(Re)introduction to Mx Sarah Medland

Kiwi

Chinese Gooseberry

Starting at the beginning

Data preparation

- Mx expects 1 line per case/family
- Almost limitless number of families and variables
- Space delimited is best
- Can use a missing code ie -9 or can use the default '.'

Important structural stuff

- Script is composed of one or more jobs (can handle many 'nested' jobs in one script or 2 non nested jobs)
- Each job is composed of one or more groups
 - Each group is 'opened' with a title
 - Each group is 'closed' with an end statement
 - You must tell Mx how many groups will be in the job

A bit about groups

o 3 types of groups

- Calculation
- Data
 - If analysing raw data Mx expects a Means Model and a Covariance Model
- Constraint

Matrices: the building blocks

- Many types
- Denoted by a single letter
 - Elements defined by letter and 3 numbers
 A 1 2 1 = A matrix group 1 row 2 column 1
- All constants and estimated parameters must be placed in a matrix & Mx must be told what type of matrix it is
- Letters can be reused in subsequent groups

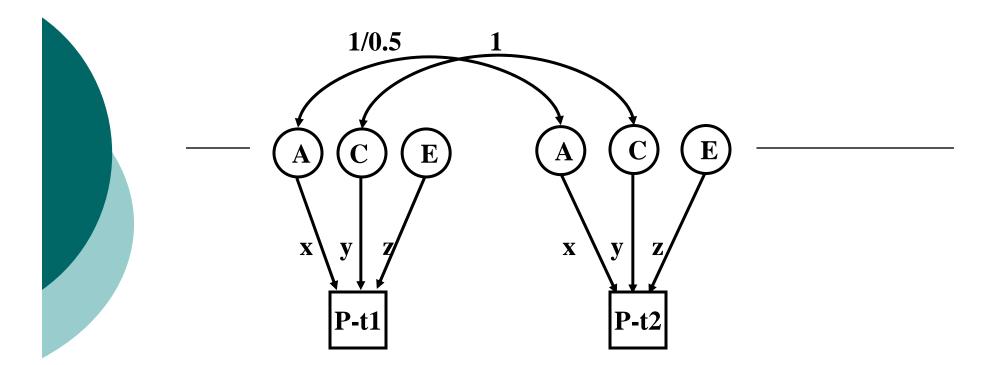
Matrices: the building blocks

 Many types 	F Diag 3 3 Free	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	G Sdiag 3 3 Free	$\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 & 0 \\ ? & 0 & 0 \end{array}$
A Zero 2 3 Free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		230	? ? 0
	H Stand 3 3 Free	$\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 0 & 3 \end{array}$	1?? ?1?
B Unit 2 3 Free 0 0 0 0 1 1 0 0 0 1 1		230	??1
C Iden 3 3 Free 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0	0	124 235 456	???? ???? ????
	J Lower 3 3 Free	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	K Full 2 4 Free	$\begin{smallmatrix}1&2&3&4\\5&6&7&8\end{smallmatrix}$????? ?????

Short cuts

- Anything after ! is read as a comment
- Can predefine frequently used/changed parameters
 - #define nvar2=2
- Can read in another file within the script
 - #include ozbmi2.dat
- Can run loops via the repeat comand
- Use an end of line signal (; or /) except in the Labels command

Setting up the script – calculation group


- o 1st line is the title
- o 2nd specifies group type
- Matrix definition
 - Begin Matrices End Matrices
 - If a matrix is not specified free it will be considered fixed
- o Algebra
 - Begin Algebra End Algebra
- Starting values for free/estimated parameters or specified values for constants
- o End

Setting up the script – data group

- o 1st line is the title
- 2nd specifies group type and number of variables (in ozbmi2.dat)
- 3rd line gives data location (in ozbmi2.dat)
 - Rectangular file = continuous data
 - Ordinal file = ordinal data (Mx will expect a thresholds model not a means model)
- List the variables (in ozbmi2.dat)
- o Select if ...
- Select variables
 - Order is important! Select all vs for twin1 then twin2 then sib1 ect
- Specify which vs are covariates (definition variables)

Setting up the script – data group

- Matrix definition
 - Call matrices from previous groups and/or define new matrices
- Algebra & starting values
- Means Model
 - can include covariates ie age, sex ...
- Covariance Model
 - Expected to be nsib*nvar by nsib*nvar
- o End

Variance/covariance matrices

MZDZt1t2t1t2t1 $a^2+c^2+e^2$ a^2+c^2 t1 $a^2+c^2+e^2$ a^2+c^2 t1 $a^2+c^2+e^2$ t2 a^2+c^2 $a^2+c^2+e^2$ t20.5a^2+c^2 $a^2+c^2+e^2$ t2

o Mx starts by reading back the script

** Mx startup successful **

MX-PC 1.63h Job started on 03/07/06 at 01:51:09

! ESTIMATE GENETIC AND ENVIRONMENTAL COMPONENTS - ACED MODEL ! OZ BMI DATA - YOUNGER FEMALES

The following MX script lines were read for group 1

#NGROUPS 4
Note: #NGroup set number of groups to 4

#DEFINE NUAR 1#DEFINE NUAR2 2TITLE G1: MODEL PARAMETERSCALCULATIONBEGIN MATRICES;X LOWER NUAR NUAR FREEY LOWER NUAR NUARY LOWER NUAR NUAR2 LOWER NUAR NUAR FREEY LOWER NUAR NUAR FREE

o Data summary

Summary of VL file data for group 2

	BMI 1	BMI2
Code	1.0000	2.0000
Number	647.0000	651.0000
Mean	21.9076	21.8684
Variance	0.9801	0.9528
Minimum	19.4150	18.5724
Maximum	26.0885	25.9592

Summary of VL file data for group 3

	BMI 1	BMI2
Code	1.0000	2.0000
Number	389.0000	391.0000
Mean	21.8207	21.8615
Variance	0.9155	1.0274
Minimum	19.4145	19.6650
Maximum	26.1492	25.6367

• Parameter specifications

			MATRIX W	
			This is a LOWER TRIANGULAR matrix of order 1 by 7	1
			1	
PARAMETER SPECIFICATIONS			DOM_GEN 3	
GROUP NUMBER: 1			MATRIX X	
			This is a LOWER TRIANGULAR matrix of order 1 by 1	1
Fitle G1: Model Parameters			1	
			ADD GEN 1	
MATRIX A			-	
This is a computed FULL matrix of order	1 by	1	MATRIX Y	
It has no free parameters specified			This is a LOWER TRIANGULAR matrix of order 1 by	1
			····· ,	•
MATRIX C			It has no free parameters specified	
This is a computed FULL matrix of order	1 by	1		
It has no free parameters specified			MATRIX Z	
			This is a LOWER TRIANGULAR matrix of order 1 by 📑	1
MATRIX D			1	
This is a computed FULL matrix of order It has no free parameters specified	1 by	1	SPEC_ENV 2	

So what o Estimates

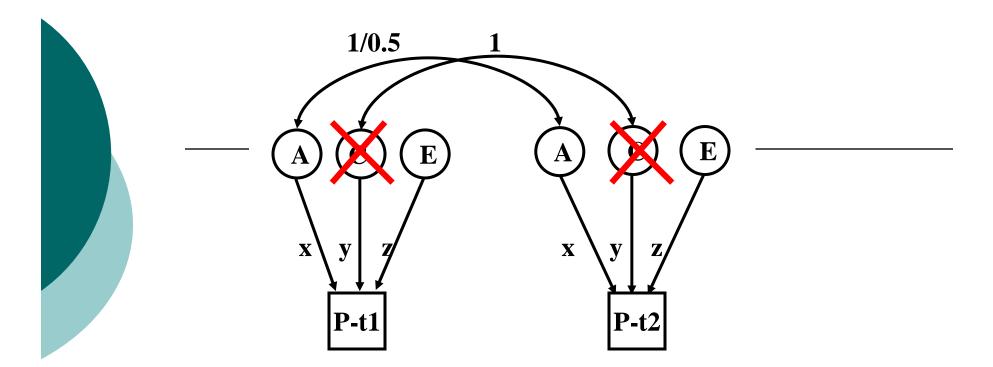
So what do you get

```
Mx starting optimization; number of parameters = 7
 MX PARAMETER ESTIMATES
 GROUP NUMBER: 1
Title G1: Model Parameters
 MATRIX A
This is a computed FULL matrix of order
                                            1 by
                                                     1
 [=X*X']
            1
       0.5613
1
 MATRIX C
This is a computed FULL matrix of order
                                            1 by
                                                     1
 [=Y*Y']
            1
       0.0000
1
 MATRIX D
This is a computed FULL matrix of order
                                            1 by
                                                     1
 [=₩*₩,]
            1
1
       0.1084
```

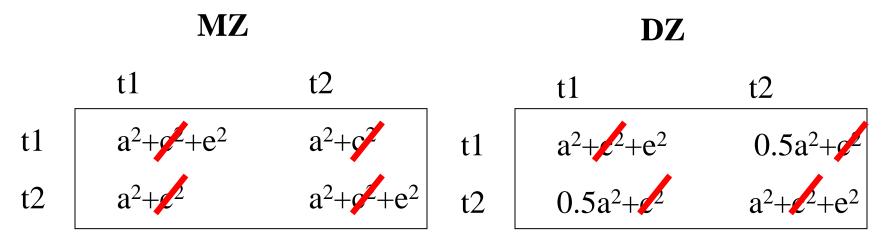
• Warnings & Fit information (not from ozbmiyface.mx)

*** WARNING! *** Minimization may not be successful. See above CODE GREEN - it probably was OK

Your model has 6 estimated parameters and 500 Observed statistics


This problem used 0.0% of my workspace

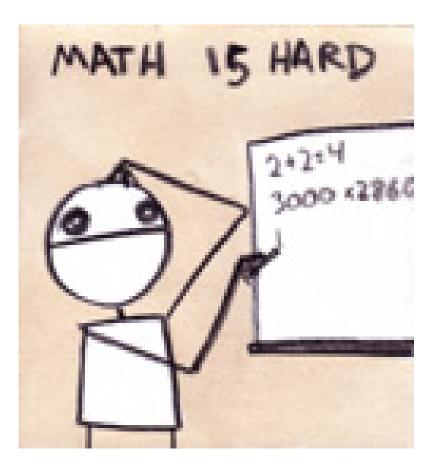
Task	Time elapsed (DD:HH:MM:SS)
Reading script & data	0: 0: 0: 1.61
Execution	0: 0: 0:-1.10
TOTAL	0: 0: 0: 0.51


Testing for significance

 Drop the parameter(s) from the model or equate parameters using the multiple job option

- Specify the matrix elements you wish to drop/equate
 - o Drop A 1 1 1
 - o EQ A 1 1 1 B 1 1 1
- Compare the fit of the two models

Variance/covariance matrices



General Advice/Problem solving

- o Scripting styles differ
- o Check the parameter numbers
- o Check the sample description
- Learn to love the manual
- o Comments are your friends

Time for coffee

explodingdog.com