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!'_ Hunting QTLS

Nick Martin

Queensland Institute of Medical Research

Boulder workshop: March 5, 2007




Year Location Type #Faculty # Students
TC1 1987 Leuven Introductory 10 24
TC2 1989 Leuven Introductory 11 41
TC3 1990 Boulder Introductory 11 28
TC4 1991 Leuven Introductory 14 49
Advanced 12 55
TC5 1993 Boulder Introductory 13 49
TC6 1994 Boulder Introductory 16 43
TC7 1995 Helsinki Introductory 10 29
TCS8 1996 Boulder Introductory 10 49
TCO 1997 Boulder Introductory 10 55
TC10 1998 Boulder Introductory 12 57
TC11 1998 Leuven Introductory 10 55
Advanced 13 62
TC12 1999 Boulder Advanced 12 37
TC13 2000 Boulder Introductory 12 63
TC14 2001 Boulder Advanced 18 65
TC15 2002 Boulder Introductory 18 95
TC1l6 2003 Boulder Advanced 15 82
TCE1 2003 Egmond Introductory 15 65
TC1l7 2004 Boulder Introductory 18 90
TCE2 2004 Egmond Advanced* 16 64
TC18 2005 Boulder Advanced 18 64
TCE3 2005 Egmond Advanced* 13 55
TC19 2006 Boulder Introductory 15 93
TCE4 2006 Egmond Advanced 12 48
TC20 2007 Boulder Advanced 21
TC21 2007 Leuven Anniversary



Frequency of attendance of faculty and students

Frequency 1 2 3 4 5 6 7 8 9 10 11 16 18 19 20 21
Faculty 8 4 4 3 5 2 4 1 2 2 1 1 1 1 2 3 44

Student 585 169 36 14 4 5 1 # of 'Unique’ Students 814
Introductory Workshop # of Students 920
Advanced Workshop # of Students 365

Total 1185



Complex Trait Model

Linkage
Marker — <g————)  Genel
Linkage
disequilibrium
_ Mode of
Linkage inheritance
Association

Gene?

Disease
Phenotype

—
~—

Gene3



Using genetics
to dissect
metabolic
pathways:
Drosophila eye
color

Beadle &
Ephrussi, 1936
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i Finding QTLSs

= Linkage

s Assoclation



Association of NOD2 leucine-rich
repeat variants with
susceptibility to Crohn’s disease

Jean-Plerre Hugot® i, Mathias Chamaillard* , Habib Zouali*,
Suzanne Lesage*, Jean-Pierre Cézard}, Jacques Belaiches,

Sven Almer/, Curt Tysk9, Colm A. 0'Morain, Miquel Gassull”,

Vibeke Binder* ", Yigael Finkeli, Antoine Cortot:,

Robert Modiglianiss, Pierre Laurent-Puig+, Corine Gower-Rousseau,
Jeanne Macrylll, Jean-Frederic Colombel:{, Mourad Sahbatou*

& Gilles Thomas* {19

NATURE |VOL 411 |31 MAY 2001

First (unequivocal)
positional cloning of a
complex disease QTL !
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Thomas Hunt Morgan — discoverer of linkage




Linkage = Co-segregation

()

AA,

0 C

Ao ArAs

Marker allele A;
cosegregates with

dominant disease £l
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Linkage Markers: microsatellite / SNP/ ...
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IDENTITY BY DESCENT
Sib 1

4/16 = 1/4 sibs share BOTH parental alleles IBD
=2

8/16 = 1/2 sibs share ONE parental allele IBD
=1

4/16 = 1/4 sibs share NO parental alleles IBD
=0




For disease traits (affected/unaffected)
Affected sib pairs selected
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For continuous measures
Unselected sib pairs
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Linkage for mole counts in Australian twin families

——  Flat navus count

~——  Raised nevus count

A genome-wide scan for naevus count: linkage to e g
CDKN2A and to other chromosome regions ——  Mutiivariate

Gu Zhu', Grant W Montgomery®, Michael R James!, Jeff M Trent?, Nicholas K Hayward!,
- .1 B w1 .
Nicholas G Martin® and David L Duffy European Journal of Human Genetics (2007) 15, 94-102



Linkage for mole counts in UK DZ twins

LOD-score
kO

L _ _F'-ﬂ_-'“." L. i‘b-,' zh:.P‘l\‘ U L T
1 2 3 4 5 6 7 8 910 M
Chromosome

13 1517 21

Genome-wide search for nevus density shows linkage to two melanoma loci on chromosome 9 and identifies a new QTL on 5931
in an adult twin cohort.Falchi M, Spector TD, Perks U, Kato BS, Bataille V. Hum Mol Genet. 2006 Oct 15;15(20):2975-9



Flat mole count: chromosome 9 linkage in Australian and UK twins

Australia

lod score
]

UK

LOD-score




Linkage for MaxCigs24 in Australia and Finland
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log Reading Linkage: Chromosomes 1-22

18 19 20 122

17

13 14 15 16

nm 1 12

9

Chromosome

log Spelling Linkage: Chromosomes 1-22

40

18 19 20 122

B 16 17

13

" 12

10

8

Chromosome

T






Effect of multivariate analysis on linkage power

0.000001

Pvalue

0.00001

0.0001

0.001

0.01

0.1

1

Multivariate and univariate linkage analysis of six
reading-related measures on chromosome 18

Am. J. Hum. Genet.,
72:561-570, 2003

Use of Multivariate
Linkage Analysis for
Dissection of a
Complex Cognitive Trait

Angela Marlow, Simon
Fisher, Clyde Francks,

Laurence MacPhie,
Stacey Cherny, Alex
Richardson, Joel
Talcott, John Stein,
Anthony Monaco, and
Lon Cardon



House dust mite

Airway Obstruction
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Ridge count

The size of printscanbe 0N )\
measured by counting the 1=l —— —>
number of ridges from the e '
triradil to the core

Ridge count can be summed 7 77 "W
over all fingers to give a N
total ridge count =i

»Highly heritable:

*MZr = .94 Cl .89 - .96
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Extreme Discordant Sib Pairs
for Mapping Quantitative Trait
Loci in Humans
Neil Risch* and Heping Zhang

Analysis of differences between siblings (sib pair analysis) is a standard method of genetic
linkage analysis for mapping quantitative trait loci, such as those contributing to hyper-
tension and obesity, in humans. In traditional designs, pairs are selected at random or with
one sib having an extreme trait value. The majority of such pairs provide little power to
detect inkage; only pairs that are concordant for high values, low values, or extremely
discordant pairs (for example, one in the top 10 percent and the other in the bottom 10
percent of the distribution) provide substantial power. Focus on discordant pairs can
reduce the amount of genotyping necessary over conventional designs by 10- to 40 -fold.




Information Score for Additive Gene Action (p=0.5)
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Genotypes available on EDAC plus others

Phenotyped for Neuroticism

Extreme Discordant Conco Genotyped
Design EDAC plus,
4.00— o (53;: it QEDAC
) S Qe
# QISPs Neuroticism QISPs share
Phenotyped >300 markers
Concordant Hi 556 343 62%
Concordant Lo 717 497 69%
Discordant 726 463 64%
The rest 8482 858 10%

Total 10481 2161



Linkage scan EDAC sample — CIDI interview

Depression traits - OZ
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Information for marker density 0.5, 1, 2, 10cM scan

1.00

N T

0.80 -

0.75 - v

0.70 -

Information

0-55 | | | | | | | | | |
0 10 20 30 40 S50 &0 70 680 S0 100 110 120 130 140 150
cM

Limits of fine mapping a quantitative trait
Attwood LD & Heard-Costa NL.
Genetic Epidemiology 24:99-106, 2003



Awme. [, Hewrn, Genet, 75:54—64, 2004

Whole-Genome Scan, in a Complex Disease, Using 11,245
Single-Nucleotide Polymorphisms: Comparison with Microsatellites

Sally John,' Neil Shephard,' Guoying Liu,” Eleftheria Zeggini,' Manqiu Cao,” Wenwei Chen,”

Nisha Vasavda,® Tracy Mills,” Anne Barton,"” Anne Hinks,' Steve Eyre,' Keith W. Jones,*
William Ollier,’ Alan Silman,' Neil Gibson,”? Jane Worthington,' and Giulia C. Kennedy”

'University of Manchester, Manchester, United Kingdom; *Affymetrix, Santa Clara, CA; and *AstraZeneca, Macclesfield, United Kingdom

Despite the theoretical evidence of the utility of single-nucleotide polymorphisms (SNPs) for linkage analysis, no
whole-genome scans of a complex disease have vet been published to directly compare SNPs with microsatellites.
Here, we describe a whole-genome screen of 157 families with multiple cases of rheumatoid arthritis (RA), performed
using 11,245 genomewide SINPs. The results were compared with those from a 10-cM microsatellite scan in the
same cohort. The SNP analysis detected HLA*DRB1, the major RA susceptibility locus (P = .00004), with a
linkage interval of 31 ¢cM, compared with a 50-cM linkage interval detected by the microsatellite scan. In addition,
four loci were detected at a nominal significance level (P < .05) in the SNP linkage analysis; these were not observed
in the microsatellite scan. We demonstrate that variation in information content was the main factor contributing
to observed differences in the two scans, with the SNPs providing significantly higher information content than
the microsatellites. Reducing the number of SNDPs in the marker set to 3,300 (1-cM spacing) caused several loci to
drop below nominal significance levels, suggesting that decreases in information content can have significant effects
on linkage results. In contrast, differences in maps emploved in the analysis, the low detectable rate of genotyping
error, and the presence of moderate linkage disequilibrium between markers did not significantly affect the results.
We have demonstrated the utility of a dense SNP map for performing linkage analysis in a late-age-at-onset disease,



NPL

Chromosome 12

Chromosome 13

"'-.,.‘h — %
&
x Pl I T /r\
[,
:":4 - [ ]
50 100 150 200 0 50 100 150
Chromosome 21 Chromosome X
i - Lt I
P—_
L ] \/ﬂ/ Lo ]
- Y -
| | I 1 1 [] I | | |
20 40 60 80 0 50 100 150 200

Position (cM)



i Linkage

= Doesn’t depend on “guessing gene”

= Works over broad regions (good for getting
In right ball-park) and whole genome
(“genome scan”)

= Only detects large effects (>10%)
= Requires large samples (10,000’s?)
= Can’'t guarantee close to gene




i Assoclation

= Looks for correlation between specific
alleles and phenotype (trait value,
disease risk)




i Assoclation

s More sensitive to small effects

= Need to “guess” gene/alleles
(“candidate gene”) or be close enough
for linkage disequilibrium with nearby
loci

= May get spurious association
(“stratification”) — need to have genetic
controls to be convinced




Variation: Single Nucleotide Polymorphisms

Complex disease marker? SMNFPs are single-base differences in DIMNA



The Flow of Genetic Information
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Human OCAZ2 and eye colour

QTL for Eye Colour

Chromosome 15
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Zhu et al., Twin Research 7:197-210 (2004)



LD blocks in OCA2
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Eye colour explained
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A Three-Single-Nucleotide Polymorphism Haplotype in Intron 1
of OCAZ Explains Most Human Eye-Color Variation

David L. Duffy,* Grant W. Montgomery,* Wei Chen, Zhen Zhen Zhao, Lien Le, Michael R. James,
Nicholas K. Hayward, Nicholas G. Martin, and Richard A. Sturm

American Journal of Human Genetics

Volume 80 February 2007



Comparison of Affymetrix 10k, 100k,

500k SNP chips
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SNP Genotyping Platforms

Throughput (SNPs Per Assay)

Cost Per Assay

Flexibility in Project Design
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Unprecedented Call Rates of >99%

FROM FUNG AND SINGLETON ET AL. NEUROLOGY THE LANCET

Genome-wide genotyping in Parkinson’s disease and > W
neurologically normal controls: first stage analysis and
public release of data

Hon-ChungFung, Sonjo Schalz, Mar Matarin, Javier Simdn-5anchez, Dena Hernandez, Angel a Britton, | Raphael Gibbs, Carl Langefeld
Matt L Stiegert, Jennifer Schymick, Michael 5 Qkun, Ronald | Mandel, Hubert H Fernandez, Kelly DFoote Ramdn L Rodrfguez, Elizabeth Pedcham,
FabienneWavrant DeVrieze, Katrina Gwinn-Hardy, John A Hardy, Andrew Singleton

Summary

Background Several genes underlying rare monogenic forms of Parkinson's disease have been identified over the past oo o ootine

decade. Despite evidence for a role for genetics in sporadic Parkinson's dizease, few common genetic variants have  September 77 2008

been unequivocally linked to this disorder. We sought to identify any common genetic variability exerting a large DO:10.101651474-
o rick for Parkinenn's diseaze in a2 nonulatinn cohort and to neaducs nublicke availahle senomewide aenonme  HIH0STETES

[¥q

* A total of 219,577,497 unique genotype calls were
made and the average call rate across all samples
¥ was 99.6%.

et ooy Core
Findings We have produced around 220 million genotypes in 537 participants. This raw genotype data has been (R Gibbz ES) Maticnal Institute
publicly posted and as such is the first publicly accessible high-density SNP data outside of the International HapMap ::'ﬂ paE ”.D""“t Sy rizd
Project. We also provide here the results of genotype and allele association tests. Stionns Bataktin,
Department of Public Health
Interpretation We generated publicly available genotype data for Parkinson's disease patients and controls so that ~SdercesWake Farest University
these data can be mined and augmented by other researchers to identify common genetic variability that results in mm;’:m:w
. . . gefeld PR
minor and moderate risk for disease. ML SticgertM5); Movement

llurfiing:



GWAS for Inflammatory Bowel Disease

Frequency distribution of SNP
association tests in a genome scan
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Re-examine scan data
for other lod in /IL23R

Delivering New Disease Genes

Lon R. Cardon



GWAS for Inflammatory Bowel Disease
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A Genome-Wide Association Study
Identifies IL23R as an Inflammatory
Bowel Disease Gene



A genome-wide association study
identifies novel risk loci for type 2 diabetes

Stage 1: lllumina 100k+300k
Stage 2: Sequenom Iplex

Published online 11 February 2007 nature
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A genome-wide association study
identifies novel risk loci for type 2 diabetes

Robert Sladek"*, Ghislain Rocheleau'~, Johan Rung'*, Christian Dina®*, Lishuang Shen', David Serre',

Philippe Boutin®, Danlel Vincent!, Alexandre Bells\e Samy Hadjadj®, Beverley Balkau’, Barbara Heude”,
Guillaume Charpentler“ ThomasJ Hudson™, Alexandre Montpetit!, Alexey V. Pshezhelskyl" Marc Prenlkim'u,
Barry |. Posner™'’, David J. Balding'®, David Meyre Constantin Polychronakos'~ & Philippe Froguel™'*



Cutting costs of GWAS by DNA pooling

Case DNAs Control DNASs

DNA1 DNA2 ............. DNA300 DNA1 DNA2 ............. DNA300
case pool (N=384) control pool (N=384)

/N

Affymetrix Genechip Hind Il arrays




Affy 500k chip
Pools of Hi/Lo memory Ss
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Case-control allele frequency differences: individual genotyping vs pools (Hap300)
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Pooling error for 15,000 SNPs using lllumina Hap300 and Affy 50k arrays
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lllumina arrays extract 80% information as IG vs ~30% with Affy: need ~10x Affy arrays

Stuart Macgregor, QIMR



lllumina Hap300 versus Affy 50k array-specific error plots

lllumina 317k data Affymetrix 50K Hindlll data
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Role of mIRNA (binding sites) in disease ?

Sequence Variants in SLITRK1
Are Associated With 14 OCTOBER 2005 VOL 310 SCIENCE

Tourette’'s Syndrome
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A mutation creating a potential illegitimate microRNA
target site in the myostatin gene affects musc dﬁrlt

in sheep IN quantitative traits
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30 4 ® Texel sheep are renowned for their exceplional mealiness.
L] To identify the genes underlying this economically important
& ° feature, we performed a whole-genome scan in a Romanov x
E,; 201 o Texel F2 population. We mapped a quantitative trait locus
= with a major effect on muscle mass to chromosome 2 and
101 ° . subsequently fine-mapped it to a chromosome interval
. encompassing the myostatin (GDF8) gene. We herein
. demonstrate that the GDF8 allele of Texel sheep is
0; A characterized by a G to A transilion in the 3" UTR that
& $§ @ 8 HYy g ] creales a largel site for mirl and mir206, microRNAs
T gx x % g%g z = (miRNAs) that are highly expressed in skeletal muscle. This
o 203 causes translational inhibition of the myostatin gene and
PR 1 — T hence contributes to the muscular hypertrophy of Texel sheep.
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Rec Analysis of SNP databases for humans and mice demonsirates
that mulations creating or destroying putative miRNA larget
sites are abundant and might be important effectors of
})henolypic variation.
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Even for “simple” diseases
the number of alleles Is large

= Ischaemic heart disease (LDR) >190
= Breast cancer (BRAC1) >300
= Colorectal cancer (MLN1) >140



Multiple Rare Alleles Contribute
to Low Plasma Levels of

HDL Cholesterol Complex disease: common or rare alleles?

Jonathan C. Cohen,'?3%; Robert S. Kiss,**
Alexander Pertsemlidis,? Yves L. Marcel,*+ Ruth McPherson,®
Helen H. Hobbs'34

Heritable variation in complex traits is generally considered to be conferred by
common DNA sequence polymorphisms. We tested whether rare DNA se-
quence variants collectively contribute to variation in plasma levels of high-

density lipoprotein cholesterol (HDL-C). We sequenced three candidate genes I n C re aS I n eVI d e n Ce fO r
(ABCAT, APOAT, and LCAT) that cause Mendelian forms of low HDL-C levels in

individuals from a population-based study. Monsynonymous sequence variants

HDLLC (2t prcentie] tam in thoss with figh HDL-C (>95th porcentie) Common Disease — Rare Variant

Similar findings were obtained in an independent population, and biochemical

studies indicated that most sequence variants in the low HDL-C group were .
functionally important. Thus, rare alleles with major phenotypic effects con- h Ot h eS I S ‘ D RV
tribute significantly to low plasma HDL-C levels in the general population.

Table 1. Sequence variations in the coding regions of ABCAT, APOAT, and LCAT. Values represent the numbers
of sequence variants identified in 256 individuals from the Dallas Heart Study (DHS) (128 with low HDL-C and
128 with high HDL-C) and 263 Canadians (155 with low HDL-C and 108 with high HDL-C) (77). NS,
nonsynonymous (nucleotide substitutions resulting in an amino acid change); S, synonymous (coding
sequence substitutions that do not result in an amino acid change). GenBank accession numbers for DHS
ABCA1, APOAT1, and LCAT sequences are NM_005502, NM_000039, and NM_000229, respectively.

Sequence variants Sequence variants
unique to one group common to both groups
Low HDL-C High HDL-C
NS S NS S NS S
DHS
ABCAT 14 6 2 5 10 19
APOA1 1 0 0 1 0 1
LCAT 0 1 1 0 1 1
Canadians

ABCAT 14 2 2 3 7 5
APOA1 0 1 0 0 2 0
LCAT 6 1 0 0 0

[Science 2004]



Product Portfolio and Application Areas

Human-1

Hap450S +

Hap650Y

62

Gene centric association studies

WGA with 80% genomic coverage

in Caucasians + Hap 240S

WGA with ~90% genomic
coverage in Caucasians and
Asians

WGA with ~90% genomic
coverage in Caucasians and
Asians AND 67% genomic

coverage in Yoruban

The most comprehensive chip that
allows whole genome DNA

analysis with industry leading SNP
coverage in genes, CNV regions
and indels

llurfiing:




1M Content

CONTENT NUMBER

High density of SNPs in coding regions of the

SNPs in Genes 400,000
genome

Additional Caucasian and
Asian Tag SNPs

. Ensure complete coverage across the genome,
Even Spacing SNPs enable new CNV discoveries

Unsurpassed power and gene coverage for WGA
and CNV studies

Higher tag SNP coverage of the genome
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Human 1M HapMap Coverage by Population

GENOME COVERAGE ESTIMATED FROM 990,000 HAPMAP SNPs IN HUMAN 1M
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Copy Number
Variation (CNV) in
MZ twin pair
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making sense out of life

ABOUT ILLUMINA | PRODUCTS & SERVICES | SUPPORT | COMMUNITY | CORPORATE

products & services solexa sequencing applications
O overview Illumina's Solexa Sequencing technology offers a powerful new

approach to some of today's most important applications for
systems & software genetic analysis and functional genomics, including:
dna analysis solutions
sequencing and resequencing

Whether yvou need to sequence an entire genome or a large

O solexa applications candidate region, the Illumina Genome Analyzer System is today's
most productive and economical sequencing tool. Solexa

sequencing technology and reversable terminator chemistry deliver

rna analysis solutions

services

O product literature unprecedented volumes of high quality data, rapidly and L J,
\, J economically.

Sequencing millions of short cODNA tags per sample, the Genome - preduct literature

Analyzer allows you to generate digital expression profiles at costs - publications

comparable to current analog methods. Because our protocol does
not require any transcript-specific probes, yvou can apply the
technology to discover and guantitate transcripts in any ocrganisms,
irrespective of the annotation available on the organism.

- fags

- have a rep contact me

small rna identification and quantification

Solexa sequencing technology also offers a unigue and powerful
solution for the comprehensive discovery and characterization of
small RNAs in a2 wide range of species. The massively parallel
sequencing protocol allows researchers to discover and analyze
genome-wide profiles of small RNA in any species. With the
potential to generate several million sequence tags economically,
the Illumina Genome Analyzer offers investigators the opportunity
to uncover global profiles of small RMNA at an unprecedented scale.




EPIGENETIC DISCORDANCE IN
IDENTICAL TWINS

The missing “environment” ?




Fig. 1. Patient 1. Soft tumor and abnormal aspect in the lumbosacral
area.

Fig. 2. Patient 1. Radiograph of the vertebral column shows complete
duplication of the spine from L4 down.

urethra, a dilated pelvis of the right kidney, bilateral
uterus unicornis with normal ovaries, hemivertebrae of
thoracic vertebrae 6 and 10, and abnormal curvature of
the sacrum. A persistent ductus arteriosus and secun-
dum atrial septum defect was suspected, but results of
cardiac investigations at 10 months were normal.

At physical examination for genetic evaluation at
4months we saw a baby girl with epicanthal folds, but no
other minor anomalies. She had a capillary nevus on her
left buttock. In the anal region only a dimple was seen.
The patient was operated on one day after birth, when a
colostomy was made and a fistula connected to the colon

o N N e ) YIS I IR O 3 [ o [ TR



Discordant caudal duplication in MZ twins
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Emma Whitelaw, Suyinn Chong

Department of Biochemistry
University of Sydney
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Epllepsy (with S. Berkovic, L. Vadlamudi)

Schizophrenia with B.Mowry, N.Hayward)

DepreSSion (with A. Petronis, D. Boomsma, P. McGuffin)

Asthma (with M.Ferreira, E.Whitelaw)




We also run two journals (1)

A Journal Devoted to Research in the
Inheritance of Behavior

%KLUWER ACADEMIC / PLENUM PUBLISHERS

Editor: John Hewitt

Editorial assistant
Christina Hewitt

Publisher: Kluwer
/[Plenum

Fully online
http://www.bga.org



i We also run two journals (2)

Rvinresearch s Editor: Nick Martin
and

humangenetics = Editorial assistant +
| | | subscriptions:
Marisa Grimmer

s Publisher: Australian
Academic Press

= Fully online

= http://www.ists.qimr
.edu.au/journal.html










But why do we use the average sib
values of

r, = 0.5

ry = 0.25

when we can estimate the (almost)

exact values for each sib pair from
marker data ?

Are there any advantages in doing so ?



Mean IBD sharing across the genome for the jth sib pair
was based on IBD estimated from Merlin every
centimorgan and averaged at all 3491 points

3491

Tatiy = Z T agii /13491
1=1

3491

dominance 7’2‘.d(1) — Z_l“ pZ(IJ) /3491



Application

 Phenotype = height

Number of sibpairs with phenotypes
and genotypes

Adolescent cohort 031
Adult cohort 2444
Combined 3375



Mean and SD of genome-wide additive relationships
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Mean and SD of genome-wide dominance relationships
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Additive and dominance relationships
correlation = 0.91 (n=4401)

0.4000 -

y = 0.9995x - 0.2506 +
R:=0.8225
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Models

F = Family effect
A = Genome-wide additive genetic
E = Residual

Full model F+7,,A+E
Reduced model F+ E



Sampling variances are large

Cohort F+A (95% CI)

Adolescent 0.80 (0.36 — 0.90)
Adult 0.80 (0.61 — 0.86)
Combined 0.80 (0.62 — 0.85)

» Estimates of MZ correlation from fullsibs!

PLOS Genetics, /17 press
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Comparative Genomics

= differences in DNA sequence
Human-Human 1:1000 = 0.1%

Human-Chimp 1:100 = 1%

Human-Mouse 1:8 = 15%




nature Vol 440|9 March 2006|doi:10.1038 /nature 04559

LETTERS

Expression profiling in primates reveals a rapid
evolution of human transcription factors

Yoav Gilad't, Alicia Oshlack®, Gordon K. Smyth?, Terence P. Speed™” & Kevin P. White'

T | e e

0 e

Log.~fold change

Differentially expressed genes

features that point to the action of directional selection. Among
the gene set with a human-specific increase in expression, there is
an excess of transcription factors; the same is not true for genes
with increased expression in chimpanzee.



Which genes have evolved fastest?
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Figure 3. Plots of Chromosome 2 SNPs with Extreme iHS Values Indicate Discrete Clusters of Signals



Table 1. Summary of Some of the Strongest iHS Signals Genome-Wide

Cytological Position Genes (Num ber) Size (kb) Pop Number of SNPs
with |iH5| =2.0
1p34.3 NCDN, TEKT2 (17) 1,200 CEU 74/103
1p311 SLC44A5 (4 oS00 ASN 97/150
2p233 NCOAL, ADCY3 (4) 400 YRI 51/76
2q123q13 SULTIC cluster (13) 1,100 ASM 108/171
2213221 LCT (15) 2,800 CEU 351/594
2q323 Mone (0) 400 YR 100/131
4p15.1 MNone (0) 500 CEU 9115
YRI 43/146
4q21-23 ADH cluster (B) 100 ASN 21/28
Bgi11.21-23 SNTGT (8) 37100 ASM 1291297
CEU 550/1201
Rl 2121451
9p223 Coorf@3(1) 400 ASN 142/204
12q21.2 5YTT (3) 700 YR 108/143
20cen TGB4BF, CEPZ, 800 ASN 1011135
SPAG4 (24) CEU 50/153
YRl 22/154

A Map of Recent Positive Selection

in the Human Genome

Benjamin F. Voight®, Sridhar Kudaravalli®, Xiacquan Wen, Jonathan K. Pritchard”

PLoS Biology | www.plosbiology.org
March 2006 | Volume 4 | Issue 3 | e72



Migraine - Genome Scan Results

MERLIN-regress (LCA 2-class affection)
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MERLIN-deviates IHS Symptom Analyses

Chr5 cM
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2.5

MERLIN-deviates IHS Symptom Analyses

PHONOPHOBIA MA, IHS...

ATP1A2
(FHM2)
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