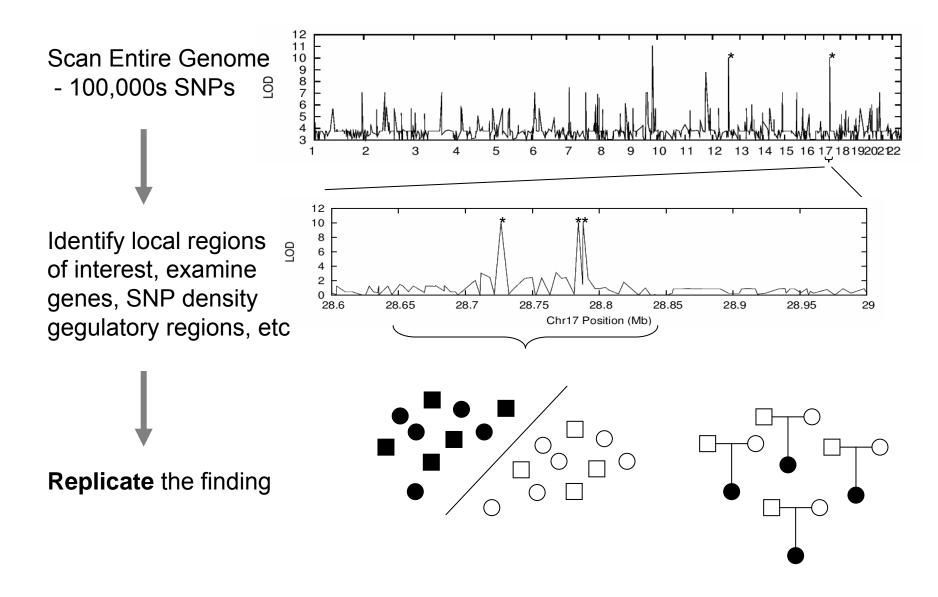
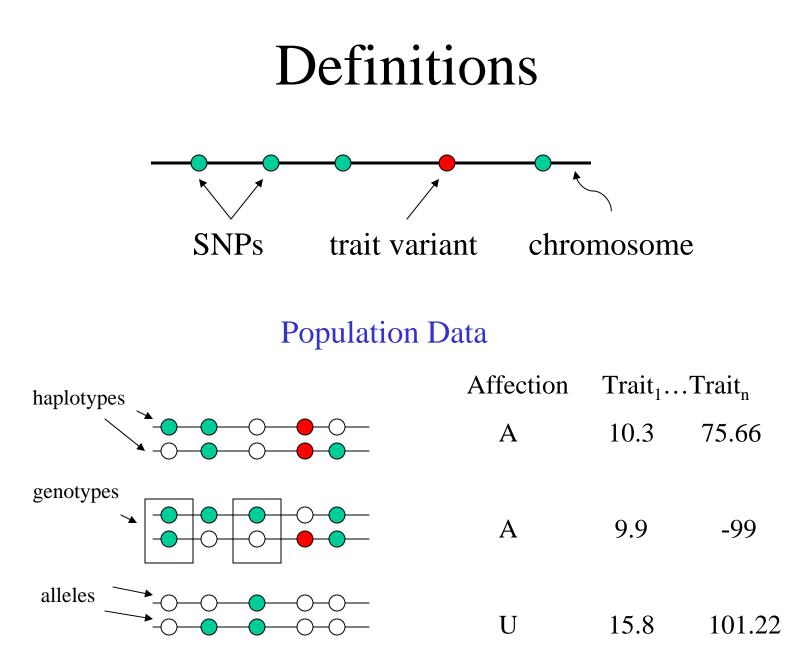
Association Mapping

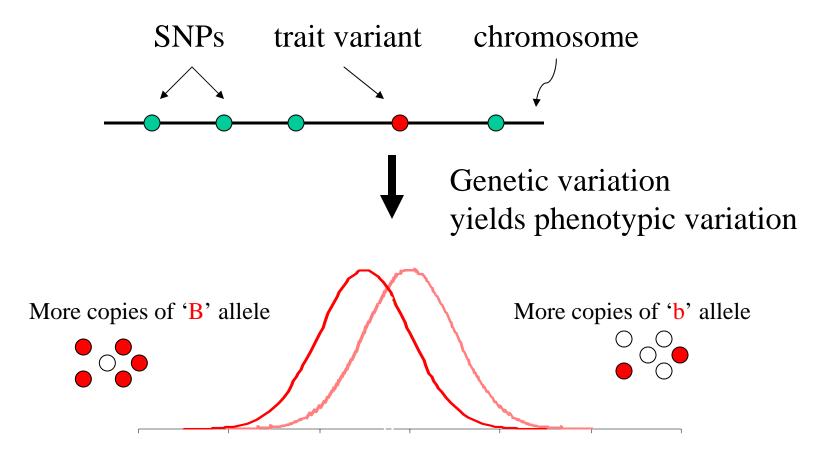
Lon Cardon


SEA-TAC Airport (South Satellite Terminal) &

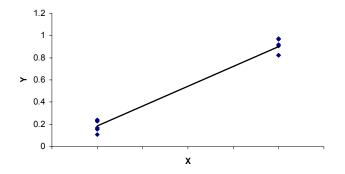
London Heathrow (Terminal 4)


Outline

- Linkage vs association
- HapMap/SNP discovery enable whole genome association
- Challenges facing whole genome association
- Outlook for future


Whole Genome Association

Allelic Association

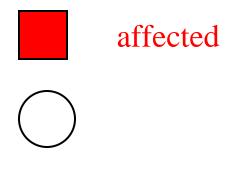

Simplest Regression Model of Association

$$Y_i = \alpha + \beta X_i + e_i$$

where

 $Y_i =$ trait value for individual i $X_i =$ 1 if allele individual i has allele 'A' 0 otherwise

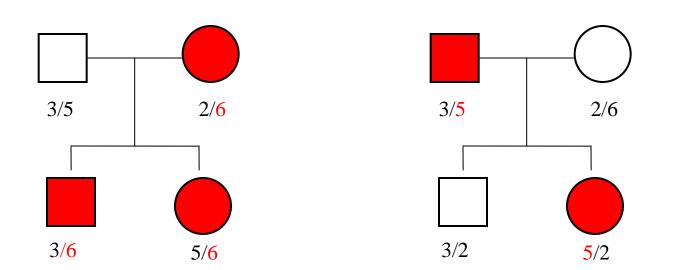
i.e., test of mean differences between 'A' and 'not-A' individuals


Association Study Designs and Statistical Methods

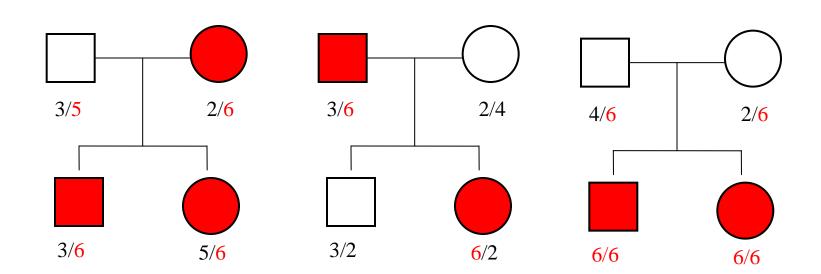
• Designs

- Family-based
 - Trio (TDT), twins/sib-pairs/extended families (QTDT)
- Case-control
 - Collections of individuals with disease, matched with sample w/o disease
 - Some 'case only' designs
- Statistical Methods
 - Wide range: from t-test to evolutionary model-based MCMC
 - Principle always same: correlate phenotypic and genotypic variability

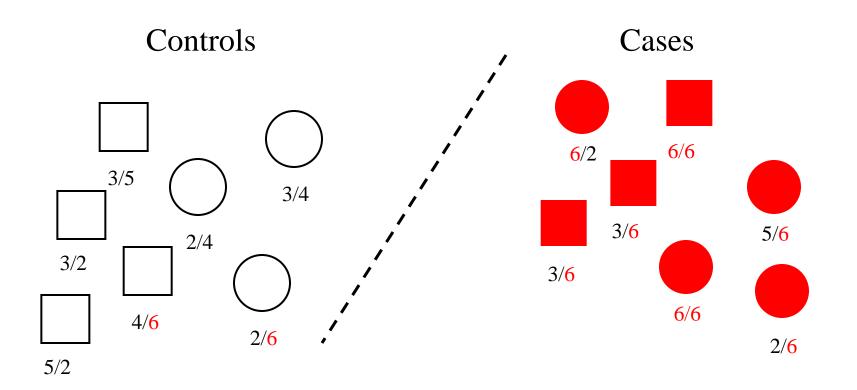
Linkage: Allelic association WITHIN FAMILIES



Allele coded by CA copies 2 = CACA 6 = CACACACACA


Disease linked to '5' allele in dominant inheritance

Allelic Association: Extension of linkage to the population


Both families are 'linked' with the marker, but a different allele is involved

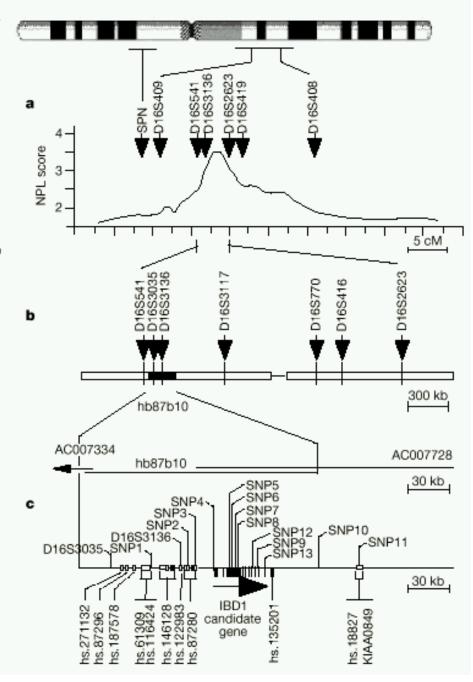
Association AND Linkage

All families are 'linked' with the marker Allele 6 is 'associated' with disease

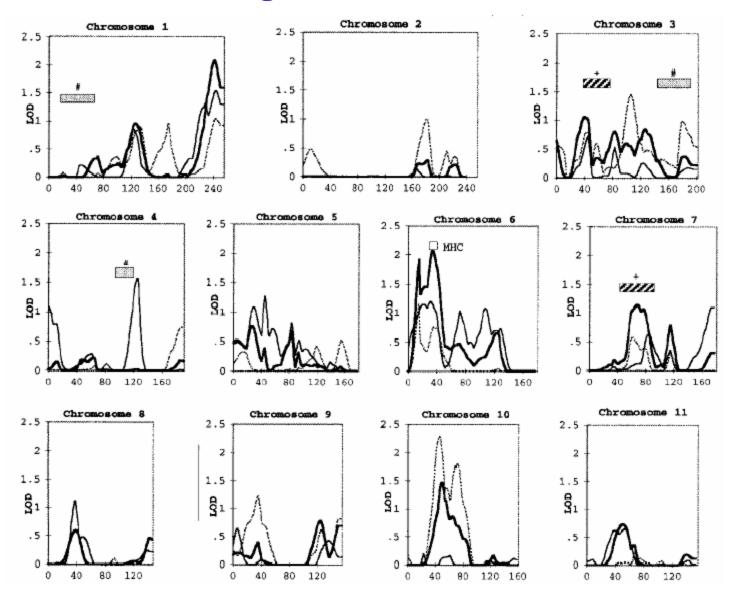
Allelic Association

Allele 6 is 'associated' with disease

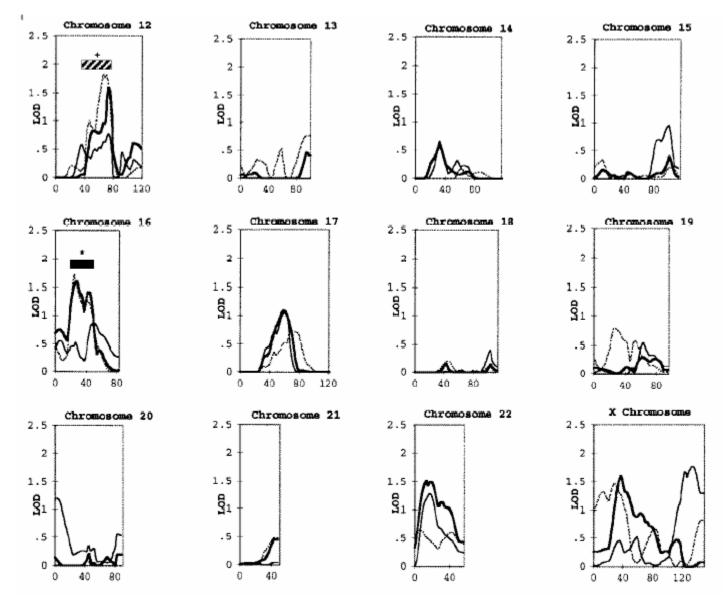
Power of Linkage vs Association


- Association generally has greater power than linkage
 - Linkage based on variances/covariances
 - Association based on means
 - See power lectures in this course

Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease


Jean-Pierre Hugot*†‡, Mathias Chamaillard*†, Habib Zouali*, Suzanne Lesage*, Jean-Pierre Cézard‡, Jacques Belaiche§, Sven Almer||, Curt Tysk¶, Colm A. O'Morain#, Miquel Gassull⁴, Vibeke Binder**, Yigael Finkel††, Antoine Cortot‡‡, Robert Modigliani§§, Pierre Laurent-Puig†, Corine Gower-Rousseau‡‡, Jeanne Macry||||, Jean-Frédéric Colombel‡‡, Mourad Sahbatou* & Gilles Thomas*†¶¶

NATURE | VOL 411 | 31 MAY 2001


First (unequivocal) positional cloning of a complex disease gene

Inflammatory Bowel Disease Genome Screen Satsangi et al, Nat Genet 1996

Inflammatory Bowel Disease Genome Screen

NOD2 Association Results Stronger than Linkage Evidence

• Analysis strategy: same families, same individuals as linkage, but now know mutations. Were the effects there all along?

• TDT

TABLE VI. NOD2 Haplotype Associations With CD

Haplotype ^a	All families $n = 294 \text{ CD trios}^{b}$			
Pro268/Arg702/Gly908/Leu1007 Pro268Ser/Arg702/Gly908/Leu1007 Pro268Ser/Arg702Trp/Gly908/Leu1007 Pro268Ser/Arg702/Gly908/Leu1007fsinsC Pro268Ser/Arg702/Gly908Arg/Leu1007	71 TR : 109 NT 50 TR : 70 NT 43 TR : 21 NT 41 TR : 6 NT 9 TR : 9 NT	P = 0.01 P = 0.000007 P = ns		

^aMinor variants shown in bold type.

^bP-values shown for over-transmitted haplotypes. Transmission numbers are not identical to Table V, due to haplotype ambiguity and occasional PCR failure.

• Case-control

Genotype Rel Risk = 58.9, p < 10⁻⁸ Same CD cases vs 229 controls

Localization

- Linkage analysis yields broad chromosome regions harbouring many genes
 - Resolution comes from recombination events (meioses) in families assessed
 - 'Good' in terms of needing few markers, 'poor' in terms of finding specific variants involved
- Association analysis yields fine-scale resolution of genetic variants
 - Resolution comes from ancestral recombination events
 - 'Good' in terms of finding specific variants, 'poor' in terms of needing many markers

Linkage vs Association

Linkage

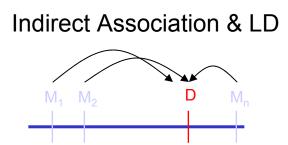
Association

- 1. Family-based
- 2. Matching/ethnicity generally unimportant
- 3. Few markers for genome coverage (300-400 STRs)
- 4. Can be weak design
- 5. Good for initial detection; poor for fine-mapping
- 6. Powerful for rare variants

- 1. Families or unrelateds
- 2. Matching/ethnicity crucial
- 3. Many markers req for genome coverage $(10^5 10^6 \text{ SNPs})$
- 4. Powerful design
- 5. Ok for initial detection; good for fine-mapping
- 6. Powerful for common variants; rare variants generally impossible

Allelic Association Three Common Forms

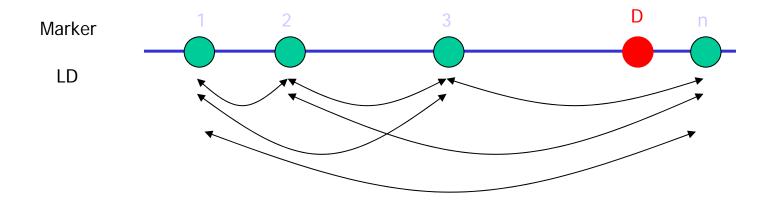
Direct Association


- Mutant or 'susceptible' polymorphism
- Allele of interest is itself involved in phenotype
- Indirect Association
 - Allele itself is not involved, but a nearby correlated marker changes phenotype
- Spurious association
 - Apparent association not related to genetic aetiology (most common outcome...)

Indirect and Direct Allelic Association

Direct Association

Measure disease relevance (*) directly, ignoring correlated markers nearby



Assess trait effects on D via correlated markers (M_i) rather than susceptibility/etiologic variants.

Semantic distinction between

Linkage Disequilibrium: correlation between (any) markers in population Allelic Association: correlation between marker allele and trait

Linkage Disequilibrium & Allelic Association

Markers close together on chromosomes are often transmitted together, yielding a non-zero correlation between the alleles. This is *linkage disequilibrium*

It is important for allelic association because it means we don't need to assess the exact aetiological variant, but we see trait-SNP association with a neighbouring variant

Building Haplotype Maps for Gene-finding

- 1. Human Genome Project
 - → Good for consensus, not good for individual differences

Sept 01

April 04

Oct 04

- 2. Identify genetic variants
 - → Anonymous with respect to traits.

Feb 02

April 1999 - Dec 01

3. Assay genetic variants

- → Verify polymorphisms, catalogue correlations amongst sites
- → Anonymous with respect to traits

Oct 2002 – 2007...

HapMap Strategy

- Rationale: there are ~10 million common SNPs in human genome
 - We can't afford to genotype them all in each association study
 - But maybe we can genotype them once to catalogue the redundancies and use a smaller set of 'tag' SNPs in each association study
- Samples
 - Four populations, 270 indivs total
- Genotyping
 - 5 kb initial density across genome (600K SNPs)
 - Then second phase to ~ 1 kb across genome (4 million)
 - All data in public domain

Commercial SNP Panels

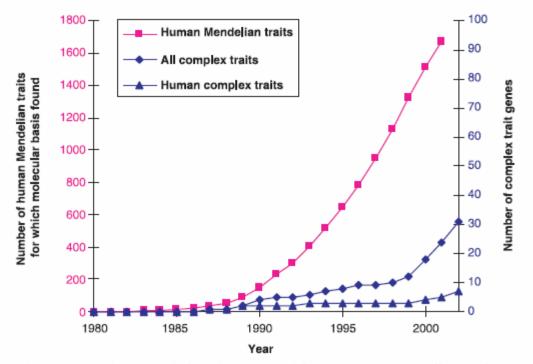
- Comprise \approx 100,000 550,000 genetic variants •
 - Soon, 1 million
- Cover up to ~85% of common genetic variants

		CEU		JPT+CHB		YRI	
	Туре	Coverage (%)	Mean r ²	Coverage (%)	Mean r ²	Coverage (%)	Mean r ²
Illumina HumanHap300	Tag	75	0.961	63	0.964	28	0.961
Affymetrix 500K	Random	65	0.975	66	0.974	41	0.971
Affymetrix 111K	Random	31	0.960	31	0.957	15	0.957
Affymetrix 500k + 175K tag	Combination	86	0.975	79	0.978	49	0.973
Illumina Human-1	Gene	26ª	0.957	28ª	0.955	12ª	0.956
Despite the r ² cutoff of 0.8, the mean (Supplementary Fig. 1).	r ² for tagged SNPs is very	higa; also, 'untagged'	SNPs are covered with	intermediate values of	r^2 , providing modest pov	wer to detect such allele	š

Table 1 Genomic coverage of commercial GWAS products for common SNPs at $r^2 \ge 0.8$, evaluated in Phase II HapMap

*Coverage estimates for the Human-1 product are underestimates because some of its SNPs were not genotyped in the HapMac project. As these SNPs are largely ray genic SNPs, it is not

expected that they would substantially raise coverage of common variation.


Does having 4 million markers make it easy to find QTLs and disease genes?

- Having more markers makes it easy to do more studies, yes.
- But does it make it easier to find traitrelevant loci?

Historical Performance of Genetic Association Studies

- Pubmed: 27 Feb 2007. "Genetic association" gives 42,294 hits
- 1635 claims of 'replicated' genetic association (4%)
- 436 claims of 'validated' genetic association (1%)
- In reality, ~ 30-50 confirmed associations for complex traits

Genetic studies of complex diseases have not met anticipated success

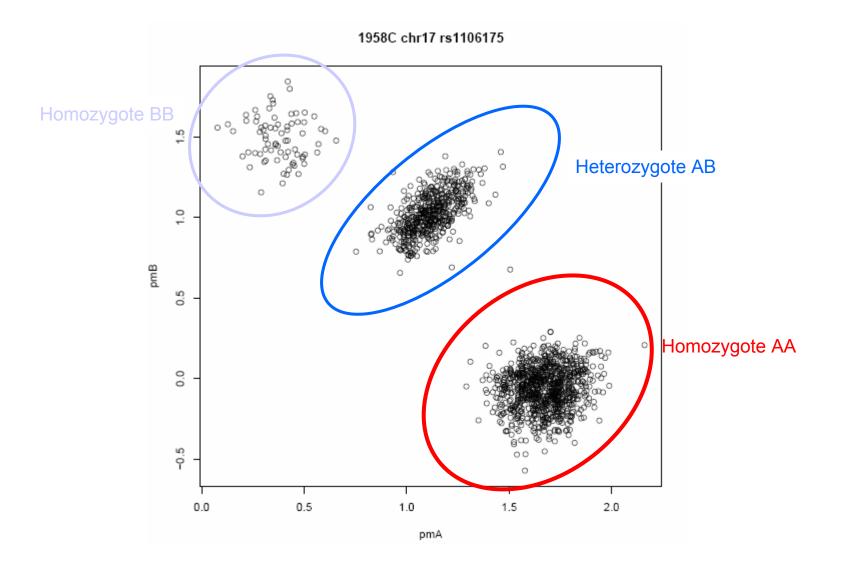
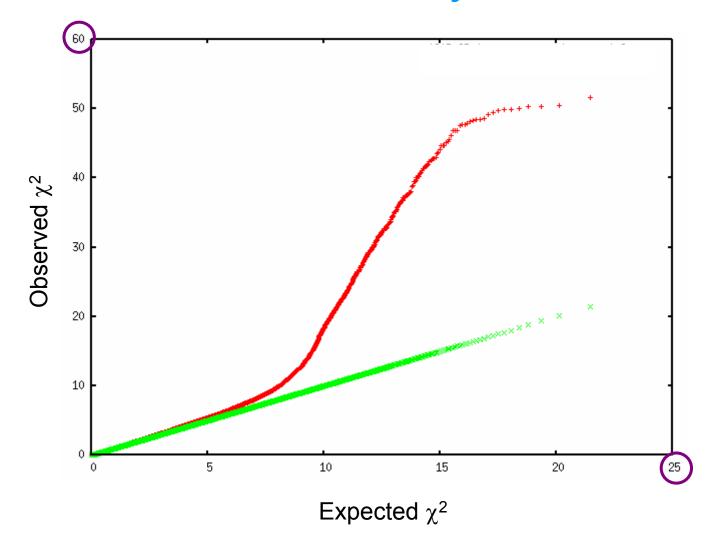
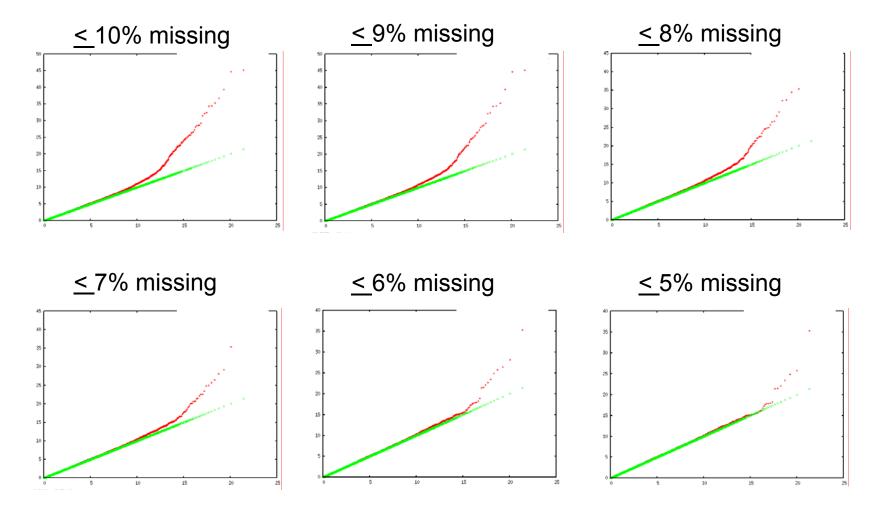


Fig. 1. Identification of genes underlying human Mendelian traits and genetically complex traits in humans and other species. Cumulative data for human Mendelian trait genes (to 2001) include all major genes causing a Mendelian disorder in which causal variants have been identified (*58, 59*). This reflects mutations in a total of 1336 genes. Complex trait genes were identified by the whole-genome screen approach and denote cumulative year-on-year data described in this review.

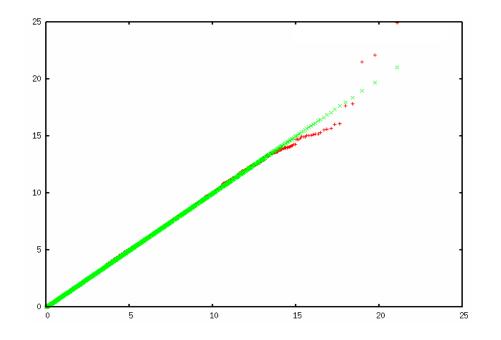
Glazier et al, Science (2002) 298:2345-2349

Current Association Study Challenges 1) Data Quality

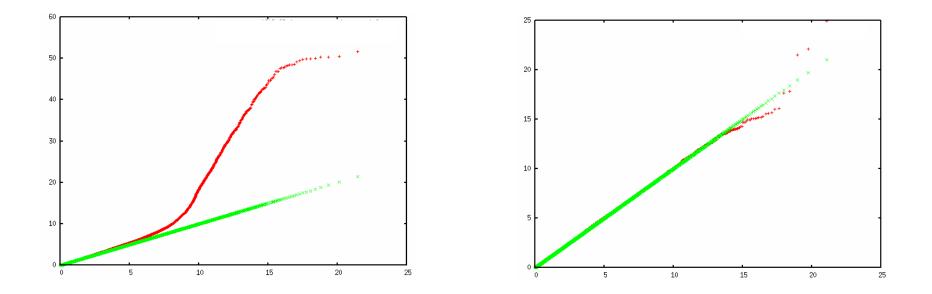

Genotype Calling


What effect does this have on trait association?

- Following data
 - Affymetrix data
 - Single locus tests
 - ≥ 500 cases/500 controls
 - Key issue
 - Genotype calling: batch effects, differential call rates, QC
 - e.g. Clayton et al, Nat Genet 2005


Whole Genome Association What answer do you want?

Cleaning Affymetrix Data Batch Effects and Genotype Calling



Affymetrix Data – Too Clean?

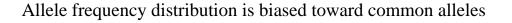
- As much as 20-30% data eliminated -- including real effects --
- Many 'significant' results can be data errors
 - 'Low Hanging Fruit' sometimes rotten
- Real effects may not be the most highly significant (power)

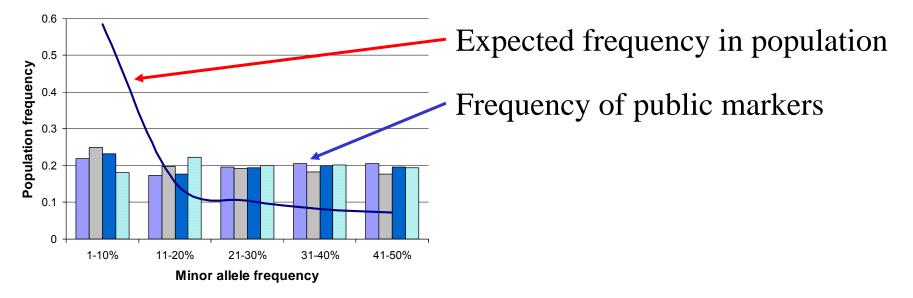
Too Many or Too Few?

• Inappropriate genotype calling, study design can mask real effects or make GWA look too good

- How to address this?
 - Multiple controls (e.g., WTCCC)
 - Multiple/better calling algorithms (e.g. Affymetrix)
 - Examination of individual genotypes (manual)

Current Association Study Challenges


2) Do we have the best set of genetic markers


Table 1 Priorities for single-nucleotide-polymorphism selection						
Type of variant	Location	Functional effect	Frequency in genome			
Nonsense	Coding sequence	Premature termination of amino-acid sequence	Very low			
Missense/ non-synonymous (non-conservative)	Coding sequence	Changes an amino acid in protein to one with different properties	Low			
Missense/ non-synonymous (conservative)	Coding sequence	Changes an amino acid in protein to one with similar properties	Low			
Insertions/deletions (frameshift)	Coding sequence	Changes the frame of the protein-coding region, usually with very negative consequences for the protein	Low			
Insertions/deletions (in frame)	Coding or non-coding	Changes amino-acid sequence	Low			
Sense/synonymous	Coding sequence	Does not change the amino acid in the protein — but can alter splicing	Medium			
Promoter/regulatory region	Promoter, 5' UTR, 3' UTR	Does not change the amino acid, but can affect the level, location or timing of gene expression	Low to medium			
Splice site/intron-exon boundary	Within 10 bp of the exon	Might change the splicing pattern or efficiency of introns	Low			
Intronic	Deep within introns	No known function, but might affect expression or mRNA stability	Medium			
Intergenic	Non-coding regions between genes	No known function, but might affect expression through enhancer or other mechanisms	High			

Tabor et al, Nat Rev Genet 2003

2) Do we have the best set of genetic markers

There exist 6 million putative SNPs in the public domain. Are they the right markers?

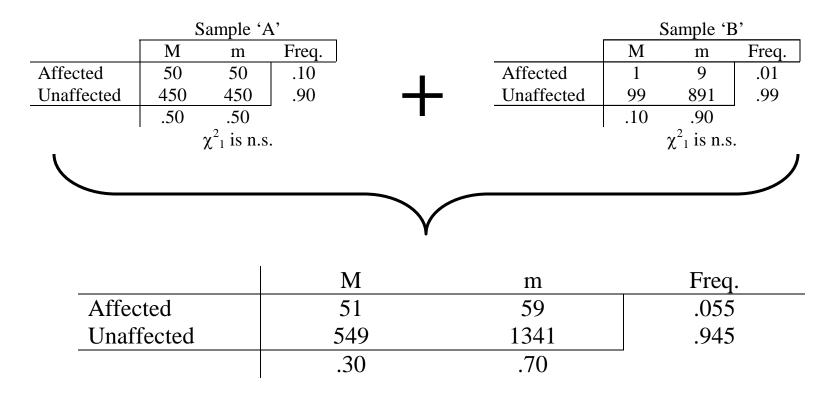
3) How to analyse the data

- Allele based test?
 - 2 alleles → 1 df
 - E(Y) = a + bX X = 0/1 for presence/absence
- Genotype-based test?
 - 3 genotypes \rightarrow 2 df
 - $E(Y) = a + b_1 A + b_2 D$

A = 0/1 additive (hom); W = 0/1 dom (het)

- Haplotype-based test?
 - For M markers, 2^{M} possible haplotypes $\rightarrow 2^{M}$ -1 df
 - $E(Y) = a + \Sigma bH$ H coded for haplotype effects
- Multilocus test?
 - Epistasis, G x E interactions, many possibilities

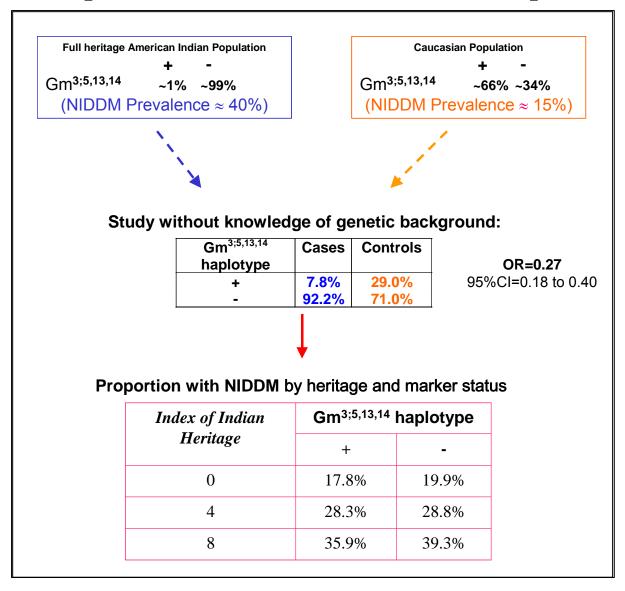
Current Association Study Challenges 4) Multiple Testing


- Candidate genes: a few tests (probably correlated)
- Linkage regions: 100's 1000's tests (some correlated)
- Whole genome association: 100,000s 1,000,000s tests (many correlated)
- What to do?
 - Bonferroni (conservative)
 - False discovery rate?
 - Permutations?
 -Area of active research

5) Population Stratification

Analysis of mixed samples having different allele frequencies is a primary concern in human genetics, as it leads to false evidence for allelic association.

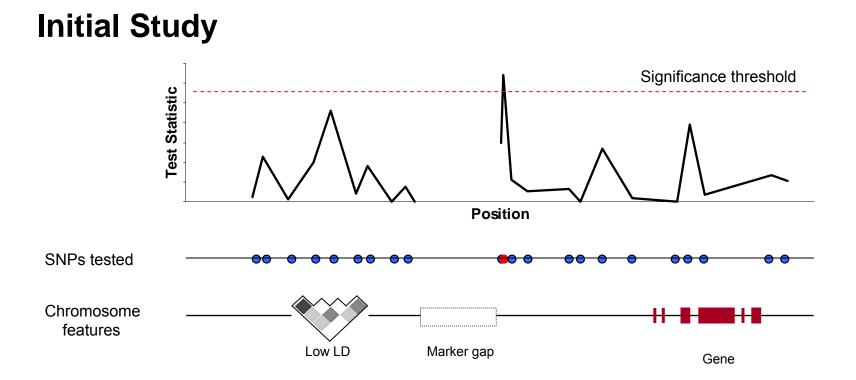
This is the main blame for past failures of association studies


Population Stratification

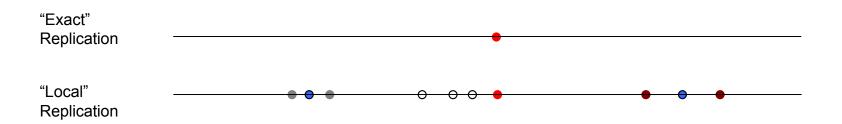
 $\chi^2_{1} = 14.84, p < 0.001$

Spurious Association

Population Stratification: Real Example


6) What constitutes a replication?

GOLD Standard for association studies


Replicating association results in different laboratories is often seen as most compelling piece of evidence for 'true' finding

But.... in any sample, we measure Multiple traits Multiple genes Multiple markers in genes and we analyse all this using multiple statistical tests

What is a true replication?

Replication Strategy

What is a true replication?

Replication Outcome

- Association to same trait, but different gene
- Association to same trait, same gene, different SNPs (or haplotypes)
- Association to same trait, same gene, same SNP – but in opposite direction (protective ←→ disease)
- Association to different, but correlated phenotype(s)
- No association at all

Explanation

- Genetic heterogeneity
- Allelic heterogeneity
- Allelic heterogeneity/popln differences
- Phenotypic heterogeneity
- Sample size too small

Measuring Success by Replication

- Define objective criteria for what is/is not a replication *in advance*
- Design initial and replication study to have enough power
 - 'Lumper': use most samples to obtain robust results in first place
 - Great initial detection, may be weak in replication
 - 'Splitter': Take otherwise large sample, split into initial and replication groups
 - One good study \rightarrow two bad studies.
 - Poor initial detection, poor replication

Despite challenges: upcoming association studies hold promise

- Large, epidemiological-sized samples emerging
- Availability of millions of genetic markers – Genotyping costs decreasing rapidly
- Background LD patterns characterized – International HapMap and other projects

GWA: Recent Success

Complement Factor H Polymorphism in Age-Related Macular Degeneration

Robert J. Klein,¹ Caroline Zeiss,^{2*} Emily Y. Chew,^{3*} Jen-Yue Tsai,^{4*} Richard S. Sackler,¹ Chad Haynes,¹ Alice K. Henning,⁵ John Paul SanGiovanni,³ Shrikant M. Mane,⁶ Susan T. Mayne,⁷ Michael B. Bracken,⁷ Frederick L. Ferris,³ Jurg Ott,¹ Colin Bamstable,² Josephine Hoh⁷[†]

www.sciencemag.org SCIENCE VOL 308 15 APRIL 2005

A Genome-Wide Association Study Identifies *IL23R* as an Inflammatory Bowel Disease Gene

Richard H. Duerr, ^{3,2} Kent D. Taylor,^{3,4} Steven R. Brant,^{5,6} John D. Rioux,^{7,8} Mark S. Silverberg,⁹ Mark J. Daly,^{9,20} A. Hillary Steinhart,⁹ Clara Abraham,¹¹ Miguel Regueiro,¹ Anne Griffiths,²² Themistocles Dassopoulos,⁵ Alain Bitton,¹³ Huiying Yang,^{3,4} Stephan Targan,^{4,24} Lisa Wu Datta,⁵ Emily O. Kistner,³⁵ L. Philip Schumm,¹⁵ Annette T. Lee,¹⁶ Peter K. Gregersen,³⁶ M. Michael Barmada,² Jerome I. Rotter,^{3,4} Dan L. Nicolae,^{13,27} Judy H. Cho³⁴*

www.sciencemag.org SCIENCE VOL 314 1 DECEMBER 2006

HTRA1 Promoter Polymorphism in V Age-Related Macular Degeneration

Andrew DeWan,¹ Mugen Liu,²* Stephen Hartman,³* Samuel Shao-Min Zhang,²* David T. Connie Zhao,⁵ Pancy O. S. Tam,⁴ Wai Man Chan,⁴ Dennis S. C. Lam,⁴ Michael Snyder,¹ Colin Barnstable,² Chi Pui Pang,⁴ Josephine Hoh^{3,2}†

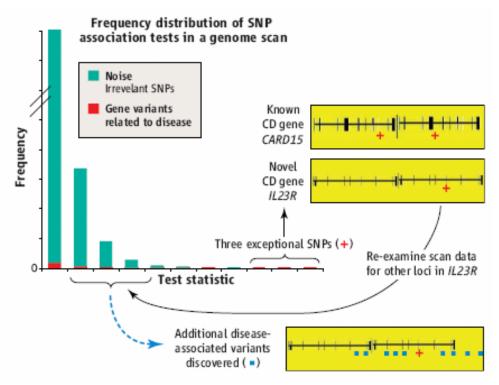
www.sciencemag.org SCIENCE VOL 314 10 NOVEMBER 2006

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek ^{1,2,4}, Ghislain Rocheleau¹*, Johan Rung⁴*, Christian Dina⁵*, Lishuang Shen¹, David Serre¹, Philippe Boutin⁵, Daniel Vincent⁴, Alexandre Belisle⁴, Samy Hadjadj⁵, Beverley Balkau⁷, Barbara Heude⁷, Guillaume Charpentier⁸, Thomas J. Hudson^{4,9}, Alexandre Montpetit⁴, Alexey V. Pshezhetsky¹⁰, Marc Prentki^{10,11}, Barry I. Posner^{2,12}, David J. Balding¹³, David Meyre⁵, Constantin Polychronakos^{1,3} & Philippe Froguel^{5,14}

doi:10.1038/nature05616

nature


A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in *ATG16L1*

Jochen Hampe^{1,2,10}, Andre Franke^{1,10}, Philip Rosenstiel^{1,9}, Andreas Till¹, Markus Teuber¹, Klaus Huse³, Mario Albrecht⁴, Gabriele Mayr⁴, Francisco M De La Vega⁵, Jason Briggs⁵, Simone Günther⁵, Natalie J Prescott⁶, Clive M Onnie⁶, Robert Häsler¹, Bence Sipos⁷, Ulrich R Fölsch², Thomas Lengauer⁴, Matthias Platzer³, Christopher G Mathew⁶, Michael Krawczak⁸ & Stefan Schreiber^{1,2}

NATURE GENETICS VOLUME 39 NUMBER 2 FEBRUARY 2007

IL23R-Crohn's Disease Finding

- 500 cases/controls
- Illumina 317k
- 3 highly significant SNPs
- 2 in CARD15 (known)
- 1 novel (IL23R)
- 2 independent replications
- Highly significant SNPs led them to look at less significant SNPs
- → Multiple independent associations

Cardon, Science, 2006

IL23R is real: GWA can work

Replication in Oxford Samples		CD			
(subset of WTCCC)	SNP	Cases	Controls	<i>P</i> -value	OR
 604 cases/1149 controls 	rs1004819	0.371	0.3002	7.03E-05	1.37 (1.17-1.60)
 Genotyped same markers 	rs7517847	0.344	0.4472	2.07E-08	0.65 (0.55-0.75)
 Used same statistical procedures 	rs10489629	0.386	0.455	1.60E-04	0.75 (0.65-0.87)
<u>Results</u> • Convincing replication of main findings • No clinical specificity • Same direction of effect • Accurate effect sizes (smaller) • Epistasis?	rs2201841	0.369	0.3057	3.20E-04	1.33 (1.14-1.55)
	rs11209026	0.028	0.06011	8.20E-05	0.46(0.31-0.68)
	rs1343151	0.278	0.3393	4.00E-04	0.75 (0.63-0.88)
	rs11209032	0.389	0.3404	0.006604	1.23 (1.06-1.43)
	rs1495965	0.505	0.4738	0.08752	1.14 (0.98-1.31)

• All carriers of rare *protective* allele carry at least 1 *IBD5 risk* haplotype

	А	G
IBD5-ve	0	294
IBD5+ve	30	814

2007: The Year of Whole Genome Association

- There are ~ 20 studies nearing completion now
- Many of them have new findings
 Not 100s of new genes, but not 0 either
- They are being replicated and validated externally
- All data will go into public domain
- Association studies do work, but they don't find everything