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1. Aim

2. Statistical power

3. Estimate the power of linkage / association analysis

Analytically
Empirically

4. Improve the power of linkage analysis







1. Know what type-l error and power are

2. Know that you can/should estimate the power of your
linkage/association analyses (analytically or empirically)

3. Know that there a number of tools that you can use to estimate
power

4. Be aware that there are MANY factors that increase type-| error
and decrease power







H,: Person A is not guilty

H,: Person A is guilty — send him to jail

In reality...

H, is true H, is true

H, is true 1 - ﬁ
Type-2 error
H,is true a 1 B
Type-1 error Power

Power: probability of declaring that something is true when in reality it is true.

We decide...




There is NO linkage between a marker and a trait

H,: There is linkage between a marker and a trait

Linkage test statistic has different distributions
under H, and H,
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Where should | set the threshold to determine significance?
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Where should | set the threshold to determine significance?
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How do | maximise Power while minimising Type-1 error rate?
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1. Set a high threshold for significance (i.e. results in low a [e.g. 0.05-0.00002])

2. Try to shift the distribution of the linkage test statistic when H, is true as
far as possible from the distribution when H, is true.



Non-centrality parameter

NCP
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Central X? Non-central X2
Mean (u) df df + NCP
Variance (0?) 2*(df) 2*(df) + 4*NCP

These distributions ARE NOT chi-sq with 1df!! Just for illustration.. Run R script in folder to see what they really look like..



NCP
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Short practical on GPC

> Genetic Power Calculator is an online resource for carrying out basic
power calculations.

+

70\ Genetic Power Calculator

%, Purcell & P. Sharm, 2001-2005

This site provides automated power analysis for variance components (VC) quantitative trat locis (QTL) linkage and association tests i sibships, and other

cotntnon tests. Itis cutrently under construction - suggestions, comtnents to Shawun Purcell I vou use this site, please reference the following Bioinformatics
article:

Purcell 3, Cherny 33, Sham PC. (2003) Genetic Power Calculator:
design of linkage and association genetic mapping studies of complex
traits., Bicinformatics, 19(1):149-150.

Modules
WV C QTL hnkage for sibshups Hotes
VC QTL association for sibships Iotes

VC QOTL hinkage for sibships conditional on trait Hotes

http://pngu.mgh.harvard.edu/~purcell/gpc/

TDT for discrete tratts Motes
TDT and parenTDT with ascerttainment (INEW) Motes
Case-control for discrete traits Motes
TDT for threshold-selected quantitative tramts Iotes

Cage-control for threshold-selected auantitative traits T otes

> For our 1st example we will use the probability function calculator to play
with power



Using the Probability Function Calculator of the GPC

1. Go to: ‘http://pngu.mgh.harvard.edu/~purcell/gpc/’
Click the ‘Probability Function Calculator’ tab.

2. We'll focus on the first 3 input lines. These refer to the chi-sq
distribution that we’re interested in right now.
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your test. E.g. 1df for
univariate linkage
(ignoring for now that it's
a mixture distribution)

015

0.05




Exercises

1. Let’s start with a simple exercise.

Determine the critical value (X) of a chi-square distribution with 1 df
and NCP = 0, such that P(X>x) = 0.05.

df =1

NCP =0 x Sl .
P(X>x) =0.05 e
X=7?

Determine the P(X>x) for a chi-square distribution with 1 df and NCP =
0 and X = 3.84.

df =1

X P df NCFE
NCP - O 3.84 0.0500435 1 I [ MNaon-central chi-sgquared ]

? [ Imverse non-central chi-squared ]
P(X>X) - ? 7 [ MCF non-central chi-squared ]

X=3.84



Exercises

2. Find the power when the NCP of the test is 5, degrees of freedom=1,
and the critical X is 3.84.

NCP =5
df = 1 . |
NCP =5 E
P(X>x) = ? L

X = 3.84 584

X Px) & NCP

0608522 |1 | |5 | [ MNon-central chi-squared ]
7 | | | | | | | Irverse non-central chi-squared |
| | | | | | 7 | MNCP non-central chi-squared |
What if the NCP = 107 NCP =10
L
df = 1 :-
NCP = 10 o ]
o
=7
P(X>x) =" 3.84
X = 3.84 X POCE) & NCP
0885451 |1 | |1D | [ MNon-central chi-squared ]
7 | | | | | | [ Inverse non-central chi-sguared |
| | | | | | ? | NCP nor-central chi-squared |




Exercises

3. Find the required NCP to obtain a power of 0.8, for degrees of

freedom=1 and critical X = 3.84.

df = 1

NCP =7
P(X>x) =0.8
X =3.84

What if the X = 13.87

df = 1

NCP =?
P(X>x) =0.8
X=13.8

3.84

015

0.05

NCP = ? . =08
T
3.84
D3=x) d4f HCP
7 [ MNaon-central chi-squared ]
| Imverse non-central chi-sguared |
0.4a 1 784677 [ MNCP non-central chi-squared ]
=7 —
NCP = ? . =08
T
13.8
P3=x) df NCE
7 [ Mon-central chi-sguared ]
[ | non-central chi-sguared
n.a 1 207613 [ MNCP non-central chi-sguared







> Why is it important to estimate power?

To determine whether the study you're designing/analysing can in fact
localise the QTL you're looking for.

Study design and interpretation of results.

You’'ll need to do it for most grant applications.

> When and how should | estimate power?

When? How?

Study design stage Theoretically, empirically

Analysis stage Empirically



Theoretical power estimation

> NCP determines the power to detect linkage

NCP

NCP = u(H, is true) - df

0.15

Ho Hy

0.05

| 1 |
5 ] 5 10 1%

> If we can predict what the NCP of the test will be, we can estimate the
power of the test



Theoretical power estimation

*|_inkage™

> Variance Components linkage analysis (and some HE extensions)
Sham et al. 2000 AJHG 66: 1616

a > w0 b =

nep <[

(1+ r2)

2

|(1—r2)2

l\/ A2|/ar(7%)‘+

N

SVar(z)+V,V,Cov(7,2)]

The number of sibs in the sibship (s)

Residual sib correlation (r)

Squared variance due to the additive QTL component (V)

Marker informativeness (i.e. Var(ﬁ) and Var(z))

Squared variance due to the dominance QTL component (V).



Another short practical on GPC

> The idea is to see how genetic parameters and the study design
influence the NCP — and so the power — of linkage analysis



Using the 'VC QTL linkage for sibships’ of the GPC

1. Go to: ‘http://pngu.mgh.harvard.edu/~purcell/gpc/’
Click the 'VC QTL linkage for sibships’ tab.

Genetic Power Calculator

QTL Linkage for Sthehips

QTL additiwve wariance

:

OTL dominance wariance : [] HNo dominance (¥ see helow)

Residual shared wariance

Fesidual nonshared variance

Fecombination fraction

Sample Size

Fibship 3ize

R

User-defined type I error rate (Q.00000001 - 0.5)

Uzer-defined power: determine N 0.80 o - 13
(1 — type II error rate)

FProcess l [ Reset ]




Exercises

1. Let’s estimate the power of linkage for the following parameters:

QTL additive variance: 0.2

QTL dominance variance: 0
Residual shared variance: 0.4
Residual nonshared variance: 0.4
Recombination fraction: 0
Sample Size: 200

Sibship Size: 2

User-defined type | error rate: 0.05

User-defined power: determine N : 0.8

Power = 0.36 (alpha = 0.05)
Sample size for 80% power = 681 families



Exercises

2. We can now assess the impact of varying the QTL heritability

QTL additive variance: 0.4

QTL dominance variance: 0

Residual shared variance: 0.4
Residual nonshared variance: 0.4
Recombination fraction: 0

Sample Size: 200

Sibship Size: 2

User-defined type | error rate: 0.05
User-defined power: determine N : 0.8

Power = 0.73 (alpha = 0.05)
Sample size for 80% power = 237 families



Exercises

3. ... the sibship size

QTL additive variance: 0.2

QTL dominance variance: 0
Residual shared variance: 0.4
Residual nonshared variance: 0.2
Recombination fraction: 0
Sample Size: 200

Sibship Size: 3

User-defined type | error rate: 0.05

User-defined power: determine N : 0.8

Power = 0.99 (alpha = 0.05)
Sample size for 80% power = 78 families



Theoretical power estimation *Association: case-control*

> CaTS performs power calculations for large genetic association studies,
including two stage studies.

& Power Calculator for Genetic Studies

Sample Size
Cases: — _JI : 1000
Contrals: —j 1000
Two Stage Design
Sample: Genatyped in Stage 1 %) - j
Markers Genatyped in Stage 2 [%) - j
Significance Level j
Dizeaze Model
Frewvalence: -—j
Dizeaze Allele Frequency: -—j
Genotype Relative Rigk: —j 150
Genetic Model
®) Multiplicative ) Additive ) Dominant () Recessive
Power | Threzhaolds " Penetrances " Infarmation || Optimization " About |
One Stage Design [llllllllllllllllllllllllllllllllllllll l 0%
Replication Analysis [llllllllllllllllllllllllllllllllll ] a0
Joint Analvsis [lllllllllllllllllllllllllllllllllllll l 88%

> http://www.sph.umich.edu/csg/abecasis/CaTS/index.html



Theoretical power estimation *Association: TDT*

> TDT Power calculator, while accounting for the effects of untested loci
and shared environmental factors that also contribute to disease risk

TDT Power calculator

Described in:

Ferreira, 3ham, Daly & Purcell (Z006) Family history of disease often decreases the

power of family-hased association studies (submittced) .

See the reference section for a brief description of input paramters and output statistics.

Disease parameters

k Dizease prewvalence [D.0001 - 0.9999]
b1l Lllele fregquency [D.0001 - 0.9999]
g Total locus wvariance [O - 1]
Va Background additive genetic wariance [0 - 1]
Vi Shared environment wvariance [O - 1]

Add %| Inheritance model

Ascertainment parameters

Nurber of families
1> I affected offspring per fawily recquired for selection

Mo+ Ascertain discordant parents?

> http://pngu.mgh.harvard.edu/~mferreira/power _tdt/calculator.html



> Theoretical power estimation
Advantages: Fast, GPC, CaTS

Disadvantages: Approximation, may not fit well individual study
designs, particularly if one needs to consider more complex

pedigrees, missing data, ascertainment strategies, different

tests, etc...



Empirical power estimation

> Mx: simulate covariance matrices for 3 groups (IBD 0, 1 and 2 pairs)
according to an FQE model (i.e. with V, > 0) and then fit the wrong model
(FE). The resulting test statistic (minus 1df) corresponds to the NCP of the
test.

See powerFEQ.mx script.

Still has many of the disadvantages of the theoretical approach, but is a useful
framework for general power estimations.

> Simulate data: generate a dataset with a simulated marker that explains a
proportion of the phenotypic variance. Test the marker for linkage with the
phenotype. Repeat this N times. For a given a, Power = proportion of
replicates with a P-value < a (e.g. < 0.05).



Empirical power estimation *Linkage / Association*

Example with LINX

http://pngu.mgh.harvard.edu/~mferreira/







Factors that influence type-1 error and power

Linkage Association

Family-based Case-control

1. Ascertainment \/ \/ v

Family structure, selective
sampling

2. Disease model

QTL heritability, MAF,
disease prevalence

3. Deviations in trait distribution
4. Pedigree errors

v

v v

v v
5. Genotyping errors v v

v v

v v

6. Missing data

AN

7. Genome coverage



Pedigree errors

> Definition. When the self-reported familial relationship for a given pair of
individuals differs from the real relationship (determined from
genotyping data). Similar for gender mix-ups.

> Impact on linkage and FB association analysis. Increase type-1 error
rate (can also decrease power)

> Detection. Can be detected using genome-wide patterns of allele
sharing. Some errors are easy to detect. Software: GRR.

Boehnke and Cox (1997), AUJHG 61:423-429; Broman and Weber (1998), AJHG 63:1563-4; McPeek
and Sun (2000), AJHG 66:1076-94; Epstein et al. (2000), AJHG 67:1219-31.

> Correction. If problem cannot be resolved, delete problematic
individuals (family)




Pedigree errors *Impact on linkage*

« CSGA (1997) A genome-wide search for asthma
susceptibility loci in ethnically diverse populations.
Nat Genet 15:389-92

« ~15 families with wrong relationships

* No significant evidence for linkage

 Error checking is essential!




Results

Our analysis of the pedigree structures by means of the
genotypes generated as part of the genome scan high-
lighted that, in each of the ethnic groups, there were
individuals identified as males that were likely to be fe-
males (and vice versa), half siblings labeled as full sib-
lings, and pedigree members that showed no relationship
to their supposed pedigree. Given that not all of the
parents were available for study, it was difficult to dis-
tinguish between parental errors and blood- or DNA-
sample mixups. In summary, 24.4% of the families
contained pedigree errors and 2.8% of the families con-
tained errors in which an individual appeared to be un-
related to the rest of the members of the pedigree and
were possibly blood-sample mixups. The percentages
were consistent across all ethnic groups. In total, 212
individuals were removed from the pedigrees to elimi-
nate these errors.

Genomewide Search for Type 2 Diabetes Susceptibility Genes

in Four American Populations

Margaret Gelder Ehm," Maha C. Kamoub,' Hakan Sakul,*" Kirby Gottschalk,'
Donald C. Holt," James L. Weber,* David Vaske,™ David Briley,' Linda Bri
Patrick scMillen,” Mpuyen,' Melanie Reisman,' Eric H. Lai,' Geoff Joslyn,™
Nancy S. Shepherd,’ Callum Bell,** Michael |. Wagner,' Daniel K. Burns," and

the American Diabetes Association GENNID iud!l,r

' Jan Kopf,'
1%



Pedigree errors *Detection/Correction®

L Allele Sharing Quality Control

Min. Genotppes |50 -

Click to change title s W
1.0 [v Half-zibs .

[w Parent-Offzpring |:|
[v Unrelated |:|

[ Other Relatives .

IBS StDev
o
tn

IBS Mean

GRR http://www.sph.umich.edu/csg/abecasis



Practical

> Aim: ldentify pedigree errors with GRR

1. Goto: ‘Egmondserver\share\Programs’
Copy entire ‘GRR’ folder into your desktop.

2. Go into the ‘GRR’ folder in your desktop, and run the
GRR.exe file.

3. Press the ‘Load’ button, and navigate into the same ‘GRR’
folder on the desktop. Select the file ‘sample.ped’ and
press ‘Open’. Note that all sibpairs in ‘sample.ped’ were
reported to be fullsibs or half-sibs.

I'll identify one error. Can you identify the other two?



Summmary

1. Statistical power
2. Estimate the power of linkage analysis

3. Improve the power of linkage analysis



