Practical With Merlin

Gonçalo Abecasis

MERLIN Website

www.sph.umich.edu/csg/abecasis/Merlin

- Reference
- FAQ
- Source
- Binaries

- Tutorial
 - Linkage
 - Haplotyping
 - Simulation
 - Error detection
 - IBD calculation
 - Association Analysis

QTL Regression Analysis

- Go to Merlin website
 - Click on tutorial (left menu)
 - Click on regression analysis (left menu)
- What we'll do:
 - Analyze a single trait
 - Evaluate family informativeness

Rest of the Afternoon

- Other things you can do with Merlin ...
 - Checking for errors in your data
 - Dealing with markers that aren't independent
 - Affected sibling pair analysis

Affected Sibling Pair Analysis

Quantitative Trait Analysis

- Individuals who share particular regions IBD are more similar than those that don't ...
- ... but most linkage studies rely on affected sibling pairs, where all individuals have the same phenotype!

Allele Sharing Analysis

- Traditional analysis method for discrete traits
- Looks for regions where siblings are more similar than expected by chance
- No specific disease model assumed

Historical References

- Penrose (1953) suggested comparing IBD distributions for affected siblings.
 - Possible for highly informative markers (eg. HLA)
- Risch (1990) described effective methods for evaluating the evidence for linkage in affected sibling pair data.
- Soon after, large-scale microsatellite genotyping became possible and geneticists attempted to tackle more complex diseases...

Simple Case

- If IBD could be observed
- Each pair of individuals scored as
 - IBD=0
 - IBD=1
 - IBD=2
- Test whether sharing distribution is compatible with 1:2:1 proportions of sharing IBD 0, 1 and 2.

Sib Pair Likelihood (Fully Informative Data)

Under the null hypothesis :

 $L = (\frac{1}{4})^{n_{IBD0}} (\frac{1}{2})^{n_{IBD1}} (\frac{1}{4})^{n_{IBD2}}$

Under the alternative hypothesis

$$L = (z_0)^{n_{IBD0}} (z_1)^{n_{IBD1}} (z_2)^{n_{IBD2}}$$

$$LOD = \log_{10} \frac{L(\hat{z}_0, \hat{z}_1, \hat{z}_2)}{L(z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4})}$$

The MLS Method

- Introduced by Risch (1990, 1992)
 Am J Hum Genet 46:242-253
- Uses IBD estimates from partially informative data
 Uses partially informative data efficiently
- The MLS method is still one of the best methods for analysis pair data
- I will skip details here ...

Non-parametric Analysis for Arbitrary Pedigrees

- Must rank general IBD configurations which include sets of more than 2 affected individuals
 - Low ranks correspond to no linkage
 - High ranks correspond to linkage
- Multiple possible orderings are possible
 Especially for large pedigrees
- In interesting regions, IBD configurations with higher rank are more common

Non-Parametric Linkage Scores

- Introduced by Whittemore and Halpern (1994)
- The two most commonly used ones are:
 - Pairs statistic
 - Total number of alleles shared IBD between pairs of affected individuals in a pedigree
 - All statistic
 - Favors sharing of a single allele by a large number of affected individuals.

Kong and Cox Method

- A probability distribution for IBD states
 - Under the null and alternative
- Null
 - All IBD states are equally likely
- Alternative
 - Increase (or decrease) in probability of each state is modeled as a function of sharing scores
- "Generalization" of the MLS method

Parametric Linkage Analysis

- Alternative to non-parametric methods
 - Usually ideal for Mendelian disorders
- Requires a model for the disease
 - Frequency of disease allele(s)
 - Penetrance for each genotype
- Typically employed for single gene disorders and Mendelian forms of complex disorders

Typical Interesting Pedigree

Checking for Genotyping Error

Genotyping Error

- Genotyping errors can dramatically reduce power for linkage analysis (Douglas et al, 2000; Abecasis et al, 2001)
- Explicit modeling of genotyping errors in linkage and other pedigree analyses is computationally expensive (Sobel et al, 2002)

Intuition: Why errors mater ...

- Consider ASP sample, marker with *n* alleles
- Pick one allele at random to change
 - If it is shared (about 50% chance)
 - Sharing will likely be reduced
 - If it is not shared (about 50% chance)
 - Sharing will increase with probability about 1/n
- Errors propagate along chromosome

Effect on Error in ASP Sample

Error Detection

- Genotype errors can change inferences about gene flow
 - May introduce additional recombinants
- Likelihood sensitivity analysis
 - How much impact does each genotype have on likelihood of overall data

Sensitivity Analysis

- First, calculate two likelihoods:
 - $L(G|\theta)$, using actual recombination fractions
 - $L(G|\theta = \frac{1}{2})$, assuming markers are unlinked
- Then, remove each genotype and:
 - $L(\mathbf{G} \setminus \mathbf{g}|\boldsymbol{\theta})$
 - $L(\mathbf{G} \setminus \mathbf{g}|\boldsymbol{\theta} = \frac{1}{2})$
- Examine the ratio $r_{linked}/r_{unlinked}$
 - $r_{\text{linked}} = L(\mathbf{G} \setminus \mathbf{g}|\boldsymbol{\theta}) / L(\mathbf{G}|\boldsymbol{\theta})$
 - $r_{unlinked} = L(\mathbf{G} \setminus \mathbf{g}|\boldsymbol{\theta} = \frac{1}{2}) / L(\mathbf{G}|\boldsymbol{\theta} = \frac{1}{2})$

Mendelian Errors Detected (SNP)

% of Errors Detected in 1000 Simulations

Overall Errors Detected (SNP)

Error Detection

	Mendelian Errors	Unlikely Genotypes	Overall Detection Rate
No Genotyped Parents			
2 siblings	0.00	0.16	0.16
3 siblings	.00	.38	0.38
4 siblings	.00	.61	0.61
5 siblings	.00	.77	0.77
One Genotyped Parent			
2 siblings	0.13	0.34	0.47
3 siblings	.13	.58	0.71
4 siblings	.12	.72	0.84
5 siblings	.12	.78	0.91

Simulation: 21 SNP markers, spaced 1 cM

Markers That Are not Independent

SNPs

- Abundant diallelic genetic markers
- Amenable to automated genotyping
 Fast, cheap genotyping with low error rates
- Rapidly replacing microsatellites in many linkage studies

The Problem

- Linkage analysis methods assume that markers are in linkage equilibrium
 - Violation of this assumption can produce large biases
- This assumption affects ...
 - Parametric and nonparametric linkage
 - Variance components analysis
 - Haplotype estimation

Standard Hidden Markov Model

Observed Genotypes Are Connected Only Through IBD States ...

Our Approach

- Cluster groups of SNPs in LD
 - Assume no recombination within clusters
 - Estimate haplotype frequencies
 - Sum over possible haplotypes for each founder
- Two pass computation ...
 - Group inheritance vectors that produce identical sets of founder haplotypes
 - Calculate probability of each distinct set

Hidden Markov Model

Example With Clusters of Two Markers ...

Practically ...

$$P(G_1...G_C \mid f_1...f_h, v) = \sum_{H_1=1}^h ... \sum_{H_{2f}=1}^h \Pr(G_1...G_C \mid H_1...H_{2f}, v) \Pr(H_1...H_{2f} \mid f_1...f_h)$$

= $\sum_{H_1=1}^h ... \sum_{H_{2f}=1}^h \Pr(G_1...G_C \mid H_1...H_{2f}, v) \prod_{i=1}^{2f} \Pr(H_i \mid f_1...f_h)$

- Probability of observed genotypes G₁...G_C
 - Conditional on haplotype frequencies $f_1 ... f_h$
 - Conditional on a specific inheritance vector v
- Calculated by iterating over founder haplotypes

Computationally ...

- Avoid iteration over h^{2f} founder haplotypes
 - List possible haplotype sets for each cluster
 - List is product of allele graphs for each marker
- Group inheritance vectors with identical lists
 - First, generate lists for each vector
 - Second, find equivalence groups
 - Finally, evaluate nested sum once per group

Example of What Could Happen...

Analysis With and Without Modeling LD 80 Modeling LD Ignoring LD Kong and Cox LOD Score 60 2 0 ٥ 20 80 80 100 n Position (cM)

Simulations ...

- 2000 genotyped individuals per dataset
 - -0, 1, 2 genotyped parents per sibship
 - -2, 3, 4 genotyped affected siblings
- Clusters of 3 markers, centered 3 cM apart
 - Used Hapmap to generate haplotype frequencies
 - Clusters of 3 SNPs in 100kb windows
 - Windows are 3 Mb apart along chromosome 13
 - All SNPs had minor allele frequency > 5%
 - Simulations assumed 1 cM / Mb

Average LOD Scores (Null Hypothesis)

	Average LOD		
Analysis —	Ignore	Model	Independent
Strategy	LD	LD	SNPs
No parents genotyped			
2 sibs per family	2.111	-0.016	-0.015
3 sibs per family	3.202	-0.010	-0.013
4 sibs per family	2.442	-0.022	-0.015
One parent genotyped			
2 sibs per family	0.603	-0.004	-0.003
3 sibs per family	0.703	-0.002	-0.004
4 sibs per family	0.471	-0.012	-0.010
Two parents genotyped			
2 sibs per family	-0.006	-0.006	-0.006
3 sibs per family	0.008	0.008	0.005
4 sibs per family	-0.014	-0.014	-0.012

5% Significance Thresholds (based on peak LODs under null)

	Significance Threshold		
Analysis	Ignore	Model	Independent
Strategy	LD	LD	SNPs
No parents genotyped			
2 sibs per family	11.37	1.33	1.26
3 sibs per family	15.80	1.34	1.28
4 sibs per family	13.46	1.27	1.17
One parent genotyped			
2 sibs per family	4.97	1.43	1.35
3 sibs per family	5.48	1.38	1.27
4 sibs per family	4.32	1.42	1.35
Two parents genotyped			
2 sibs per family	1.58	1.58	1.40
3 sibs per family	1.55	1.54	1.43
4 sibs per family	1.44	1.44	1.30

Empirical Power

—	Power (Model 2)		
Analysis Strategy	lgnore LD	Model LD	Independent SNPs
No parents genotyped			
2 sibs per family	0.188	0.289	0.276
3 sibs per family	0.336	0.617	0.530
4 sibs per family	0.538	0.920	0.871
One parent genotyped			
2 sibs per family	0.163	0.207	0.184
3 sibs per family	0.384	0.535	0.493
4 sibs per family	0.697	0.852	0.811
Two parents genotyped			
2 sibs per family	0.153	0.155	0.171
3 sibs per family	0.424	0.428	0.438
4 sibs per family	0.800	0.800	0.794

Disease Model, p = 0.10, f_{11} = 0.01, f_{12} = 0.02, f_{22} = 0.04

Conclusions from Simulations

- Modeling linkage disequilibrium crucial
 Especially when parental genotypes missing
- Ignoring linkage disequilibrium
 - Inflates LOD scores
 - Both small and large sibships are affected
 - Loses ability to discriminate true linkage