
Meetings this summer
• June 3-6: Behavior Genetics Association (Amsterdam, 

The Netherlands, see: www.bga.org)

• June 8-10: Int. Society Twin Studies (Ghent, Belgium, 
see: www.twins2007.be)



Introduction to multivariate QTL

• Theory
• Genetic analysis of lipid data (3 traits)
• QTL analysis of uni- / multivariate data
• Display multivariate linkage results

Dorret Boomsma, Meike Bartels, Jouke Jan Hottenga, Sarah Medland

Directories: dorret\lipid2007 univariate jobs
dorret\lipid2007 multivariate jobs
sarah\graphing



Multivariate approaches
•Principal component analysis (Cholesky)
•Exploratory factor analysis (Spss, SAS)
•Path analysis (S Wright)
•Confirmatory factor analysis (Lisrel, Mx)
•Structural equation models (Joreskog, Neale)

These techniques are used to analyze multivariate data 
that have been collected in non-experimental designs 
and often involve latent constructs that are not directly 
observed. 
These latent constructs underlie the observed variables 
and account for correlations between variables.



Example: depression
• I feel lonely
• I feel confused or in a fog
• I cry a lot
• I worry about my future.
• I am afraid I might think or do something bad
• I feel that I have to be perfect
• I feel that no one loves me
• I feel worthless or inferior
• I am nervous or tense
• I lack self confidence I am too fearful or anxious
• I feel too guilty
• I am self-conscious or easily embarrassed
• I am unhappy, sad or depressed
• I worry a lot
• I am too concerned about how I look 
• I worry about my relations with the opposite sex

Are these items “indicators”
of a trait that we call 
depression?

Is there a latent 
construct that underlies 
the observed items and 
that accounts for the 
inter-correlations 
between variables?



The covariance between item x1 and x4 is:

cov (x1, x4) = λ1 λ4 ψ = cov (λ1f + e1, λ4f + e4 ) 

where ψ is the variance of f and e1 and e4 are uncorrelated

f

x1 x2 x3 x4

λ1 λ2 λ3 λ4

ψ

e1 e2 e3 e4

Sometimes x = Λ f + e is referred to as the measurement model. 
The part of the model that specifies relations among latent factors 
is the covariance structure model, or the structural equation model



square box:observed variable (x)

circle: latent (unobserved) variable (f, G, E)

unenclosed variable: innovation / disturbance term (error) in 
equation (ζ) or measurement error (e)

straight arrow: causal relation (λ)

curved two-headed arrow: association (r)

two straight arrows: feedback loop

Symbols used in path analysis



The associations between variables in a path diagram is 
derived by tracing all connecting paths between variables: 

1 trace backward along an arrow, then forward
• never forward and then back;
• never through adjacent arrow heads

2 pass through each variable only once 
3 trace through at most one two-way arrow

The expected correlation/covariance between two variables is 
the product of all coefficients in a chain and summing over all 
possible chains (assuming no feedback loops)

Tracing rules of path analysis



cov (x1, x4) = h1 h4

Var (x1) = h2
1 + var(g1)

G

x1 x2 x3 x4

h1 h2 h3 h4

1

g1 g2 g3 g4



Measurement model / Confirmatory factor model: x = Λ f + e, 
x = observed variables 
f = (unobserved) factor scores
e = unique factor / error 
Λ = matrix of factor loadings

"Univariate" genetic factor model
Pj = hGj + e Ej + c Cj , j = 1, ..., n (subjects)

where P = measured phenotype 
G = unmeasured genotypic value 
C = unmeasured environment common to family members 
E = unmeasured unique environment 
Λ = h, c, e (factor loadings/path coefficients)

Genetic Structural Equation Models



Univariate ACE Model for a Twin Pair

P

1

P

A AC CE E

1/.5

ac ecae

=Σ MZ

222 eca ++
222 eca ++22 ca +

22 ca +

=Σ DZ

222 eca ++
222 eca ++225. ca +

225. ca +

rA1A2 = 1 for MZ 
rA1A2 = 0.5 for DZ

Covariance (P1, P2) 
= a rA1A2 a + c2

rMZ = a2 + c2

rDZ = 0.5 a2 + c2

2(rMZ-rDZ) = a2 



Pj = hGj + e Ej + c Cj , j = 1, ..., n (subjects)

Can be very easily generalized to multivariate data, where 
for example P is 2 x 1 (or p x 1) and the dimensions of the 
other matrices change accordingly.

With covariance matrix: Σ = ΛΨΛ’ + Θ

Where Σ is pxp and the dimensions of other matrices depend 
on the model that is evaluated (Λ is the matrix of factor 
loading; Ψ has the correlations among factor scores and Θ
has the error variances (usually a diagonal matrix)

Genetic Structural Equation Models



All models specify a covariance matrix Σ and 
means vector µ:

Σ = ΛΨΛt + Θ

total covariance matrix [Σ] =  
factor variance [ΛΨΛt ] + residual variance [Θ]

means vector µ can be modeled as a function of 
other (measured) traits e.g. sex, age, cohort, SES

Models in non-experimental research



1/.5 1/.5

A1 A2

a11

P11 P21

a22a21

A1 A2

a11

P12 P22

a22
a21

E1 E2 E1 E2

e11 e21 e22 e11 e21 e22

Bivariate twin model:
The first (latent) additive genetic factor influences P1 and P2;
The second additive genetic factor influences P2 only.
A1 in twin 1 and A1 twin 2 are correlated; A2 in twin 1 and A2 
in twin 2 are correlated (A1 and A2 are uncorrelated)



• S (pxp) would be 2x2 for 1 person: 4x4 for twin or 
sib pairs; what we usually do in Mx:

A and E are 2x2 and have the following form:

• a11 e11
a21 a22 e21 e22

And then S is: A*A’ + E*E’ | raA*A’
raA*A’ | A*A’ + E*E’

(where ra is the genetic correlation in MZ/DZ twins and A and E 
are lower triangular matrices)



Implied covariance structure: A (DZ twins)
(text in red indicates the “within person”, text in blue indicates the “between person”- statistics)

A --- DZ twins X-twin1 Y-twin1 X-twin2 Y-twin2 
X-twin1 Variance X 

 
a11 2 
 

 
equal to row 2, 
column 1 

 
equal to row 3, 
column 1 

  
equal to row 4, 
column 1 

Y-twin1 Covariance  
within person, 
between variables 
 
a11 * a21 
 

Variance Y 
 
a21 2 + a22 2 
 
 

  
 
equal to row 3, 
column 2 

 
 
equal to row 4, 
column 2 

X-twin2 Covariance  
between persons, 
within variables 
 
a11 * .5 * a11 
 

Covariance 
between persons, 
between variables 
 
a11 * .5 * a21 
 

Variance X 
 
 
a11 2 

    
 
equal to row 4, 
column 3  

Y-twin2 Covariance  
between persons, 
between variables 
 
a11 * .5 * a21 
 

Covariance  
between persons, 
within variables 
a21 * .5 * a21 + 
a22 * .5 * a22 
 
 

Covariance  
within person, 
between variables 
 
a11 * a21 
 

Variance Y 
 
a21 2 + a22 2 
 

 



Implied covariance structure: C (MZ and DZ twins)
C --- MZ & 
DZ twins 

X-twin1 Y-twin1 X-twin2 Y-twin2 

X-twin1 Variance X 
 
c11 2 
 

 
equal to row 2, 
column 1 

 
equal to row 3, 
column 1 

  
equal to row 4, 
column 1 

Y-twin1 Covariance  
within person, 
between variables 
 
c11 * c21 
 

Variance Y 
 
c21 2 + c22 2 
 
 

  
 
equal to row 3, 
column 2 

 
 
equal to row 4, 
column 2 

X-twin2 Covariance  
between persons, 
within variables 
 
c11 * c11 
 

Covariance 
between persons, 
between variables 
 
c11 * c21 
 

Variance X 
 
 
c11 2 

    
 
 equal to row 4, 
column 3  

Y-twin2 Covariance  
between persons, 
between variables 
 
c11 * c21 
 

Covariance  
between persons, 
within variables 
c21 * c21 + 
c22 * c22 

Covariance  
within person, 
between variables 
 
c11 * c21 
 

Variance Y 
 
c21 2 +c22 2 
 

 



Implied covariance structure: E (MZ and DZ twins)
E --- MZ & 
DZ twins 

X-twin1 Y-twin1 X-twin2 Y-twin2 

X-twin1 Variance X 
 
e11 2 
 

 
equal to row 2, 
column 1 

 
equal to row 3, 
column 1 

  
equal to row 4, 
column 1 

Y-twin1 Covariance  
within person, 
between variables 
 
e11 * e21 
 

Variance Y 
 
e21 2 + e22 2 
 
 

  
 
equal to row 3, 
column 2 

 
 
equal to row 4, 
column 2 

X-twin2 Covariance  
between persons, 
within variables 
 
0 
 

Covariance 
between persons, 
between variables 
 
0 
 

Variance X 
 
 
e11 2 

    
 
 equal to row 4, 
column 3  

Y-twin2 Covariance  
between persons, 
between variables 
 
0 
 

Covariance  
between persons, 
within variables 
 
0 
 

Covariance  
within person, 
between variables 
 
e11 * e21 
 

Variance Y 
 
e21 2 + e22 2 
 

 



X 1 Y1
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A X

hX

A Y

hY

X 1 Y1
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hSX
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hSY

A C

hC hC

X 1 Y1

h1

A 2

h3

A 1

h2

Bivariate Phenotypes

Correlation Common factor Cholesky
decomposition



Cholesky decomposition

X 1 Y1

h1

A 2

h3

A 1

h2

- If h3 = 0: no genetic 
influences specific to Y 

- If h2 = 0: no genetic 
covariance

- The genetic correlation between 
X and Y = 

covariance X,Y / SD(X)*SD(Y)



Common factor model

X 1 Y1

A SX

hSX

A SY

hSY

A C

hC hC

A common factor 
influences both traits 
(a constraint on the 
factor loadings is 
needed to make this 
model identified).



Correlated factors

X 1 Y1

rG

A X

hX

A Y

hY

• Genetic correlation rG

• Component of phenotypic 
covariance
rXY = hXrGhY [ + cXrCcY + eXrEeY ] 



Phenotypic correlations can arise, broadly speaking, from 
two distinct causes (we do not consider other 
explanations such as phenotypic causation or reciprocal 
interaction).

The same environmental factors may operate within 
individuals, leading to within-individual environmental 
correlations. Secondly, genetic correlations between 
traits may lead to correlated phenotypes.

The basis for genetic correlations between traits may lie in 
pleiotropic effects of genes, or in linkage or non-random 
mating. However, these last two effects are expected to 
be less permanent and consequently less important 
(Hazel, 1943).



Genetics, 28, 
476-490, 1943



Both PCA and Cholesky decomposition “rewrite” the data

Principal components analysis (PCA): S = P D P' = P* P*'

where S = observed covariance matrix
P'P = I (eigenvectors)
D = diagonal matrix (containing eigenvalues)
P* = P (D1/2)

The first principal component: y1 = p11x1 + p12x2 + ... + p1qxq

second principal component: y2 = p21x1 + p22x2 + ... + p2qxq

etc.

[p11, p12, … , p1q] is the first eigenvector
d11 is the first eigenvalue (variance associated with y1)



Familial model for 3 variables 
(can be generalized to p traits)

F1 F2 F3

P1 P2 P3

E1 E2 E3

F: Is there 
familial (G or C) 
transmission?

E: Is there 
transmission of 
non-familial 
influences?



Both PCA and Cholesky decomposition “rewrite” the data

Cholesky decomposition: S = F F’
where F = lower diagonal (triangular)

For example, if S is 3 x 3, then F looks like:

f11 0 0
f21 f22 0
f31 f32 f33

And P3 = f31*F1 + f32*F2 + f33*F3

If # factors = # variables, F may be rotated to P*. Both approaches give a 
transformation of S. Both are completely determinate.



Multivariate phenotypes & multiple QTL effects

For the QTL effect, multiple orthogonal factors can be 
defined (Cholesky decompostion or triangular matrix).

By permitting the maximum number of factors that can 
be resolved by the data, it is theoretically possible to 
detect effects of multiple QTLs that are linked to a 
marker (Vogler et al. Genet Epid 1997)



η

y1 y2 y3 y4

pc1

y1 y2 y3 y4

pc2 pc3 pc4

pc1

y1 y2 y3 y4

η

y1 y2 y3 y4

If pc1 is large, in the sense that it account for much variance

=>

Then it resembles the common factor model (without unique variances)

From multiple latent factors (Cholesky / PCA) to 1 common factor



Multivariate QTL effects
Martin N, Boomsma DI, Machin G, 
A twin-pronged attack on complex 
traits, Nature Genet, 17, 1997

See: www.tweelingenregister.org

QTL modeled as 
a common factor



Multivariate QTL analysis

• Insight into etiology of genetic associations (pathways)

• Practical considerations (e.g. longitudinal data: use all info)

• Increase in statistical power:

Boomsma DI, Dolan CV, A comparison of power to detect a QTL in sib-pair data 
using multivariate phenotypes, mean phenotypes, and factor-scores, Behav
Genet, 28, 329-340, 1998

Evans DM. The power of multivariate quantitative-trait loci linkage analysis is 
influenced by the correlation between variables. Am J Hum Genet. 2002, 1599-
602

Marlow et al. Use of multivariate linkage analysis for dissection of a complex 
cognitive trait. Am J Hum Genet. 2003, 561-70 (see next slide)





Analysis of LDL (low-density lipoprotein), APOB (apo-
lipoprotein-B) and APOE (apo-lipoprotein E) levels

• phenotypic correlations
• MZ and DZ correlations
• first (univariate) QTL analysis: partitioned twin analysis (PTA)
• generalize PTA to trivariate data
• multivariate (no QTL model)
• multivariate (QTL)



Multivariate analysis of LDL, APOB and APOE

 
Phenotypic Correlations     
 LDL APOB APOE 
LDL 1.00   
APOB 0.88 1.00  
APOE 0.27 0.24 1.00 



Multivariate analysis of LDL, APOB and APOE

MZ Correlations     
 LDL TW1 APOB TW1 APOE TW1 
LDL TW2 0.75 0.76 0.41 
APOB TW2 0.68 0.77 0.37 
APOE TW2 0.32 0.31 0.88 
    
DZ Correlations     
 LDL TW1 APOB TW1 APOE TW1 
LDL TW2 0.45 0.47 -0.04 
APOB TW2 0.36 0.44 -0.06 
APOE TW2 0.09 0.06 0.51 



Genome-wide scan in DZ twins : lipids

Genotyping in the 117 DZ twin pairs was done for markers 
with an average spacing of 8 cM on chromosome 19 (see 
Beekman et al.). 

IBD probabilities were obtained from Merlin 1.0 and was 
calculated as 0.5 x IBD1 + 1.0 x IBD2 for every 2 cM on 
chromosome 19.

Beekman M, et al. Combined association and linkage analysis applied to the APOE 
locus. Genet Epidemiol. 2004, 26:328-37. 

Beekman M et al. Evidence for a QTL on chromosome 19 influencing LDL 
cholesterol levels in the general population. Eur J Hum Genet. 2003, 11:845-50 



• Marker-data: calculate proportion alleles shared 
identical-by-decent (π)

• π = π1/2  + π2

• IBD estimates obtained from Merlin
• Decode genetic map

Quality controls:
• MZ twins tested
• Check relationships (GRR)
• Mendel checks (Pedstats / Unknown)
• Unlikely double recombinants (Merlin)

Genome-wide scan in DZ twins



Partitioned twin analysis:
Can resemblance (correlations) between sib 
pairs / DZ twins, be modeled as a function of 
DNA marker sharing at a particular 
chromosomal location? (3 groups)

IBD = 2 (all markers identical by descent)
IBD = 1
IBD = 0 

Are the correlations (in lipid levels) different for 
the 3 groups?



PIHAT65
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Std. Dev = .30  
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N = 117.00

Adult Dutch DZ pairs: distribution pi-hat (π) at 65 cM (chromosome 19).
π = IBD/2; all pairs with π <0.25 have been assigned to IBD=0 group; 
all pairs with π > 0.75 to IBD=2 group; others to the IBD=1 group.



Exercise
• Model DZ correlation in LDL as a function of IBD
• Test if the 3 correlations are the same
• Add data of MZ twins
• Test if the correlation in the DZ group with IBD = 

2 is the same as the MZ correlation
• Repeat for apoB and ln(apoE) levels

• Do cross-correlations (across twins/across traits) 
differ as a function of IBD? (trivariate analysis)



Basic scripts & data (LDL, apoB, apoE)

• Correlation estimation in DZ: 
BasicCorrelationsDZ(ibd).mx

• Complete (MZ + DZ + tests) job: 
AllCorrelations(ibd).mx

• Information on data: datainfo.doc
• Datafiles: DZ: partionedAdultDutch3.dat

MZ: AdultDutchMZ3.dat



Correlations as a function of IBD

IBD2 IBD1 IBD0 MZ

LDL 0.81 0.49 -0.21 0.78
ApoB 0.64 0.50 0.02 0.79
lnApoE 0.83 0.55 0.14 0.89

Evidence for linkage?
Evidence for other QTLs?



Correlations as a function of IBD
chi-squared tests

all DZ equal DZ(ibd2)=MZ
LDL 21.77 0.0975
apoB 7.98 1.53
apoE 12.45 0.576

(df=2) (df=1)
NO YES



Linkage analysis in DZ / MZ twin pairs

3 DZ groups: IBD=2,1,0 (π=1, 0.5, 0)
Model the covariance as a function of IBD

Allow for background familial variance
Total variance also includes E

Covariance = πQ + F + E
Variance = Q + F + E

MZ pairs: Covariance = Q + F + E



Twin 1 Twin 2

E
C

A

Q Q

A
C

E
rMZ = 1, rDZ = 0, 

0.5 or 1

rMZ = 1, rDZ = 0.5

rMZ = rDZ = 1

q q

a a

c c
e e

4 group linkage analysis (3 IBD DZ groups and 1 MZ group)



Exercise

• Fit FQE model to DZ data (i.e. F=familial, 
Q=QTL effect, E=unique environment)

• Fit FE model to DZ lipid data (drop Q)
• Is the QTL effect significant?

• Add MZ data: ACQE model (A= additive 
genetic effects, C=common environment), 
does this change the estimate / 
significance of QTL?



Basic script and data (LDL, apoB, apoE)

• FQE model in DZ twins: FQEmodel-DZ.mx
• Complete (MZ data + DZ data + tests) job: 

ACEQ-mzdz.mx

• Information on data: datainfo.doc
• Datafiles: DZ: partionedAdultDutch3.dat

MZ: AdultDutchMZ3.dat



Test of the QTL: chi-squared test (df = 1)

DZ pairs DZ+MZ pairs
LDL 12.247 12.561
apoB 1.945 2.128
apoE 12.448 12.292



Twin 1 Twin 2

E

A

Q Q

A

E
rDZ = π̂

rDZ = 0.5

q q

a a

e e

Use pi-hat: single group analysis (DZ only) 

Exercise: PiHatModelDZ.mx



Twin 1 Twin 2

E
C

A

Q Q

A
C

E
rMZ = 1, rDZ = π̂

rMZ = 1, rDZ = 0.5

rMZ = rDZ = 1

q q

a a

c c
e e



Summary of univariate jobs

• basicCorrelations: DZ (ibd) correlations
• Allcorrelations: plus MZ pairs
• Tricorrelations: trivariate correlation matrix

• FQEmodel-dz.mx
• PIhatModel-dz.mx
• aceq-mzdz.mx



Multivariate analysis of LDL, APOB, 
and APOE

• use MZ and DZ twin pairs
• fixed effect of age and sex on mean values
• model the effects of additive genes, common 
and unique environment (ACE model)
• test the significance of common environment 
(and / or of additive genetic influences)



Multivariate analysis of LDL (low-density 
lipids), APOB (apo-lipoprotein-B) and 

APOE (apo-lipoprotein E)

• Cholesky decomposition (obtain the genetic 
correlations among traits): lipidchol no QTL.mx
• Common factor model (i.e. all correlations of latent 
factors are unity) :
lipid Common Factor no qtl.mx

Effect of C not significant



Genetic correlations among LDL, APOB and 
LNAPOE (Cholesky no QTL)

• MATRIX N
• This is a computed FULL matrix of order    3 by    3
• [=\STND(A)]

• 1         2         3
• 1     1.0000    0.9559    0.2157
• 2     0.9559    1.0000    0.1867
• 3     0.2157    0.1867    1.0000



Cholesky decomposition: 3 QTL’s (latent 
factors) influencing 3 (observed) lipid traits 

0.5

A11 A12 A13 A21 A22 A23

E11 E12 E13 E21 E22 E23

Q11 Q12 Q13 Q21 Q22 Q23

π π π

0.50.5

V11 V12 V13 V21 V22 V23

Iq11
Iq12

Iq13

Iq21 Iq31

Iq22
Iq11

Iq12

Iq13

Iq21 Iq31

Iq22

^ ^ ^



QTL as a common factor

0.5

A11 A12 A13 A21 A22 A23

E11 E12 E13 E21 E22 E23

Q1 Q2

π

0.50.5

V11 V12 V13 V21 V22 V23

Iq1 Iq2 Iq3 Iq1 Iq2 Iq3

^

A (additive genetic) background and E (unique environment) modeled as Choleky



Tests of multivariate QTL: more than 1 df

• Take the χ2 distribution with n df, where n is 
equal to the difference in number of estimated 
variance components between the QTL / no QTL 
models. 

• Convert back p-values to a χ2 value with 1 
degree of freedom This χ2 value can then be 
divided by 2ln(10) to obtain a LOD score. 

• Given that we ignore the mixture distribution 
problem, the p-values the results will be too 
conservative (see e.g. Visscher, 2006 in TRHG). 



2 jobs for QTL analysis

• Cholesky decomposition for QTL:
lipidchol QTL.mx
• Common factor model for QTL:
lipid Common Factor no qtl.mx

Run the jobs and test for significance of 
the QTL effect

Include MZ twins (What are the IBD0, IBD1 and IBD2 probabilities?)



Summary: uni- and multivariate
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