Heterogeneity across age cohorts

Danielle Posthuma & Hermine Maes Boulder – tc19

Sex differences – same heritability?

Sex differences – same genes?

Differences across age cohorts – same heritability?

Exercise I: modifying the script to test for age heterogeneity

- Open bmi_young.mx (in \\danielle\AGE_heterogeneity\)
- This script: young males, 4 groups:
- 1 = calculation group matrix declarations
- 2 = MZ data
- 3 = DZ data
- 4 = calculation group standardized solution
- ADE model, 1 grand mean, so 4 estimated parameters

Exercise I: modifying the script to test for age heterogeneity

- Change this script so it will allow you to estimate ADE in the young and the older cohort by adding four groups for the older cohort
- Then run it
- If done correctly you should get -2II = 3756.552 and df = 1759

Required modifications for Exercise I

- Copy and paste all 4 groups
- Change Select if agecat=2 in the two new data groups
- Change matrices = group 5 in the two new data groups
- Change #ngroups = 8

Exercise II: Testing AE vs ADE for both cohorts

- Test whether D is significant using option multiple
- Check the <u>unstandardized</u> and <u>standardized</u> estimates of A and E in the young and old cohort under the AE model

	Α	E
Young - unstandardized		
Young standardized		
Old – unstandardized		
Old - standardized		

	Α	E
Young - unstandardized	0.5413	0.1414
Young standardized	0.7924	0.2076
Old – unstandardized	0.4330	0.1815
Old - standardized	0.7046	0.2954

Since D is not significant, we will use the AE model to compare submodels:

Drop W 1 1 1 W 5 1 1

Option issat

End

Save AE_cohort.mxs

Exercise III: Equality of variance components across age cohorts

Add the option multiples with EQUATE command, use a **get** in between and test whether

- \blacksquare $a_{young} = a_{old}$?
- \bullet $e_{young} = e_{old}$?

Exercise III: Fit results

get AE_cohort.mxs

$$\mathbf{e}_{young} = e_{old}$$
?
EQ Z 1 1 1 Z 5 1 1
End

Chi-squared 3.954 d.f. 1 Probability 0.047

Standardized estimates

- Testing whether the standardized estimates of heritability and environment are equal across age.
- As the standardized parameters are calculated we cannot change them in an option multiple, and cannot use the EQ statement. Instead we need to use a constraint group

Constraint group

Adjusting $df : Option \ df = -3$

Exercise IV: Testing homogeneity of standardized estimates

- We want to test whether this constraint provides a worse fit than the unconstrained AE model, so fix D for both cohorts to zero
- #ngroups #9
- Add constraint group
- Fit results if done correctly:

Chi-squared 6.030

d.f 1

Probability 0.014

- Testing whether the standardized estimates are equal is more significant, but now we cannot really distinguish anymore between A and E, as A+E = 1
- Danielle Dick will talk about interpretation of heterogeneity in unstandardized vs standardized parameters