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• Tutorial
– Linkage
– Haplotyping
– Simulation
– Error detection
– IBD calculation
– Association Analysis



QTL Regression Analysis

• Go to Merlin website
– Click on tutorial (left menu)
– Click on regression analysis (left menu)

• What we’ll do:
– Analyze a single trait
– Evaluate family informativeness



Rest of the Afternoon

• Other things you can do with Merlin …

– Checking for errors in your data

– Dealing with markers that aren’t independent

– Affected sibling pair analysis



Affected Sibling Pair Analysis



Quantitative Trait Analysis

• Individuals who share particular regions IBD are more 
similar than those that don’t …

• … but most linkage studies rely on affected sibling pairs, 
where all individuals have the same phenotype!

Linkage No Linkage



Allele Sharing Analysis
• Traditional analysis method for discrete traits

• Looks for regions where siblings are more similar than 
expected by chance

• No specific disease model assumed



Historical References

• Penrose (1953) suggested comparing IBD 
distributions for affected siblings.
– Possible for highly informative markers (eg. HLA)

• Risch (1990) described effective methods for 
evaluating the evidence for linkage in affected sibling 
pair data.

• Soon after, large-scale microsatellite genotyping 
became possible and geneticists attempted to tackle 
more complex diseases…



Simple Case

• If IBD could be observed

• Each pair of individuals scored as 
• IBD=0
• IBD=1
• IBD=2

• Test whether sharing distribution is compatible 
with 1:2:1 proportions of sharing IBD 0, 1 and 2.



Sib Pair Likelihood 
(Fully Informative Data)
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The MLS Method
• Introduced by Risch (1990, 1992)

– Am J Hum Genet 46:242-253

• Uses IBD estimates from partially informative data
– Uses partially informative data efficiently

• The MLS method is still one of the best methods for 
analysis pair data

• I will skip details here …



Non-parametric Analysis for 
Arbitrary Pedigrees

• Must rank general IBD configurations which 
include sets of more than 2 affected individuals
– Low ranks correspond to no linkage
– High ranks correspond to linkage

• Multiple possible orderings are possible
– Especially for large pedigrees

• In interesting regions, IBD configurations with 
higher rank are more common



Non-Parametric Linkage Scores

• Introduced by Whittemore and Halpern (1994)

• The two most commonly used ones are:
– Pairs statistic

• Total number of alleles shared IBD between pairs of 
affected individuals in a pedigree

– All statistic
• Favors sharing of a single allele by a large number of 

affected individuals. 



Kong and Cox Method

• A probability distribution for IBD states
– Under the null and alternative

• Null
– All IBD states are equally likely

• Alternative
– Increase (or decrease) in probability of each state is 

modeled as a function of sharing scores

• "Generalization" of the MLS method



Parametric Linkage Analysis

• Alternative to non-parametric methods
– Usually ideal for Mendelian disorders

• Requires a model for the disease
– Frequency of disease allele(s)
– Penetrance for each genotype

• Typically employed for single gene disorders 
and Mendelian forms of complex disorders



Typical Interesting Pedigree



Checking for Genotyping Error



Genotyping Error
• Genotyping errors can dramatically reduce 

power for linkage analysis (Douglas et al, 
2000; Abecasis et al, 2001)

• Explicit modeling of genotyping errors in 
linkage and other pedigree analyses is 
computationally expensive (Sobel et al, 
2002)



Intuition: Why errors mater …
• Consider ASP sample, marker with n alleles

• Pick one allele at random to change
– If it is shared (about 50% chance)

• Sharing will likely be reduced
– If it is not shared (about 50% chance)

• Sharing will increase with probability about 1 / n

• Errors propagate along chromosome

t



Effect on Error in ASP Sample
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Error Detection
• Genotype errors can 

change inferences about 
gene flow
– May introduce additional 

recombinants
• Likelihood sensitivity 

analysis
– How much impact does 

each genotype have on 
likelihood of overall data

2 2 2 2
2 1 2 1
2 2 2 2
2 1 2 1
1 2 1 2
2 2 2 2
1 1 2 2
2 1 2 1
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1 2 1 2
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1 2 1 2
1 1 1 1



Sensitivity Analysis
• First, calculate two likelihoods:

– L(G|θ), using actual recombination fractions
– L(G|θ = ½), assuming markers are unlinked

• Then, remove each genotype and:
– L(G \ g|θ)
– L(G \ g|θ = ½)

• Examine the ratio rlinked/runlinked
– rlinked = L(G \ g|θ) / L(G|θ) 
– runlinked = L(G \ g|θ = ½) / L(G|θ = ½) 



Mendelian Errors Detected (SNP)

34.6 36.2

55.437.2 53.528.9 42.956.3

39.5 39.3 38.7 37.0 36.4 37.3 37.5 38.7 37.4

% of Errors Detected in 1000 Simulations



Overall Errors Detected (SNP)

80.2 78.4

99.277.5 99.359.4 90.8100.0

95.6 95.8 96.3 96.0 96.6 96.6 97.4 97.6 98.0



Error Detection

    
Mendelian

 Errors
Unlikely

 Genotypes
Overall 

Detection Rate
   
No Genotyped Parents 
 2 siblings  0.00 0.16 0.16
 3 siblings  .00 .38 0.38
 4 siblings  .00 .61 0.61
 5 siblings  .00 .77 0.77
   
One Genotyped Parent 
 2 siblings  0.13 0.34 0.47
 3 siblings  .13 .58 0.71
 4 siblings  .12 .72 0.84
 5 siblings  .12 .78 0.91

Simulation: 21 SNP markers, spaced 1 cM



Markers That Are not 
Independent



SNPs

• Abundant diallelic genetic markers

• Amenable to automated genotyping
– Fast, cheap genotyping with low error rates

• Rapidly replacing microsatellites in many 
linkage studies



The Problem

• Linkage analysis methods assume that 
markers are in linkage equilibrium
– Violation of this assumption can produce large 

biases

• This assumption affects ...
– Parametric and nonparametric linkage
– Variance components analysis
– Haplotype estimation



Standard Hidden Markov Model

1G 2G 3G MG

2I 3I MI1I

)|( 12 IIP )|( 23 IIP (...)P

)|( 11 IGP )|( 22 IGP )|( 33 IGP )|( MM IGP

Observed Genotypes Are Connected Only Through IBD States …



Our Approach

• Cluster groups of SNPs in LD 
– Assume no recombination within clusters
– Estimate haplotype frequencies
– Sum over possible haplotypes for each founder

• Two pass computation …
– Group inheritance vectors that produce 

identical sets of founder haplotypes 
– Calculate probability of each distinct set



1clusterI

Hidden Markov Model

1G 2G 3G MG

)|( 12 clustercluster IIP (...)P

)|,( 121 clusterIGGP )|,( 243 clusterIGGP )|( ,1 clusterNMM IGGP −

Example With Clusters of Two Markers …

4G 1−MG

2clusterI clusterNI



Practically …
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• Probability of observed genotypes G1…GC
– Conditional on haplotype frequencies f1 .. fh
– Conditional on a specific inheritance vector v

• Calculated by iterating over founder haplotypes



Computationally …

• Avoid iteration over h2f founder haplotypes
– List possible haplotype sets for each cluster
– List is product of allele graphs for each marker

• Group inheritance vectors with identical lists
– First, generate lists for each vector
– Second, find equivalence groups
– Finally, evaluate nested sum once per group



Example of What Could Happen…



Simulations …

• 2000 genotyped individuals per dataset
– 0, 1, 2 genotyped parents per sibship
– 2, 3, 4 genotyped affected siblings

• Clusters of 3 markers, centered 3 cM apart
– Used Hapmap to generate haplotype frequencies

• Clusters of 3 SNPs in 100kb windows
• Windows are 3 Mb apart along chromosome 13
• All  SNPs had minor allele frequency > 5%

– Simulations assumed 1 cM / Mb



Average LOD Scores
(Null Hypothesis)

Analysis Ignore Model Independent
Strategy LD LD SNPs

No parents genotyped
… 2 sibs per family 2.111 -0.016 -0.015
… 3 sibs per family 3.202 -0.010 -0.013
… 4 sibs per family 2.442 -0.022 -0.015

One parent genotyped
… 2 sibs per family 0.603 -0.004 -0.003
… 3 sibs per family 0.703 -0.002 -0.004
… 4 sibs per family 0.471 -0.012 -0.010

Two parents genotyped
… 2 sibs per family -0.006 -0.006 -0.006
… 3 sibs per family 0.008 0.008 0.005
… 4 sibs per family -0.014 -0.014 -0.012

Average LOD



5% Significance Thresholds
(based on peak LODs under null)

Analysis Ignore Model Independent
Strategy LD LD SNPs

No parents genotyped
… 2 sibs per family 11.37 1.33 1.26
… 3 sibs per family 15.80 1.34 1.28
… 4 sibs per family 13.46 1.27 1.17

One parent genotyped
… 2 sibs per family 4.97 1.43 1.35
… 3 sibs per family 5.48 1.38 1.27
… 4 sibs per family 4.32 1.42 1.35

Two parents genotyped
… 2 sibs per family 1.58 1.58 1.40
… 3 sibs per family 1.55 1.54 1.43
… 4 sibs per family 1.44 1.44 1.30

Significance Threshold



Empirical Power

Analysis Ignore Model Independent
Strategy LD LD SNPs

No parents genotyped
… 2 sibs per family 0.188 0.289 0.276
… 3 sibs per family 0.336 0.617 0.530
… 4 sibs per family 0.538 0.920 0.871

One parent genotyped
… 2 sibs per family 0.163 0.207 0.184
… 3 sibs per family 0.384 0.535 0.493
… 4 sibs per family 0.697 0.852 0.811

Two parents genotyped
… 2 sibs per family 0.153 0.155 0.171
… 3 sibs per family 0.424 0.428 0.438
… 4 sibs per family 0.800 0.800 0.794

Power (Model 2)

Disease Model, p = 0.10, f11 = 0.01, f12 = 0.02, f22 = 0.04



Conclusions from Simulations

• Modeling linkage disequilibrium crucial 
– Especially when parental genotypes missing

• Ignoring linkage disequilibrium
– Inflates LOD scores
– Both small and large sibships are affected
– Loses ability to discriminate true linkage


