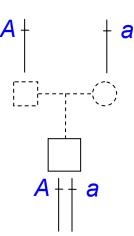
# **Population level**

### 1. Allele frequencies

- A single <u>locus</u>, with two <u>alleles</u>
  - Biallelic / diallelic
  - Single nucleotide polymorphism, SNP



- Frequency of A is p
- Frequency of  $\mathbf{a}$  is  $\mathbf{q} = 1 \mathbf{p}$



- Every individual inherits two alleles
  - A genotype is the combination of the two alleles
  - e.g. AA, aa (the homozygotes) or Aa (the heterozygote)

### **Population level**

### 2. Genotype frequencies (Random mating)

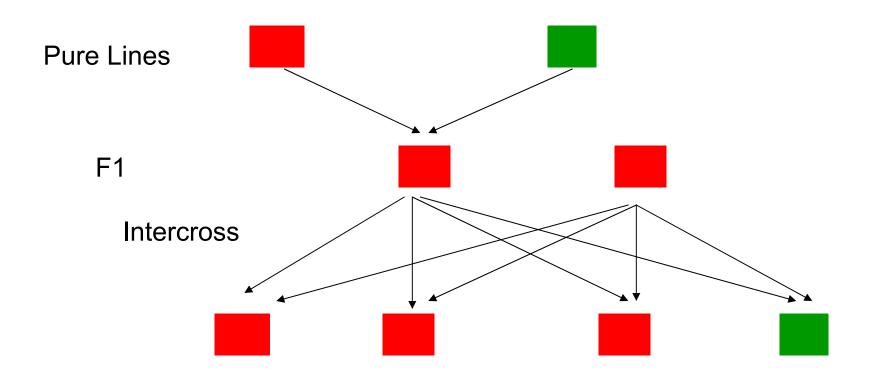
#### Allele 1

$$\begin{array}{c|cccc}
A (p) & a (q) \\
\hline
A (p) & AA (p^2) & Aa (pq) \\
\hline
a (q) & aA (qp) & aa (q^2)
\end{array}$$

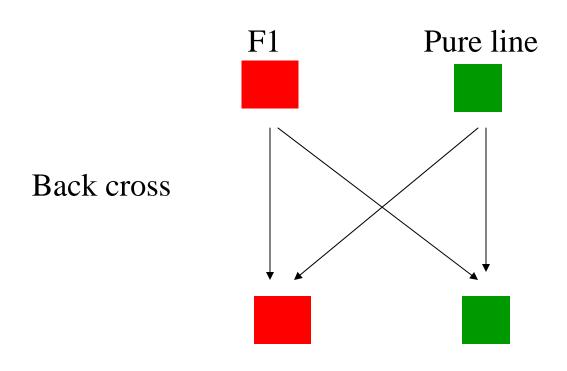
Hardy-Weinberg Equilibrium frequencies

$$P(AA) = p^{2}$$
 $P(Aa) = 2pq$ 
 $p^{2} + 2pq + q^{2} = 1$ 
 $P(aa) = q^{2}$ 

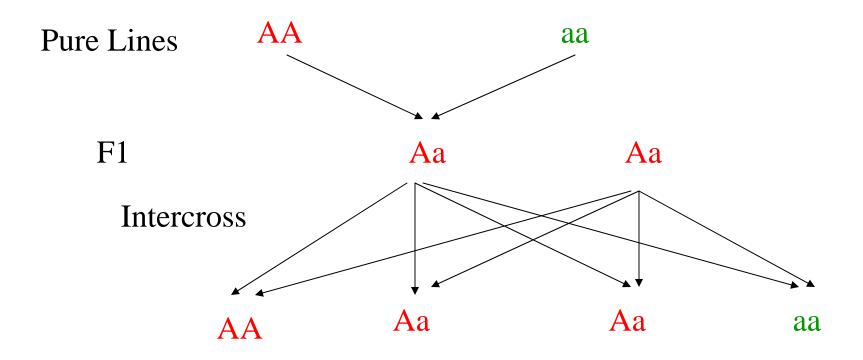
### 1. Mendel's experiments



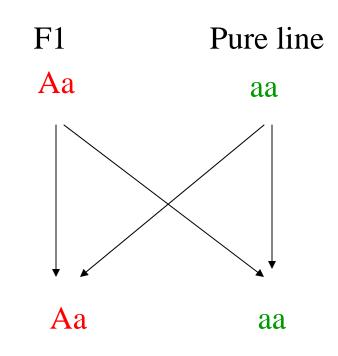
3:1 Segregation Ratio



1:1 Segregation ratio



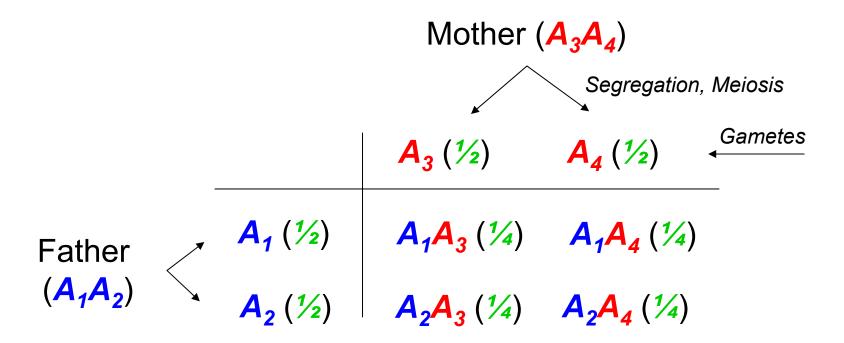
3:1 Segregation Ratio



Back cross

1:1 Segregation ratio

### 1. Mendel's law of segregation



#### 1. Classical Mendelian traits

```
    Dominant trait (D - presence, R - absence)

            - AA, Aa D
            - aa R

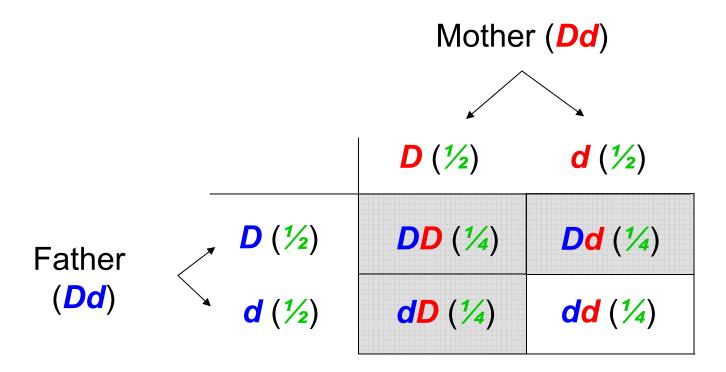
    Recessive trait (D - absence, R - presence)

            - AA, Aa D
            - aa R

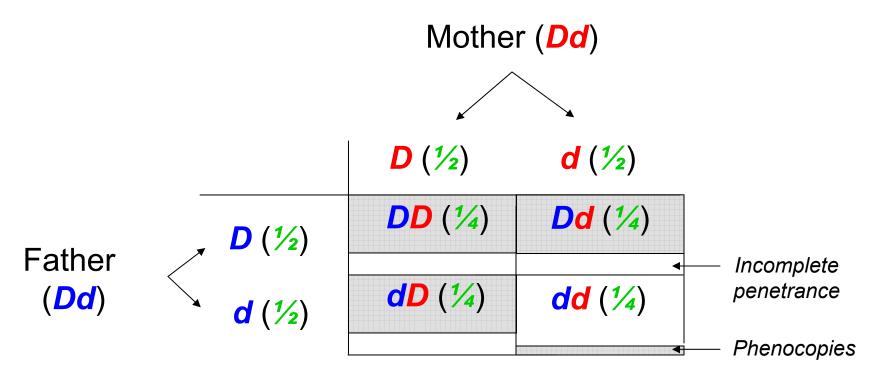
    Codominant trait (X, Y, Z)

            - AA X
            - Aa Y
            - aa Z
```

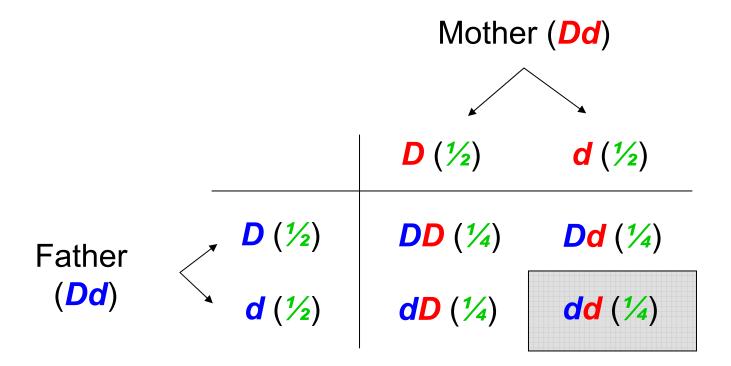
### 2. Dominant Mendelian inheritance

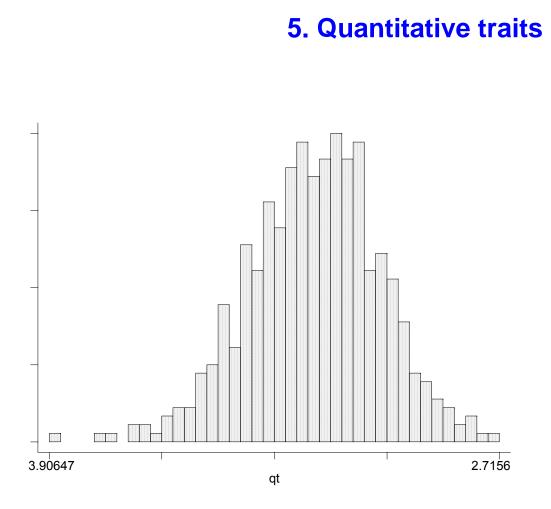


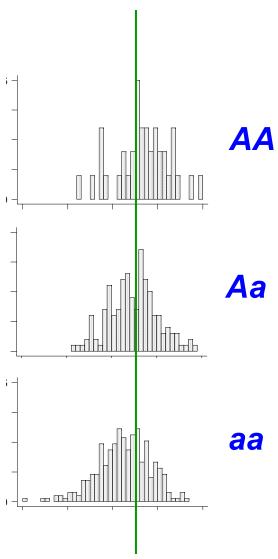
# 3. Dominant Mendelian inheritance with incomplete penetrance and phenocopies

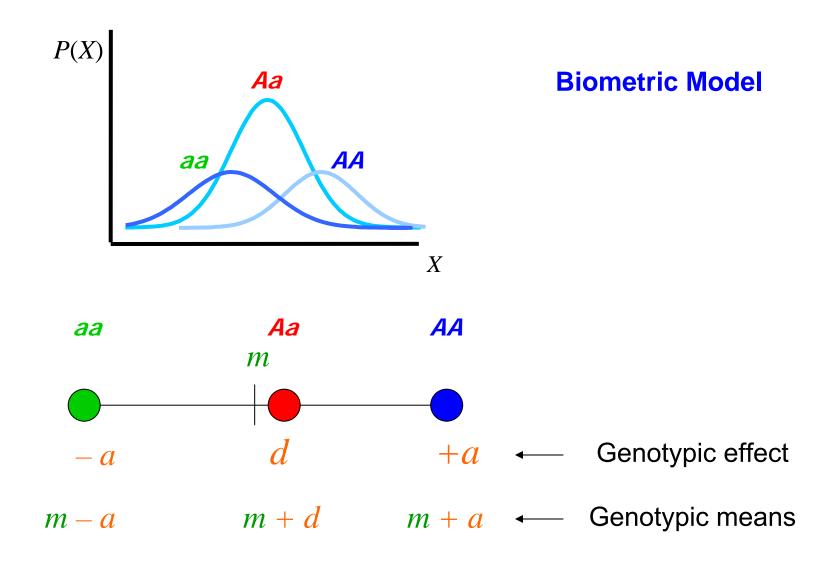


### 4. Recessive Mendelian inheritance









# 3. Very basic statistical concepts

### Mean, variance, covariance

### **1. Mean** (*X*)

$$\mu = E(X) = \frac{\sum_{i} x_{i}}{n} = \sum_{i} x_{i} f(x_{i})$$

### Mean, variance, covariance

### 2. Variance (X)

$$Var(X) = E(X - \mu)^{2} = \frac{\sum_{i} (x_{i} - \mu)^{2}}{n - 1} = \sum_{i} (x_{i} - \mu)^{2} f(x_{i})$$

### Mean, variance, covariance

### 3. Covariance (X, Y)

$$Cov(X,Y) = E(X - \mu_X)(Y - \mu_Y) = \frac{\sum_{i} (x_i - \mu_X)(y_i - \mu_Y)}{n - 1}$$
$$= \sum_{i} (x_i - \mu_X)(y_i - \mu_Y) f(x_i, y_i)$$

# 4. Biometrical model

- Biallelic locus
  - Genotypes: AA, Aa, aa
  - Genotype frequencies: p², 2pq, q²
- Alleles at this locus are transmitted from P-O according to Mendel's law of segregation
- Genotypes for this locus influence the expression of a quantitative trait X (i.e. locus is a QTL)

Biometrical genetic model that estimates the contribution of this QTL towards the (1) Mean, (2) Variance and (3) Covariance between individuals for this quantitative trait X

### 1. Contribution of the QTL to the Mean (X)

$$\mu = \sum_{i} x_{i} f(x_{i})$$

Genotypes AA Aa aa Effect, x a d -a Frequencies, f(x)  $p^2$  2pq  $q^2$ 

Mean 
$$(X) = a(p^2) + d(2pq) - a(q^2) = a(p-q) + 2pqd$$

### 2. Contribution of the QTL to the Variance (X)

$$Var = \sum_{i} (x_i - \mu)^2 f(x_i)$$

| Genotypes Effect, x | AA    | Aa  | aa        |
|---------------------|-------|-----|-----------|
|                     | a     | d   | <b>-a</b> |
| Frequencies, $f(x)$ | $p^2$ | 2pq | $q^2$     |

$$Var(X) = (a-m)^2p^2 + (d-m)^22pq + (-a-m)^2q^2$$
  
=  $V_{QTL}$ 

Broad-sense heritability of X at this locus =  $V_{QTL} / V_{Total}$ Broad-sense total heritability of X =  $\Sigma V_{QTL} / V_{Total}$ 

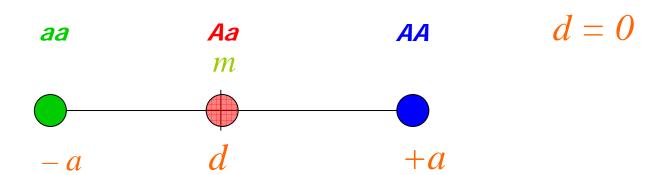
$$Var(X) = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$$

$$= 2pq[a+(q-p)d]^{2} + (2pqd)^{2}$$

$$= V_{AQTL} + V_{DQTL}$$

Additive effects: the main effects of individual alleles

<u>Dominance</u> effects: represent the interaction between alleles



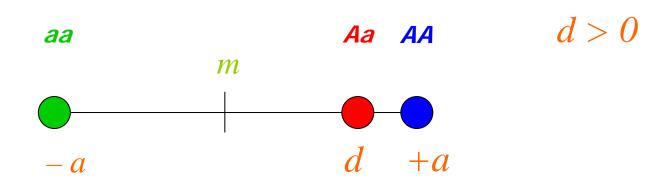
$$Var(X) = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$$

$$= 2pq[a+(q-p)d]^{2} + (2pqd)^{2}$$

$$= V_{AQTL} + V_{DQTL}$$

Additive effects: the main effects of individual alleles

<u>Dominance</u> effects: represent the interaction between alleles



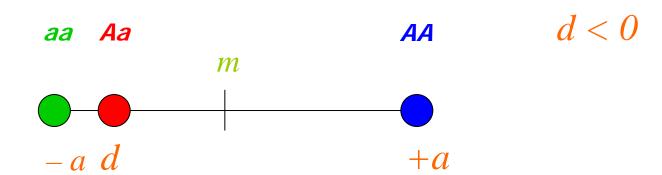
$$Var(X) = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$$

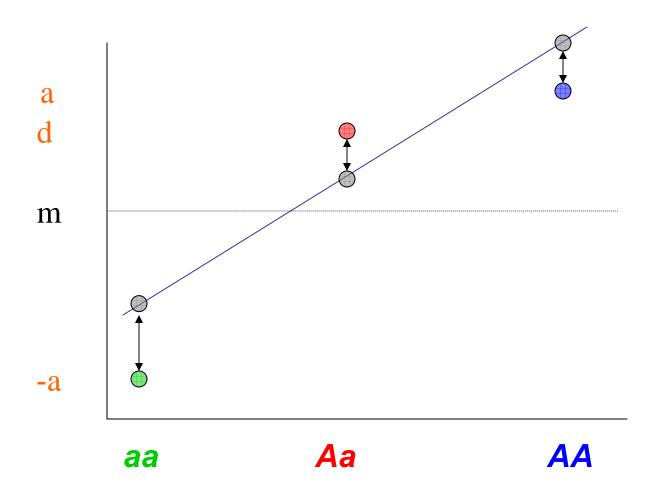
$$= 2pq[a+(q-p)d]^{2} + (2pqd)^{2}$$

$$= V_{AQTL} + V_{DQTL}$$

Additive effects: the main effects of individual alleles

**Dominance** effects: represent the interaction between alleles

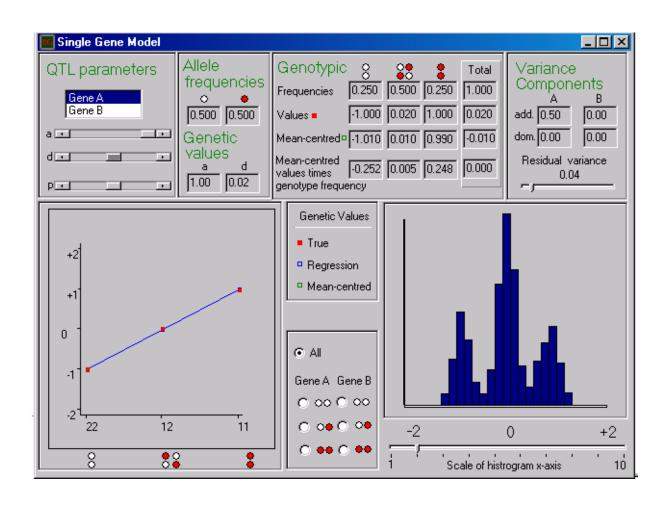




Var (X) = Regression Variance + Residual Variance = Additive Variance + Dominance Variance

# **Practical**

H:\manuel\Biometric\sgene.exe



# **Practical**

### 

Visualize graphically how allele frequencies, genetic effects, dominance, etc, influence trait mean and variance

#### Ex1

a=0, d=0, p=0.4, Residual Variance = 0.04, Scale = 2. Vary <u>a</u> from 0 to 1.

#### Ex2

a=1, d=0, p=0.4, Residual Variance = 0.04, Scale = 2. Vary <u>d</u> from -1 to 1.

#### Ex3

a=1, d=0, p=0.4, Residual Variance = 0.04, Scale = 2. Vary  $\underline{p}$  from 0 to 1.

Look at scatter-plot, histogram and variance components.

# **Some conclusions**

1. Additive genetic variance depends on

allele frequency p

& additive genetic value a

as well as

dominance deviation d

2. Additive genetic variance typically greater than dominance variance

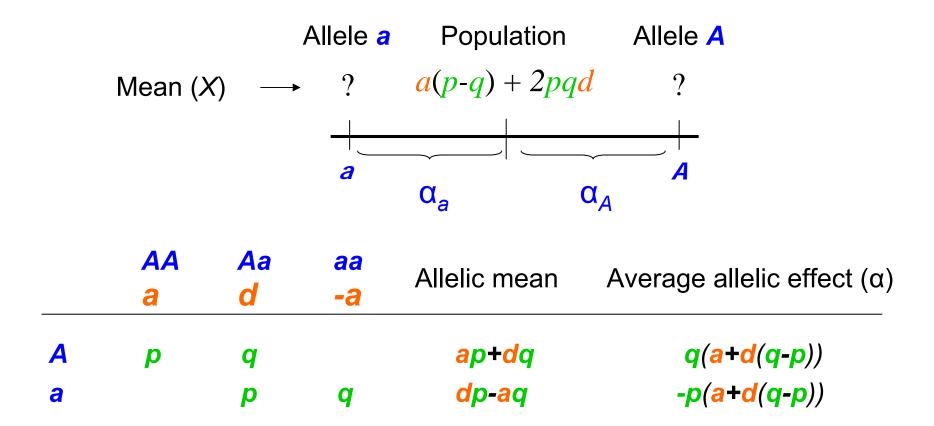
$$Var(X) = \frac{2pq[a+(q-p)d]^2 + (2pqd)^2}{\sqrt{Demonstrate}}$$

$$V_{A_{QTL}} + V_{D_{QTL}}$$

- 2A. Average allelic effect
- 2B. Additive genetic variance

#### 2A. Average allelic effect (α)

The deviation of the <u>allelic mean</u> from the <u>population mean</u>



- Denote the average allelic effects
  - $-\alpha_A = q(a+d(q-p))$
  - $-\alpha_a = -p(a+d(q-p))$
- If only two alleles exist, we can define the average effect of allele substitution

$$-\alpha = \alpha_A - \alpha_a$$
  
- \alpha = (q-(-p))(a+d(q-p)) = (a+d(q-p))

- Therefore:
  - $-\alpha_A = q\alpha$
  - $-\alpha_a = -p\alpha$

#### 2A. Average allelic effect (α)

#### 2B. Additive genetic variance

The variance of the average allelic effects

$$\alpha_A = q\alpha$$
 $\alpha_a = -p\alpha$ 

|    | Freq.          | Additive effect         |                 |
|----|----------------|-------------------------|-----------------|
| AA | p <sup>2</sup> | 2α <sub>A</sub>         | = 2 <b>q</b> α  |
| Aa | 2pq            | $\alpha_A + \alpha_a$   | $= (q-p)\alpha$ |
| aa | $q^2$          | <b>2</b> α <sub>a</sub> | = -2 <b>p</b> α |

$$V_{A_{QTL}} = (2q\alpha)^{2}p^{2} + ((q-p)\alpha)^{2}2pq + (-2p\alpha)^{2}q^{2}$$

$$= 2pq\alpha^{2}$$

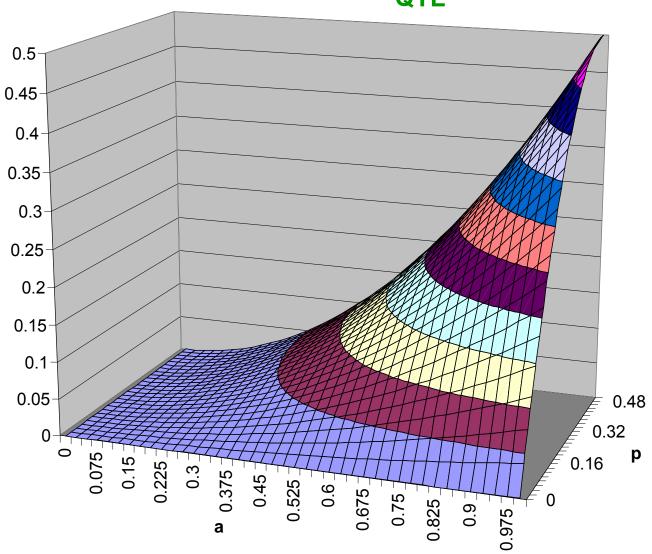
$$= 2pq[a+d(q-p)]^{2}$$

$$d = 0, V_{A_{QTL}} = 2pqa^{2}$$

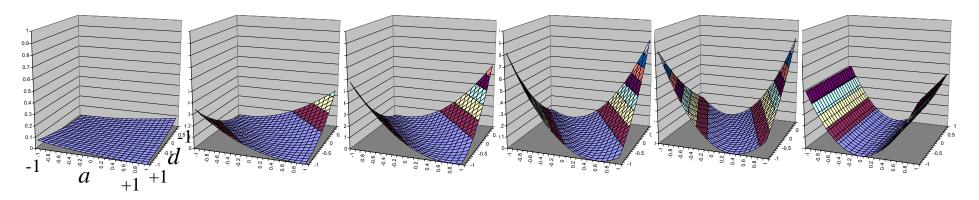
$$p = q, V_{A_{QTL}} = \frac{1}{2}a^{2}$$

d = 0,  $V_{A_{QTL}} = 2pqa^2$ 

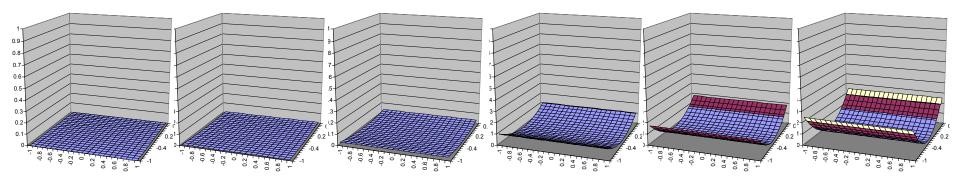




#### Additive genetic variance $V_A$



#### Dominance genetic variance $V_D$



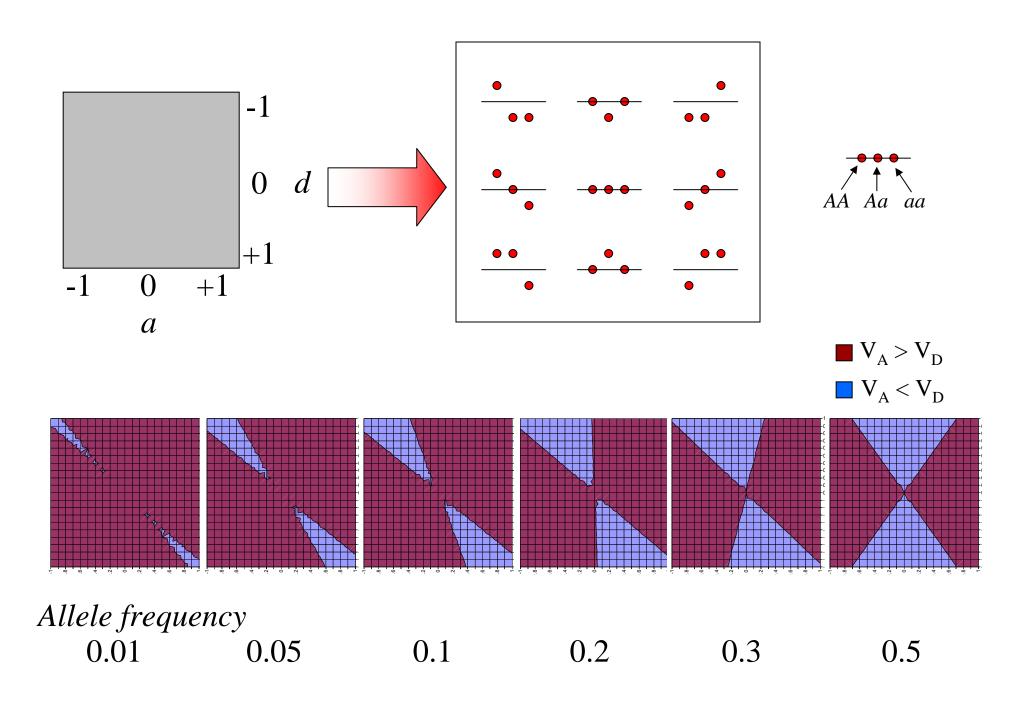
Allele frequency 0.05

0.1

0.2

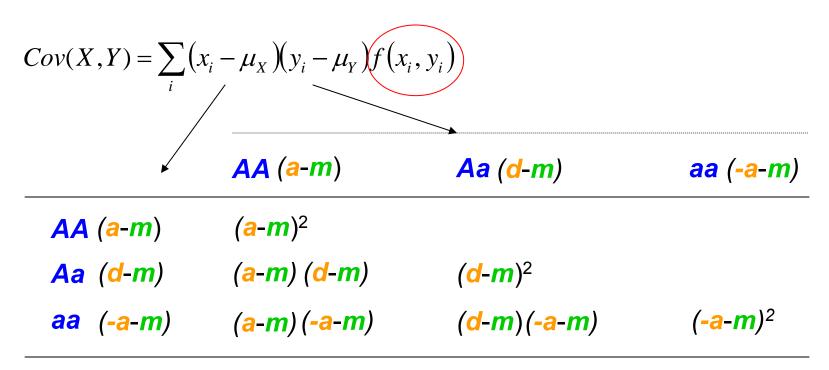
0.3

0.5



- 1. Contribution of the QTL to the Mean (X)
- 2. Contribution of the QTL to the Variance (X)
  - 2A. Average allelic effect (α)
  - 2B. Additive genetic variance
- 3. Contribution of the QTL to the Covariance (X, Y)

#### 3. Contribution of the QTL to the Cov (X, Y)



3A. Contribution of the QTL to the Cov (X, Y) – MZ twins

$$Cov(X,Y) = \sum_{i} (x_i - \mu_X)(y_i - \mu_Y)f(x_i, y_i)$$

$$AA \ (a-m)$$
  $Aa \ (d-m)$   $aa \ (-a-m)$   $AA \ (a-m)$   $p^2(a-m)^2$   $Aa \ (d-m)$   $0 \ (a-m) \ (d-m)$   $2pq \ (d-m)^2$   $aa \ (-a-m)$   $0 \ (a-m) \ (-a-m)$   $0 \ (d-m) \ (-a-m)$   $q^2 \ (-a-m)^2$ 

Covar 
$$(X_i, X_j) = (a-m)^2 p^2 + (d-m)^2 2pq + (-a-m)^2 q^2$$
  
=  $2pq[a+(q-p)d]^2 + (2pqd)^2 = V_{A_{QTL}} + V_{D_{QTL}}$ 

3B. Contribution of the QTL to the Cov (X, Y) – Parent-Offspring

|                  | <b>AA</b> (a-m)                            | Aa (d-m)                              | aa (-a-m)                     |
|------------------|--------------------------------------------|---------------------------------------|-------------------------------|
| AA (a-m)         | <b>p</b> <sup>3</sup> (a-m) <sup>2</sup>   |                                       |                               |
| Aa (d-m)         | <b>p</b> <sup>2</sup> <b>q</b> (a-m) (d-m) | <b>pq</b> ( <b>d-m</b> ) <sup>2</sup> |                               |
| <b>aa</b> (-a-m) | <b>0</b> (a-m) (-a-m)                      | <b>pq</b> <sup>2</sup> (d-m)(-a-m)    | <b>q³</b> (-a-m) <sup>2</sup> |

• e.g. given an AA father, an AA offspring can come from either  $AA \times AA$  or  $AA \times Aa$  parental mating types

AA x AA will occur 
$$p^2 \times p^2 = p^4$$
  
and have AA offspring Prob()=1  
AA x Aa will occur  $p^2 \times 2pq = 2p^3q$   
and have AA offspring Prob()=0.5  
and have Aa offspring Prob()=0.5

Therefore, P(AA father & AA offspring) 
$$= p^4 + p^3q$$
  
 $= p^3(p+q)$   
 $= p^3$ 

#### 3B. Contribution of the QTL to the Cov (X, Y) – Parent-Offspring

$$AA (a-m)$$
  $Aa (d-m)$   $aa (-a-m)$ 
 $AA (a-m)$   $p^3(a-m)^2$ 
 $Aa (d-m)$   $p^2q (a-m) (d-m)$   $pq (d-m)^2$ 
 $aa (-a-m)$   $0 (a-m) (-a-m)$   $pq^2 (d-m) (-a-m)$   $q^3 (-a-m)^2$ 

$$Cov(X_i, X_j) = (a-m)^2 p^3 + ... + (-a-m)^2 q^3$$
  
=  $pq[a+(q-p)d]^2 = \frac{1}{2}V_{A_{QTL}}$ 

3C. Contribution of the QTL to the Cov (X, Y) – Unrelated individuals

$$Cov(X_i, X_j) = (a-m)^2 p^4 + ... + (-a-m)^2 q^4$$
  
= 0

3D. Contribution of the QTL to the Cov (X, Y) – DZ twins and full sibs

# identical alleles inherited from parents

2
1
(father)

(mother)

# 
$$\frac{1}{4}$$
 (2 alleles)

MZ twins

+  $\frac{1}{2}$  (1 allele)

P-O

Unrelateds

Cov  $(X_i, X_j)$  =  $\frac{1}{4}$  Cov  $(MZ)$  +  $\frac{1}{2}$  Cov  $(P-O)$  +  $\frac{1}{4}$  Cov  $(Unrel)$ 

=  $\frac{1}{4}(V_{AQTL} + V_{DQTL})$  +  $\frac{1}{2}$  ( $\frac{1}{2}$  V<sub>AQTL</sub>) +  $\frac{1}{4}$  (0)

=  $\frac{1}{2}$  V<sub>AQTL</sub> +  $\frac{1}{4}$  V<sub>DQTL</sub>



Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait

1 QTL 
$$Var(X) = V_{A_{QTL}} + V_{D_{QTL}}$$

$$Cov(MZ) = V_{A_{QTL}} + V_{D_{QTL}}$$

$$Cov(DZ) = \frac{1}{2}V_{A_{QTL}} + \frac{1}{4}V_{D_{QTL}}$$

$$War(X) = \Sigma(V_{A_{QTL}}) + \Sigma(V_{D_{QTL}}) = V_A + V_D$$

$$Cov(MZ) = \Sigma(V_{A_{QTL}}) + \Sigma(V_{D_{QTL}}) = V_A + V_D$$

$$Cov(DZ) = \Sigma(\frac{1}{2}V_{A_{QTL}}) + \Sigma(\frac{1}{4}V_{D_{QTL}}) = \frac{1}{2}V_A + \frac{1}{4}V_D$$

Biometrical model underlies the variance components estimation performed in Mx

$$Var(X) = V_A + V_D + V_E$$

$$Cov(MZ) = V_A + V_D$$

$$Cov(DZ) = \frac{1}{2}V_A + \frac{1}{4}V_D$$